Методы системного анализа. Системный анализ внешнеторговых отношений апк региона Методологические подходы и методы системного анализа

Системный анализ предусматривает: разработку системного метода решения проблемы, т.е. логически и процедурно организованную последовательность операций, направленных на выбор предпочтительной альтернативы решения проблемы. Системный анализ реализуется практически в несколько этапов, однако в отношении их числа и содержании пока еще нет единства, т.к. в науке существует большое разнообразие прикладных проблем.

В процессе системного анализа на разных его уровнях применяются различные методы. При этом сам системный анализ выполняет роль т.н. методологического каркаса, объединяющего все необходимые методы, исследовательские приемы, мероприятия и ресурсы для решения проблем. По существу системный анализ организует наши знания о проблеме таким образом, чтобы помочь выбрать нужную стратегию ее решения или предсказать результаты одной или нескольких стратегий, которые представляются целесообразными тем, кто должен принимать решения по устранению противоречия, породившего проблему. В наиболее благоприятных случаях стратегия, найденная с помощью системного анализа, оказывается «наилучшей» в некотором определенном смысле.

Рассмотрим методологию системного анализа на примере теории английского ученого Дж. Джефферса, что предполагаетвыделение семь этапов.

1 этап «Выбор проблемы». Осознание того, что существует некая проблема, которую можно исследовать с помощью системного анализа, достаточно важная для детального изучения. Само понимание того, что необходим действительно системный анализ проблемы, столь же важно, как и выбор правильного метода исследования. С одной стороны, можно взяться за решение проблемы, не поддающейся системному анализу, а с другой – выбрать проблему, которая не требует для своего решения всей мощи системного анализа, и изучать которую данным методом было бы неэкономично. Такая двойственность первого этапа делает его критическим для успеха или неудачи всего исследования.

2 этап «Постановка задачи и ограничение ее сложности». Коль существование проблемы осознано, требуется упростить задачу настолько, чтобы она, скорее всего, имела аналитическое решение, сохраняя в то же время все те элементы, которые делают проблему достаточно интересной для практического изучения. Здесь мы вновь имеем дело с критическим этапом любого системного исследования. Именно на этом этапе можно внести наиболее весомый вклад в решение проблемы. Успех или неудача всего исследования во многом зависят от тонкого равновесия между упрощением и усложнением – равновесия, при котором сохранены все связи с исходной проблемой, достаточные для того, чтобы аналитическое решение поддавалось интерпретации. Проблема может быть не решена из-за того, что принятый уровень сложности затруднит последующее моделирование, не позволяя получить ее решение.



3 этап «Установление иерархии целей и задач». После постановки задачи и ограничения степени ее сложности можно приступать к установлению целей и задач исследования. Обычно эти цели и задачи образуют некую иерархию, причем основные задачи последовательно подразделяются на ряд второстепенных. В такой иерархии необходимо определить приоритеты различных стадий и соотнести их с теми усилиями, которые необходимо приложить для достижения поставленных целей. Таким образом, в сложном исследовании можно присвоить сравнительно малый приоритет тем целям и задачам, которые хотя и важны с точки зрения получения научной информации, довольно слабо влияют на вид решений, принимаемых относительно воздействий на систему и управления ею. В иной ситуации, когда данная задача составляет часть программы какого-то фундаментального исследования, исследователь заведомо ограничен определенными формами управления и концентрирует максимум усилий на задачах, которые непосредственно связаны с самими процессами. Во всяком случае, для плодотворного применения системного анализа очень важно, чтобы приоритеты, присвоенные различным задачам, были четко определены.

4 этап «Выбор путей решения задач». На данном этапе исследователь может обычно выбрать несколько путей решения проблемы. Как правило, опытному специалисту по системному анализу сразу видны семейства возможных решений конкретных задач. Каждая конкретная задача обычно может быть решена более чем одним способом. И вновь выбор семейства, в рамках которого следует искать аналитическое решение, зависит от опыта специалиста по системному анализу. Неопытный исследователь может затратить много времени и средств в попытках применить решение из какого-либо семейства, не сознавая, что это решение получено при допущениях, несправедливых для того частного случая, с которым он имеет дело. Аналитик же часто разрабатывает несколько альтернативных решений и только позже останавливается на том из них, которое лучше подходит для его задачи.

5 этап «Моделирование». После того, как проанализированы подходящие альтернативы, можно приступать к важному этапу – моделированию сложных динамических взаимосвязей между различными аспектами проблемы. При этом следует помнить, что моделируемым процессам, а также механизмам обратной связи присуща внутренняя неопределенность, а это может значительно усложнить как понимание системы, так и ее управляемость. Кроме того, в самом процессе моделирования нужно учитывать сложный ряд правил, которые необходимо будет соблюдать при выработке решения о подходящей стратегии. На этом этапе очень легко увлечься изяществом модели, и в результате будут утрачены все точки соприкосновения между реальными процессами принятия решений и математическим аппаратом. Кроме того, при разработке модели в нее часто включаются непроверенные гипотезы, а оптимальное число подсистем предопределить достаточно сложно. Можно предположить, что более сложная модель полнее учитывает сложности реальной системы, но хотя это предположение интуитивно вполне кажется корректным, необходимо принять во внимание дополнительные факторы. Рассмотрим, например, гипотезу о том, что более сложная модель дает и более высокую точность с точки зрения неопределенности, присущей модельным прогнозам. Вообще говоря, систематическое смещение, возникающее при разложении системы на несколько подсистем, связано со сложностью модели обратной зависимостью, но налицо и соответствующее возрастание неопределенности из-за ошибок измерения отдельных параметров модели. Те новые параметры, которые вводятся в модель, должны определяться количественно в полевых и лабораторных экспериментах, и в их оценках всегда есть некоторые ошибки. Пройдя через имитацию, эти ошибки измерений вносят свой вклад в неопределенность полученных прогнозов. По всем этим причинам в любой модели выгодно уменьшать число включенных в рассмотрение подсистем.

6 этап «Оценка возможных стратегий». Как только моделирование доведено до стадии, на которой модель можно использовать, начинается этап оценки потенциальных стратегий, полученных из модели. Если окажется, что основные допущения некорректны, возможно, придется вернуться к этапу моделирования, но часто удается улучшить модель, незначительно модифицировав исходный вариант. Обычно необходимо также исследовать «чувствительность» модели к тем аспектам проблемы, которые были исключены из формального анализа на втором этапе, т.е. когда ставилась задача и ограничивалась степень ее сложности.

7 этап «Внедрение результатов». Заключительный этап системного анализа представляет собой применение на практике результатов, которые были получены на предыдущих этапах. Если исследование проводилось по вышеописанной схеме, то шаги, которые необходимо для этого предпринять, будут достаточно очевидны. Тем не менее, системный анализ нельзя считать завершенным, пока исследование не дойдет до стадии практического применения, и именно в этом отношении многие выполненные работы оказывались невыполненными. В то же время как раз на последнем этапе может выявиться неполнота тех или иных стадий или необходимость их пересмотра, в результате чего понадобится еще раз пройти какие-то из уже завершенных этапов.

Таким образом, цель многоэтапного системного анализа состоит в том, чтобы помочь выбрать правильную стратегию при решении практических задач. Структура этого анализа направлена на то, чтобы сосредоточить главные усилия на сложных и, как правило, крупномасштабных проблемах, не поддающихся решению более простыми методами исследования, например наблюдением и прямым экспериментированием.

Уровни принятия решения по проблеме. Процесс выработки и принятия решений по проблеме можно представить как совокупность способов и приемов деятельности лица, принимающего решение (ЛПР). При этом ЛПР руководствуется определенными положениями, установками, принципами, стремясь организовать наиболее эффективную систему, которая позволит выработать оптимальное в данной ситуации решение. В этом процессе, исходя из механизма принятия решений, можно выделить отдельные уровни, с элементами которых неизменно сталкивается ЛПР.

Основные уровни принятия решений по проблеме:

1. Индивидуально-смысловой уровень. Принятие решений на таком уровне ЛПР осуществляет на основе логического рассуждения. При этом процесс принятия решения зависит от индивидуального опыта ЛПР и тесно связан изменением конкретной ситуации. Исходя из этого, люди на смысловом уровне не могут понять друг друга, а решения принимаются ими часто не только необоснованно, но и лишены организационного смысла. Таким образом, на этом уровне решения принимаются только на основе «здравого смысла».

2. Коммуникативно-смысловой уровень. На данном уровне решения принимаются уже на основе коммуникативного взаимодействия лиц, участвующих в принятии решения. Здесь речь идет не о традиционном общении, а о специально подобранной коммуникации. Организатор коммуникации – ЛПР «запускает» коммуникацию, когда появляется затруднение в деятельности, порождающее проблемную ситуацию. Участники коммуникации в одной и той же ситуации могут видеть различное, исходя из своей субъективной позиции. В итоге ЛПР лично или с помощью арбитра организует обоснованную критику и арбитражную оценку различных точек зрения. На этом уровне происходит слияние индивидуальных точек зрения с общезначимыми.

Первый и второй уровень считается допонятийными . Именно на указанных уровнях чаще всего принимают решения руководители организаций.

3. Понятийный уровень. На этом уровне осуществляется уход от индивидуальных мнений, и используются строгие понятия. Данный этап предполагает использование специальных средств для профессионального общения ЛПР с заинтересованными специалистами, что способствует повышению качества их профессионального взаимодействия в процессе разработки решения.

4. Проблемный уровень. При данном уровне для решения проблем необходимо перейти от индивидуально-смыслового понимания проблемной ситуации, сложившейся в процессе принятия решений, к пониманию ее через значения. В случае если цель ЛПР состоит в решении определенной задачи, применяются заранее известные алгоритмы и требуется освоение несложных процедур. Когда же ЛПР сталкивается с определенной проблемой и имеет место ситуация неопределенности, принятие решения осуществляется путем построения теоретической модели, формулирования гипотез, разработки вариантов решений с помощью творческого подхода. Затруднения в этой деятельности должны вывести на следующий уровень принятия решений - системный.

5. Системный уровень. Такой уровень требует от ЛПР системного видения всех элементов среды принятия решений, целостности представления объекта управления и взаимодействия его частей. Взаимодействие должно быть преобразовано во взаимосодействие элементов целостности, что обеспечивает системный эффект от деятельности.

6. Универсально-системный уровень. Принятие решения на данном уровне предполагает видение ЛПР целостности в объекте управления и его встроенности в окружающую среду. Эмпирические наблюдения и получаемая аналитическая информация используется здесь для определения тенденций развития объекта. Уровень требует от ЛПР построения целостной картины окружающего мира.

Таким образом, переходить с уровня на уровень ЛПР побуждают затруднения в принятии решения по проблеме. Это могут быть его субъективные сомнения или объективная необходимость решать задачи и проблемы с учетом требований конкретного уровня. Чем сложнее объект управления (проблема), тем более высокий уровень принятия решения требуется. При этом каждому уровню должен соответствовать определенный механизм принятия решения, также необходимо использовать уровневые критерии выбора варианта действий.

Сравнение интуитивного и системного подхода к принятию решения по проблеме. В ситуации, когда нам нужно принять некоторое решение по какой-либо проблеме (предполагаем, что это решение мы принимаем самостоятельно, иначе говоря его нам не «навязывают»), то мы, для определения того какое конкретно решение лучше принять, можем действовать двумя принципиально различными методами .

Первый метод прост и действует полностью на основании ранее приобретенного опыта и полученных знаний. Кратко он заключается в следующем: имея в своем представлении исходную ситуацию, мы

1) подбираем в памяти один или несколько известных нам паттернов («шаблон», «система», «структура», «принцип», «модель»), которые обладают с исходной ситуацией удовлетворительной (на наш взгляд) аналогией;

2) применяем для текущей ситуации решение, соответствующее лучшему решению для уже известного паттерна, который в данной ситуации становится моделью для его принятия.

Этот процесс мыслительной деятельности происходит, как правило, неосознанно и в этом заключается причина его чрезвычайной эффективности. В силу своей «неосознанности» назовем этот метод принятия решений «интуитивным». Однако необходимо отметить, что это не более чем практичное применение своего предыдущего опыта и полученных знаний. Не стоит путать интуитивное принятие решений с гаданием на кофейной гуще или подбрасыванием монетки. Интуиция в данном случае есть неосознанная квинтэссенция знаний и опыта человека принимающего решение. Поэтому интуитивные решения часто бывают весьма удачными, особенно если данный человек обладает достаточным опытом решения схожих проблем.

Второй метод гораздо более сложен и требует привлечения осознанных мыслительных усилий, направленных на применение самого метода. Кратко опишем его так: имея в своем представлении исходную ситуацию, мы

1) подбираем некоторый критерий эффективности для оценки будущего решения;

2) определяем разумные границы рассматриваемой системы;

3) создаем подходящую для аналогии с исходной ситуацией модель системы;

4) исследуем свойства и поведение этой модели для поиска лучшего решения;

5) применяем найденное решение на практике.

Этот сложный метод принятия решения, как мы уже знаем, называется «системным» в силу осознанного применения понятий «система» и «модель». Ключевым в нем является задача грамотной разработки и использования моделей, потому что именно модель является необходимым нам результатом, который к тому же можно запомнить и использовать неоднократно в будущем для похожих ситуаций.

Если сравнить эти два метода между собой, то на первый взгляд очевидна эффективность «интуитивного» подхода как с точки зрения скорости принятия решений так и затрат прилагаемых усилий. И это действительно так.

А в чем же заключается преимущество «системного» метода, если оно есть?

Дело в том, что интуитивный подход дает нам изначально уже известное решение поставленной задачи или проблемной ситуации, а применяя системный подход, мы до какого-то момента действительно не знаем решения, которое ищем. А это значит, что практика системного подхода «заложена» в людях от природы и является в такой же степени основанием личного обучения человека (особенно явно в его первые годы жизни).

Интуитивный и системный методы принятия решений не противоречат друг другу. Однако каждый из них целесообразней использовать в ситуации, подходящей именно к нему. Чтобы выяснить в каких ситуациях, что лучше использовать, давайте вначале рассмотрим следующий показательный пример.

Пример. Представим ситуацию, когда вы входите в здание института. Чтобы войти вы должны открыть и пройти через дверь подъезда. Вы делали это уже много раз, и, разумеется, об этом не задумываетесь, то есть делаете это «автоматически». Хотя, если разобраться, эти действия - достаточно сложная согласованная цепочка движений рук, ног и корпуса тела: ни один робот при современном развитии технологий и успехах искусственного интеллекта пока не может это делать так же естественно, как впрочем, и просто ходить тоже. Однако вы это делаете легко и свободно, потому что в спинном мозге и нижних отделах головного мозга уже имеются хорошо работающие конкретные модели поведения, которые дают правильный результат предсказаний ваших действий по открыванию двери без использования для решения этой задачи ресурсов высших отделов головного мозга. Иначе говоря, в таких случаях мы используем уже отработанную модель принятия решения.

Теперь предположим, что во время вашего отсутствия у двери заменили пружину и для ее открытия нужно приложить значительно более сильное усилие. Что произойдет? Вы как обычно подходите, беретесь за ручку, нажимаете …, а дверь не открывается. Если в этот момент вы пребываете в задумчивости, то можете даже несколько раз безуспешно дернуть ручку двери, пока ваша нервная система не достучится до сознания, что ситуация требует изучения и какой-то особой реакции. Что произошло? Не сработала старая модель, которая ранее безотказно действовала для этой ситуации - предсказание не дало ожидаемый результат. Поэтому вы изучаете, что случилось сейчас, находите причину проблемы, понимаете, что для открытия двери нужно прилагать более значительные и определяете какие конкретно усилия. Далее «автоматически обновляете модель» поведения для этой ситуации и достаточно скоро, вероятно уже в течение одного дня, новая модель «приживется» и далее вы, как и ранее, будете входить в свой институт, не задумываясь об этом.

В данном случае мы применили «системный» подход – исследовали ситуацию, изменили непригодную модель и «запустили ее в эксплуатацию».

Этот простой пример показывает, как наш организм на практике эффективно применяет моделирование при системном подходе к принятию решения по проблеме. Это сочетание - причина чрезвычайно высокой способности адаптации человека к новым и неблагоприятным условиям. В ситуации неопределенности, когда старые модели не работают, мы разрабатываем и применяем новые, которые далее должны хорошо работать для похожих ситуаций. Это эффект обучения или точнее приобретения навыка.

ЗАПОМНИТЕ: Подходя к решению принципиально новых задач, мы должны сразу применять системный подход, расходовать на его реализацию дополнительные усилия, а не ждать неизбежных проблем с реализацией проекта.

Практика применения системного подхода при принятии решения по проблеме в большинстве случаев не требует серьезного привлечения дорогих ресурсов, использование специального программного обеспечения и полного описания каких-либо процессов. Бывает, вполне достаточно одного мозгового штурма, листов бумаги и карандаша с ластиком для успешного решения конкретной задачи.

Итак, системный подход к принятию решения по проблеме предполагает следование четкому алгоритму, состоящему из 6 шагов:

· определение проблемы;

· определение критериев выбора решения;

· назначение весов критериям;

· выработка альтернатив;

· оценка альтернатив;

· выбор лучшей альтернативы.

Однако наличие таких обстоятельств как: высокий уровень неопределенности, отсутствие или недостаточность прецедентов, ограниченность фактов, факты, неоднозначно указывающие верный путь, аналитические данные малопригодны для использования, наличие нескольких хороших альтернатив, ограниченное время не всегда позволяет применить системный подход.

В этом случае от лица принимающего решения требуется проявить креативность - т.е. решение должно быть творческим, оригинальным, неожиданным. Креативное решение рождается при наличии следующих факторов:

· человек, принимающий решение, должен обладать соответствующими знаниями и опытом;

· у него должны присутствовать креативные способности;

· работа над принятием решения должна быть подкреплена соответствующей мотивацией.

Наконец на процесс принятие решения по проблеме и последующей реакции на него влияют когнитивные предрассудки и организационные ограничения .

Когнитивные предрассудки можно разбить на категории в зависимости от этапа принятия решений, на котором данные предрассудки оказывают влияние.

На этапе сбора информации:

доступность информации - для анализа проблемы отбирается только легко доступная информация;

предрассудок подтверждения - из всего массива информации для анализа выбирается только та, что подтверждает первоначальную (сознательную или подсознательную) установку лица, принимающего решение.

На этапе обработки информации:

· избегание риска - тенденция избегания риска любой ценой, даже перед лицом высоковероятного положительного исхода в случае принятия умеренного риска;

· чрезмерная уверенность в ком-то или в чем-то;

· фрэйминг - влияние формата или формулировки вопроса на ответ на данный вопрос;

· якорение - тенденция чрезмерно полагаться на единичные данные при принятии решения;

· (не)репрезентативность выборки.

На этапе принятия решения:

· ограниченная рациональность - склонность человека при мысленном переборе возможных вариантов решений останавливаться на первом попавшемся «сносном» решении, игнорируя оставшиеся варианты (среди которых, возможно, находится «лучшее» решение);

· групповое мышление - влияние общей позиции группы людей на индивидуальную позицию человека;

· стадное чувство;

· социальные нормы ;

· управление впечатлением - процесс, посредством которого человек пытается контролировать производимое на других людей впечатление;

· конкурентное давление;

· эффект владения - человек склонен ценить больше то, чем он непосредственно владеет.

На этапе реакции на принятое решение:

· иллюзия контроля - убежденность человека в своем контроле над ситуацией в большей степени, чем это есть на самом деле;

· нагнетание убежденности - ситуация, в которой человек продолжает предпринимать действия в поддержку первоначального решения (чтобы доказать верность этого решения) даже после того, как стала очевидной ошибочность первоначального решения;

· суждение задним числом - тенденция судить о наступивших событиях так, как будто в прошлом их было легко предсказать и разумно ожидать;

· фундаментальная ошибка атрибуции - тенденция человека объяснять успехи своими личными заслугами, а неудачи - внешними факторами;

· субъективная оценка - склонность интерпретировать данные в соответствии со своими убеждениями/предпочтениями.

Организационные ограничения , такие как система оценки персонала, система вознаграждений и мотивации, формальное регулирование принятое в организации, установленные временные ограничения и исторические прецеденты решения схожих проблем также влияют на процесс принятия решения.

Таким образом, системный подход позволяет выявить новые характеристики изучаемой проблемы, и построить принципиально отличную от прежней модель ее решения.

Выводы

1. Любая научная, исследовательская и практическая деятельность проводится на базе методов (приемов или способов действия), методик (совокупности методов и приемов проведения какой-либо работы) и методологий (совокупности методов, правил распределения и назначения методов, а также шагов работы и их последовательности). Системный анализ - это совокупность методов и средств выработки, принятия и обоснования оптимально­го решения из многих возможных альтернатив. Он применяется в первую очередь для решения стра­тегических проблем. Основной вклад системного анализа в решение различных проблем обусловлен тем, что он позволяет выявить те факторы и взаимосвязи, которые впоследствии могут оказаться весьма существенными, что он дает возможность так изменять методику наблюдений и эксперимент, чтобы включить эти факторы в рассмотрение, и освещает слабые места гипотез и допущений.

2. При применении системного анализа акцент делается на проверке гипотез через эксперименты и строгие выборочные процедуры создает мощные инструменты познания физического мира и объединяет эти инструменты в систему гибкого, но строгого исследования сложных явлений. Данный метод рассматривается как методология углубленного уяснения (понимания) и упорядочения (структуризации) проблемы. Отсюда, методология системного анализа представляет совокупность принципов, подходов, концепций и конкретных методов, а также методик. В системном анализе упор направлен на разработку новых принци­пов научного мышления, учитывающих взаимосвязь це­лого и противоречивые тенденции.

3. Системный анализ не является чем-то принципиально новым в исследовании окружающего мира и его проблем - он базируется на естественнонаучном подходе. В отличие от традиционного подхода, при котором проблема решается в строгой последовательности вышеприведенных этапов (или в другом порядке), системный подход состоит в многосвязности процесса решения. В качестве основного и наиболее ценного результата системного анализа признается не количественное определенное решение проблемы, а увеличение степени ее понимания и возможных путей решения у специалистов и экспертов, участвующих в исследовании проблемы, и, что особенно важно, у ответственных лиц, которым предоставляется набор хорошо проработанных и оцененных альтернатив.

4. Наиболее общим понятием, которое обозначает все возможные проявления систем, является «системность», которую предлагается рассматривать в трех аспектах:

а) системная теория дает строгое научное знание о мире систем и объясняет происхождение, устройство, функционирование и развитие систем различной природы;

б) системный подход - выполняет ориентационную и мировоззренческую функции, обеспечивает не только видение мира, но и ориентацию в нем. Главным признаком системного подхода является наличие доминирующей роли сложного, а не простого, целого, а не составляющих элементов. Если при традиционном подходе к исследованию мысль движется от простого к сложному, от частей - к целому, от элементов - к системе, то при системном подходе, наоборот, мысль движется от сложного к простому, от, целого к составным частям, от системы к элементам;

в) системный метод - реализует познавательную и методологическую функции.

5. Системное рассмотрение объекта предполагает: определение и исследование системного качества; выявление образующей систему совокупности элементов; установление связей между этими элементами; исследование свойств окружающей систему среды, важных для функционирования системы, на макро- и микроуровне; выявление отношений, связывающих систему со средой.

В основу алгоритма системного анализа заложено построение обобщенной модели, отображающей все факторы и взаимосвязи проблемной ситуации, которые могут проявиться в процессе решения. Процедура системного анализа заключается в проверке последствий каждого из возможных альтернативных решений для выбора оптимального по какому-либо критерию или их совокупности.

Берталанфи Л. фон. Общая теория систем – обзор проблем и результатов. Системные исследования: Ежегодник. М.: Наука, 1969. С. 30-54.

Боулдинг К. Общая теории систем - скелет науки // Исследования по общей теории систем. М.: Прогресс, 1969. С. 106-124.

Волкова В.Н., Денисов А.А. Основы теории управления и системного анализа. СПб.: СПбГТУ, 1997.

Гегель Г.В.Ф. Наука логики. В 3 т. М.: 1970 – 1972.

Долгушев Н.В. Введение в прикладной системный анализ. М., 2011.

Дулепов В.И., Лескова О.А., Майоров И.С. Системная экология. Владивосток: ВГУЭиС, 2011.

Живицкая Е.Н. Системный анализ и проектирование. М., 2005.

Казиев В.М. Введение в анализ, синтез и моделирование систем: конспект лекций. М.: ИУИТ, 2003.

Качала В.В. Основы системного анализа. Мурманск: МГТУ, 2004.

Когда используется интуитивный, а когда системный метод принятия решений. Rb.ru Деловая сеть, 2011.

Концепции современного естествознания: конспект лекций. М., 2002.

Лапыгин Ю.Н. Теория организаций: учеб. пособие. М., 2006.

Никаноров С.П. Системный анализ: этап развития методологии решения проблем в США (перевод). М., 2002.

Основы системного анализа. Рабочая программа. Спб.: СЗГЗТУ, 2003.

Перегудов Ф.И., Тарасенко Ф.П. Введение в системный анализ. М.: Высшая школа, 1989.

Прибылов И. Процесс принятия решения/www.pribylov.ru.

Садовский В.Н. Системный подход и общая теория систем: статус, основные проблемы и перспективы развития. М.: Наука, 1980.

Светлов Н.М. Теория систем и системный анализ. УМК. М., 2011.

СЕРТИКОМ - Менеджмент консалтинг. Киев, 2010.

Системный анализ и принятие решений: Словарь-справочник / под ред. В.Н.Волковой, В.Н.Козлова. М.: Высшая школа, 2004.

Системный анализ: конспект лекций. Сайт методической поддержки системы информационно-аналитической поддержки принятия решений в сфере образования, 2008.

Спицнадель В. Н. Основы системного анализа: учеб. пособие. СПб.: «Издательский дом «Бизнес-пресса», 2000.

Сурмин Ю.П. Теория систем и системный анализ: учеб. пособие. Киев: МЛУП, 2003.

Теория организации: учеб. пособие /partnerstvo.ru.

Фадина Л.Ю., Щетинина Е.Д. Технология принятия управленческих решений. Сб. статей НПК. М., 2009.

Хасьянов А.Ф. Системный анализ: конспект лекций. М., 2005.

Черняховская Л.Р. Методология систем и принятие решений. Краткий конспект лекций. Уфа: УГАТУ, 2007.

Чепурных Е.М. Системный анализ в теории государства и права. Виртуальный клуб юристов/ http://www.yurclub.ru/docs/theory/article9.html.

Центральной процедурой в системном анализе является построение обобщённой модели (или моделей), отображающей все факторы и взаимосвязи реальной ситуации, которые могут проявиться в процессе осуществления решения. Полученная модель исследуется с целью выяснения близости результата применения того или иного из альтернативных вариантов действий к желаемому, сравнительных затрат ресурсов по каждому из вариантов, степени чувствительности модели к различным нежелательным внешним воздействиям. Системный анализ опирается на ряд прикладных математических дисциплин и методов, широко используемых в современной деятельности управления: исследование операций, метод экспертных оценок, метод критического пути, теорию очередей и т. п. Техническая основа системного анализа -- современные вычислительные машины и информационные системы.

Методологические средства, применяемые при решении проблем с помощью системного анализа, определяются в зависимости от того, преследуется ли единственная цель или некоторая совокупность целей, принимает ли решение одно лицо или несколько и т. д. Когда имеется одна достаточно четко выраженная цель, степень достижения которой можно оценить на основе одного критерия, используются методы математического программирования. Если степень достижения цели должна оцениваться на основе нескольких критериев, применяют аппарат теории полезности, с помощью которого проводится упорядочение критериев и определение важности каждого из них. Когда развитие событий определяется взаимодействием нескольких лиц или систем, из которых каждая преследует свои цели и принимает свои решения, используются методы теории игр.

Эффективность исследования систем управления во многом определяется выбранными и использованными методами исследования. Чтобы облегчить выбор методов в реальных условиях принятия решения, необходимо разделить методы на группы, охарактеризовать особенности этих групп и дать рекомендации по их использованию при разработке моделей и методик системного анализа.

Всю совокупность методов исследования можно разбить на три большие группы: методы, основанные на использовании знаний и интуиции специалистов; методы формализованного представления систем управления (методы формального моделирования исследуемых процессов) и комплексированные методы.

Как уже отмечалось, специфической особенностью системного анализа является сочетание качественных и формальных методов. Такое сочетание составляет основу любой используемой методики. Рассмотрим основные методы, направленные на использование интуиции и опыта специалистов, а также методы формализованного представления систем.

Методы, основанные на выявлении и обобщении мнений опытных специалистов-экспертов, использовании их опыта и нетрадиционных подходов к анализу деятельности организации включают: метод "Мозговой атаки", метод типа "сценариев", метод экспертных оценок (включая SWOT-анализ), метод типа "Дельфи", методы типа "дерева целей", "деловой игры", морфологические методы и ряд других методов.

Перечисленные термины характеризуют тот или иной подход к активизации выявления и обобщению мнений опытных специалистов-экспертов (термин "эксперт" в переводе с латинского означает "опытный"). Иногда все эти методы называют "экспертными". Однако есть и особый класс методов, связанных непосредственно с опросом экспертов, так называемый метод экспертных оценок (так как при опросах принято проставлять оценки в баллах и рангах), поэтому названные и подобные им подходы иногда объединяют термином "качественные" (оговаривая условность этого названия, так как при обработке мнений, полученных от специалистов, могут использоваться и количественные методы). Этот термин (хотя и несколько громоздкий) в большей мере, чем другие отражает суть методов, к которым вынуждены прибегать специалисты, когда они не только не могут сразу описать рассматриваемую проблему аналитическими зависимостями, но и не видят, какие из рассмотренных выше методов формализованного представления систем могли бы помочь получить модель.

Методы типа "мозговой атаки". Концепция мозговой атаки получила широкое распространение с начала 50-х годов как "метод систематической тренировки творческого мышления", направленный на "открытие новых идей и достижение согласия группы людей на основе интуитивного мышления".

Методы данного типа преследуют основную цель - поиск новых идей, их широкое обсуждение и конструктивную критику. Основная гипотеза заключается в предположении, что среди большого числа идей имеются, по меньшей мере, несколько хороших. В зависимости от принятых правил и жесткости их выполнения различают прямую мозговую атаку, метод обмена мнениями, методы типа комиссий, судов (когда одна группа вносит как можно больше предложений, а вторая - старается их максимально критиковать) и т.п. В последнее время иногда мозговую атаку проводят в форме деловой игры.

Методы типа "сценариев". Методы подготовки и согласования представлений о проблеме или анализируемом объекте, изложенных в письменном виде, получили название сценариев. Первоначально этот метод предполагал подготовку текста, содержащего логическую последовательность событий или возможные варианты решения проблемы, развернутые во времени. Однако позднее обязательное требование временных координат было снято, и сценарием стали называть любой документ, содержащий анализ рассматриваемой проблемы и предложения по ее решению или по развитию системы, независимо от того, в какой форме он представлен. Как правило, на практике предложения для подготовки подобных документов пишутся экспертами вначале индивидуально, а затем формируется согласованный текст.

Роль специалистов по системному анализу при подготовке сценария - помочь привлекаемым ведущим специалистам соответствующих областей знаний выявить общие закономерности системы; проанализировать внешние и внутренние факторы, влияющие на ее развитие и формирование целей; определить источники этих факторов; проанализировать высказывания ведущих специалистов в периодической печати, научных публикациях и других источниках научно-технической информации; создать вспомогательные информационные фонды (лучше автоматизированные), способствующие решению соответствующей проблемы.

Сценарий позволяет создать предварительное представление о проблеме (системе) в ситуациях, когда не удается сразу отобразить ее формальной моделью. Но все же сценарий - это текст со всеми вытекающими последствиями (синонимия, омонимия, парадоксы), связанными с возможностью неоднозначного его толкования разными специалистами. Поэтому такой текст следует рассматривать как основу для разработки более формализованного представления о будущей системе или решаемой проблеме.

Методы экспертных оценок. Основа этих методов - различные формы экспертного опроса с последующим оцениванием и выбором наиболее предпочтительного варианта. Возможность использования экспертных оценок, обоснование их объективности базируется на том, что неизвестная характеристика исследуемого явления трактуется как случайная величина, отражением закона распределения которой является индивидуальная оценка эксперта о достоверности и значимости того или иного события.

При этом предполагается, что истинное значение исследуемой характеристики находится внутри диапазона оценок, полученных от группы экспертов и что обобщенное коллективное мнение является достоверным. Наиболее спорным моментом в данных методиках является установление весовых коэффициентов по высказываемым экспертами оценкам и приведение противоречивых оценок к некоторой средней величине.

Экспертный опрос - это не одноразовая процедура. Такой способ получения информации о сложной проблеме, характеризующейся большой степенью неопределенности, должен стать своего рода "механизмом" в сложной системе, т.е. необходимо создать регулярную систему работы с экспертами.

Одной из разновидностей экспертного метода является метод изучения сильных и слабых сторон организации, возможностей и угроз ее деятельности - метод SWOT-анализа.

Данная группа методов находит широкое применение в социально-экономических исследованиях.

Методы типа "Делъфи". Первоначально метод "Дельфи" был предложен как одна из процедур при проведении мозговой атаки и должен помочь снизить влияние психологических факторов и повысить объективность оценок экспертов. Затем метод стал использоваться самостоятельно. Его основа - обратная связь, ознакомление экспертов с результатами предшествующего тура и учет этих результатов при оценке значимости экспертов.

В конкретных методиках, реализующих процедуру "Дельфи", это средство используется в разной степени. Так, в упрощенном виде организуется последовательность итеративных циклов мозговой атаки. В более сложном варианте разрабатывается программа последовательных индивидуальных опросов с помощью анкет-вопросников, исключающих контакты между экспертами, но предусматривающих ознакомление их с мнениями друг друга между турами. Вопросники от тура к туру могут уточняться. Для снижения таких факторов, как внушение или приспособление к мнению большинства иногда требуется, чтобы эксперты обосновали свою точку зрения, но это не всегда приводит к желаемому результату, а напротив, может усилить эффект приспособляемости. В наиболее развитых методиках экспертам присваивают весовые коэффициенты значимости их мнений, вычисляемые на основе предшествующих опросов, уточняемые от тура к туру и учитываемые при получении обобщенных результатов оценок.

Методы типа "дерева целей". Термин "дерево" предполагает использование иерархической структуры, полученной путем разделения общей цели на подцели, а их, в свою очередь, на более детальные составляющие, которые можно называть подцелями нижележащих уровней или, начиная с некоторого уровня, - функциями.

Метод "дерева целей" ориентирован на получение относительно устойчивой структуры целей проблем, направлений, т.е. такой структуры, которая на протяжении какого-то периода времени мало изменялась при неизбежных изменениях, происходящих в любой развивающейся системе.

Для достижения этого при построении первоначального варианта структуры следует учитывать закономерности целеобразования и использовать принципы формирования иерархических структур.

Морфологические методы. Основная идея морфологического подхода - систематически находить все возможные варианты решения проблемы путем комбинирования выделенных элементов или их признаков. В систематизированном виде метод морфологического анализа был впервые предложен швейцарским астрономом Ф. Цвикки и часто так и называется "метод Цвикки".

Деловые игры - метод имитации выработан для принятия управленческих решений в различных ситуациях путем игры по заданным правилам группы людей или человека и компьютера. Деловые игры позволяют с помощью моделирования и имитации процессов выйти на анализ, решение сложных практических задач, обеспечить формирование мыслительной культуры, управления, мастерства общения, принятия решений, инструментальное расширение управленческих навыков.

Деловые игры выступают как средства анализа систем управления и подготовки специалистов.

Для описания систем управления на практике используется ряд формализованных методов, которые в разной степени обеспечивают изучение функционирования систем во времени, изучение схем управления, состава подразделений, их подчиненности и т.д., с целью создания нормальных условий работы аппарата управления, персонализации и четкого информационного обеспечения управления

Одна из наиболее полных классификаций, базирующаяся на формализованном представлении систем, т.е. на математической основе, включает следующие методы:

  • - аналитические (методы как классической математики, так и математического программирования);
  • - статистические (математическая статистика, теория вероятностей, теория массового обслуживания);
  • - теоретико-множественные, логические, лингвистические, семиотические (рассматриваемые как разделы дискретной математики);

графические (теория графов и пр.).

Классу плохо организованных систем соответствует в данной классификации статистические представления. Для класса самоорганизующихся систем наиболее подходящими являются модели дискретной математики и графические модели, а также их комбинации.

Прикладные классификации ориентированы на экономико-математические методы и модели и в основном определяются функциональным набором задач, решаемых системой.

Рассмотрим примеры системного анализа:

Пример . Рассмотрим простую задачу - пойти утром на занятия в вуз. Эта часто решаемая студентом задача имеет все аспекты:

  • - материальный, физический аспект - студенту необходимо переместить некоторую массу, например, учебников и тетрадей на нужное расстояние;
  • - энергетический аспект - студенту необходимо иметь и затратить конкретное количество энергии на перемещение;
  • - информационный аспект - необходима информация о маршруте движения и месторасположении вуза и ее нужно обрабатывать по пути своего движения;
  • - человеческий аспект - перемещение, в частности, передвижение на автобусе невозможно без человека, например, без водителя автобуса;
  • - организационный аспект - необходимы подходящие транспортные сети и маршруты, остановки и т.д.;
  • - пространственный аспект - перемещение на определенное расстояние;
  • - временной аспект - на данное перемещение будет затрачено время (за которое произойдут соответствующие необратимые изменения в среде, в отношениях, в связях).

Все типы ресурсов тесно связаны и сплетены. Более того, они невозможны друг без друга, актуализация одного из них ведет к актуализации другого.

Типы мышления

Особый тип мышления - системный, присущий аналитику, который хочет не только понять суть процесса, явления, но и управлять им. Иногда его отождествляют с аналитическим мышлением, но это отождествление не полное. Аналитическим может быть склад ума, а системный подход есть методология, основанная на теории систем.

Предметное (предметно-ориентированное) мышление - это метод (принцип), с помощью которого можно целенаправленно (как правило, с целью изучения) выявить и актуализировать, познать причинно-следственные связи и закономерности в ряду частных и общих событий и явлений. Часто это методика и технология исследования систем.

Системное (системно-ориентированное) мышление - это метод (принцип), с помощью которого можно целенаправленно (как правило, с целью управления) выявить и актуализировать, познать причинно-следственные связи и закономерности в ряду общих и всеобщих событий и явлений. Часто это методология исследования систем.

При системном мышлении совокупность событий, явлений (которые могут состоять из различных составляющих элементов) актуализируется, исследуется как целое, как одно организованное по общим правилам событие, явление, поведение которого можно предсказать, прогнозировать (как правило) без выяснения не только поведения составляющих элементов, но и качества и количества их самих. Пока не будет понятно, как функционирует или развивается система как целое, никакие знания о ее частях не дадут полной картины этого развития.

Методология - это система принципов и способов организации и построения теоретической и практической деятельности. Если теория представляет собой результат процесса познания, то методология является обоснованием способа достижения и построения полученного на ее основе знания. Методология дает философское обоснование способов и приемов организации всего многообразия видов (в том числе и познавательной) человеческой деятельности и предполагает разработку методов, адекватных изучаемым и преобразуемым объектам. Одна из важнейших функций методологии - эвристическая: она должна не только описывать и объяснять некоторую предметную область, но и одновременно являться инструментом поиска нового знания.

Если формулировать кратко, то методология - это учение о методе.

Для социальных наук можно выделить три уровня методологии :

  • всеобщая научная (например, системный подход);
  • общесоциальная (социальная философия);
  • частносоциальная (социология личности, труда, молодежи

Метод - совокупность приемов и операций теоретического и практического освоения действительности. Для сферы социальных исследований это основной способ сбора, обработки и анализа эмпирических материалов.

Методика - совокупность технических приемов, обусловленных данным методом, включающих частные операции, их последовательность и взаимосвязь.

В современной науке и социальной практике в качестве общенаучной методологии, призванной сформулировать в завершенном виде достаточно универсальную совокупность методов исследования, а также приемов и правил конструктивной деятельности для предметных сфер весьма различных типов и классов, выступает системный подход. В основу системного подхода заложен принцип системности , согласно которому сложные явления объективной реальности рассматриваются как целостные феномены, образованные особыми механизмами связи и функционирования составляющих их частей. На этой базе образуется специализированный познавательный аппарат, определяющий способ видения реального мира.

Как известно, системой называют такую совокупность взаимосвязанных элементов, взаимодействие которых между собой порождает особое системное качество, достаточно отчетливо локализующее данную совокупность в окружающем ее пространстве. Необходимо отметить, что к указанному системному качеству образующие систему элементы приобщаются только в составе данной системы.

Система всегда находится в состоянии взаимодействия с внешней средой, которая для нее является, с одной стороны, источником необходимых для ее жизнедеятельности ресурсов, с другой - источником различного рода возмущающих воздействий, способных быть полезными (и тогда они ассимилируются системой), нейтральными (система их попросту игнорирует) или вредными (система старается демпфировать их отрицательное воздействие с помощью и в пределах имеющихся ресурсов).

Системное рассмотрение объекта предполагает:

  • определение и исследование системного качества;
  • выявление образующей систему совокупности элементов;
  • установление связей между этими элементами;
  • исследование свойств окружающей систему среды, важных для

функционирования системы, на макро- и микроуровне;

Выявление отношений, связывающих систему со средой.

Развитие науки и управленческой практики также показывает, что системный подход к изучению сложного общества дает возможность всестороннего изучения структурных единиц общества (классов, слоев, групп, ассоциаций, личностей), социальных связей между ними (контактов, действий, взаимодействий, социальных отношений, социальных институтов), а также динамики социальных структур (социальных изменений, процессов).

Основное достоинство системного подхода заключается в том, что он требует максимально возможного учета всех аспектов проблемы в их взаимосвязи и целостности, выделения главного и существенного, определения характера и направленности связей между структурными составляющими проблемы.

Системный анализ в узком смысле представляет собой совокупность научных методов и практических приемов, которые могут быть использованы при исследовании и/или разработке сложных и сверхсложных объектов, а также при решении разнообразных проблем, возникающих во всех сферах управления социальными и организационно-технологическими системами. В широком смысле системный анализ понимается как синоним системного подхода.

Научный аппарат и методический арсенал системного анализа в общих чертах сформировались в США в начале 40-х гг. XX в. в ходе поиска новых подходов к решению весьма усложнившихся проблем производства и быстрого совершенствования новых образцов оружия. Было замечено, что основной вопрос при решении любых проблем - независимо от их области, содержания и характера - это выбор наиболее оптимальной альтернативы решения. Однако этот выбор зависит от способности оценить эффективность каждой альтернативы и необходимые для ее реализации затраты. Подобные операции были освоены при инвестировании капитала и развитии промышленности еще до Второй мировой войны. Для их выполнения был предложен ряд методов, которые несмотря на конструктивность результатов в названных областях почти не использовались в сфере во-оружения. Работы по созданию систем вооружения начинались без рассмотрения того, как они будут использоваться, сколько будут стоить и оправдает ли их использование затраты на разработку и создание. Причина подобного положения заключалась в том, что в то время относительные затраты на вооружение были невелики, возможностей для выбора было мало, поэтому фактически использовался принцип «ничего, кроме самого лучшего». Во время Второй мировой войны и особенно с началом «атомного века» расходы на создание оружия возросли во много раз, и этот подход стал неприемлемым. Его постепенно заменил другой: «только то, что необходимо, и за минимальную стоимость».

Для реализации этого принципа нужно было уметь находить, оценивать и сравнивать одновременно множество альтернатив производства оружия различных типов. Разработанные к этому времени в промышленности и коммерции модели исследования операций не могли быть использованы для этого из-за свойственных им ограничений. От новых методов требовалась возможность рассмотрения многих альтернатив, каждая из которых описывалась большим числом переменных как целое, обеспечивая при этом полноту оценки каждой альтернативы и уровень ее неопределенности. Получившаяся в итоге универсальная методология решения проблем была названа ее авторами «системный анализ». Новая методология, созданная для решения военных проблем, была прежде всего использована именно в этой области. Однако очень скоро выяснилось, что проблемы фирм гражданские, финансовые и многие другие не только допускают, но и требуют применения этой методологии.

Системный анализ быстро впитал в себя достижения многих родственных и смежных областей и различных подходов и превратился в самостоятельную, богатую формами и областями приложений, уникальную по своему назначению и характеру научную и прикладную дисциплину и область профессиональной деятельности.

Исходной теоретической базой для системного анализа является теория систем и системный подход. Однако системный анализ заимствует у них лишь самые общие концепции и предпосылки. В отличие, например, от системного подхода системный анализ располагает развитым собственным и заимствованным из других областей науки методическим и инструментальным аппаратом.

Системный анализ основывается на неукоснительном соблюдении следующих принципов:

  • процесс принятия решения должен начинаться с обоснования и четкой формулировки конечных целей;
  • любая проблема должна быть представлена как целостная единая система с указанием взаимосвязей и последствий каждого частного решения;
  • решение проблемы должно быть представлено совокупностью возможных альтернативных путей достижения цели;
  • цели отдельных подразделений не должны противоречить целям всей системы в целом.

В основу алгоритма системного анализа заложено построение обобщенной модели, отображающей все факторы и взаимосвязи проблемной ситуации, которые могут проявиться в процессе решения. Процедура системного анализа заключается в проверке последствий каждого из возможных альтернативных решений для выбора оптимального по какому-либо критерию или их совокупности.

Специфика системного анализа - ориентация на поиск оптимальных решений при ограниченных ресурсах (кадров, финансов, времени, техники и т. п.). Он начинается на стадии управленческого цикла, когда определяются и упорядочиваются цели управления при нахождении соответствия между целями, возможными путями их достижения, необходимыми и располагаемыми для этого ресурсами.

В центре методологии системного анализа находится операция количественного сравнения альтернатив, выполняемая с целью выбора оптимальной (по определенным критериям) альтернативы, которую и предполагается реализовывать. Достичь этого можно, если учтены все элементы альтернативы и даны правильные оценки каждому из них. Таким образом, возникает идея выделения всех элементов, связанных с данной альтернативой, т. е. «всесторонний учет всех обстоятельств». Выделяемая в результате целостность и называется в системном анализе полной системой или просто системой. Единственным критерием, позволяющим выделить эту систему, может быть только факт участия данного элемента в процессе, приводящем к появлению заданного (целевого, желаемого) выходного результата для данной альтернативы. Таким образом, понятие процесса оказывается центральным в методологии системного анализа. Не может быть системного мышления без ясного понимания процесса.

Определить систему - это значит задать системные объекты, их свойства и связи. Важнейшие из них - вход, процесс, выход, обратная связь и ограничение.

Входом системы называется то, что изменяется при протекании данного процесса. Или иначе - это то, к чему надо приложить данный процесс, чтобы получить необходимый результат. Во многих случаях компонентами входа являются «рабочий вход» (то, что «обрабатывается») и процессор (то, что «обрабатывает»). Выходом системы называется результат или конечное состояние процесса. Процесс переводит вход в выход. Способность преобразовывать вход в определенный выход называется свойством данного процесса или передаточной функцией (IV).

Здесь необходимо обратить внимание на то обстоятельство, что в социальном мире процессы далеко не всегда переводят «вход» в определенный «выход» в силу того, что социальные структуры совсем не похожи на те «устройства», которые рассматриваются в классических системных моделях. В отличие от последних, которые отрабатывают входные сигналы по жестким (или нежестким, но вполне предсказуемым, вероятностным) алгоритмам, социальные структуры, будучи преимущественно самоорганизующимися системами, лишь воспринимают управленческие воздействия. Но далеко не пассивно и весьма субъективно. По этой причине их невозможно отобразить в формальных конструкциях с помощью фиксированных передаточных функций, обозначающих характер преобразования «входа» в «выход». Социальные объекты непрерывно меняются, самым причудливым образом воспринимая и ассоциируя все сколько-нибудь значимые явления внутреннего и внешнего порядка.

Во всякой функционирующей системе существуют три различных по своей роли подпроцесса: основной процесс, обратная связь и ограничение. Основной процесс преобразует вход в выход. Обратная связь выполняет ряд операций: сравнивает реальное состояние выхода с заданной (целевой) моделью и выделяет различие (А). Последующий анализ содержания и смысла различия позволяет выработать в случае необходимости управленческое решение. Необходимость в решении возникает тогда, когда различие в состоянии входа и выхода превосходит некоторый установленный или принятый уровень, т. е. тогда, когда возникает проблема, для устранения которой должно быть принято решение. Смысл этого решения состоит в такой коррекции процесса системы, реализация которой могла бы сблизить реальное состояние выхода системы с его моделью или довести их различие до приемлемого уровня.

Ограничение есть сумма правил, установлений и выдвинутых лично или извне руководящих принципов, определяющих границу проблемы. Оно формируется потребителем (покупателем) выхода системы. В обобщенном виде ограничение может рассматриваться как внешняя среда в целом. Ограничение системы учитывается при принятии управленческого решения, обеспечивая соответствие выхода системы целям потребителя. Таким образом, ограничение системы отражается в скорректированной модели выхода.

Функционирующая система представлена на рис. 2.1. Окружностью с косым крестом обозначается блок сравнения (компаратор, сумматор), в котором сопоставляются все важнейшие управляемые параметры.

Рис. 2.1.

В системном анализе постулируется, что всякая система состоит из подсистем и всякая система является подсистемой некоторой другой системы более высокого порядка. Постулируется также, что любая система может быть описана в терминах системных объектов, свойств и связей. Граница системы определяется совокупностью входов от внешней среды. Внешняя среда - это совокупность систем, для которых данная система не является функциональной подсистемой.

Проблемой называется ситуация, характеризующаяся различием между необходимым (желаемым) и существующим выходами. Последний является необходимым, если его отсутствие создает угрозу существованию или развитию системы. Он обеспечивается существующей системой. Желаемый выход обеспечивается желаемой системой. Проблема есть разница между существующей и желаемой системами. Проблема может заключаться в предотвращении уменьшения или в увеличении выхода. Условие проблемы представляет существующую систему («известное»). Требование представляет желаемую систему. Решение проблемы есть то, что заполняет промежуток между существующей и желаемой системами. Система, заполняющая промежуток, является объектом конструирования.

Проблемы могут проявляться в симптомах. Систематически проявляющиеся симптомы образуют тенденцию. Обнаружение проблемы есть результат процесса идентификаций симптомов. Идентификация возможна при условии знания нормы или желательного поведения системы. За обнаружением проблемы следует прогнозирование ее развития и оценка актуальности ее решения, т. е. состояния системы при нерешенной проблеме. Оценка актуальности решения проблемы позволяет определить необходимость ее решения.

Процесс нахождения решения концентрируется вокруг итеративно выполняемых операций идентификации условия, цели и возможностей для решения проблемы. Результатом идентификации является описание условия, цели и возможностей в терминах системных объектов (входа, процесса, выхода, обратной связи и ограничения), свойств и связей. Если структуры и элементы условия, цели и возможностей данной проблемы известны, идентификация имеет характер определения количественных соотношений, а проблема называется количественной. Если структура и элементы условия, цели и возможностей известны частично, идентификация имеет качественный характер, а проблема называется качественной или слабоструктурированной. Как методология решения проблем системный анализ указывает принципиально необходимую последовательность взаимосвязанных операций, которая (в самых общих чертах) состоит из выявления проблемы, конструирования решения проблемы и реализации этого решения. Процесс решения представляет собой конструирование, оценку и отбор альтернатив систем по критериям стоимости, времени, эффективности и риска с учетом отношений между предельными значениями приращений этих величин (маргинальных отношений). Выбор границ этого процесса определяется условием, целью и возможностями его реализации. Наиболее адекватное построение этого процесса предполагает всестороннее использование эвристических заключений в рамках постулированной структуры системной методологии.

Редуцирование числа переменных производится на основе анализа чувствительности проблемы к изменению отдельных переменных или групп переменных, агрегирования переменных в сводные факторы выбором критериев подходящей формы, а также применением там, где это возможно, математических способов сокращения перебора (математическое программирование и т. п.). Логическая целостность процесса обеспечивается явными или скрытыми предположениями, каждое из которых может стать источником риска. Постулируется, что структура функций системы и решения проблемы является стандартной для любых систем и любых проблем. Меняться могут только методы реализации функций. Совершенствование методов при данном состоянии научных знаний имеет предел, определяемый как потенциально достижимый уровень. В результате решения проблемы устанавливаются новые связи и отношения, часть которых обусловливает желаемый выход, а другая - определяет непредвиденные возможности и ограничения, которые могут стать источником будущих проблем.

ВВЕДЕНИЕ

Системный анализ – это научная дисциплина, занимающаяся решением проблем, связанных с исследованием систем различной физической природы, назначения и масштабов, управлением эволюцией систем, оптимизацией параметров, структуры и алгоритмов функционирования систем, принятием оптимальных решений по организации и развитию систем. Поэтому истоки системного анализа и его методологии лежат в теории систем, теории исследования операций, теории принятия решений и теории управления.

Появление дисциплины «системный анализ» обусловлено возникшей необходимостью проведения исследований систем междисциплинарного характера. Создание, эксплуатация и развитие сложных технических систем, проектирование масштабных энергетических, транспортных, производственных систем и управление ими, анализ экологических систем и систем социального назначения и многие другие направления практической и научной деятельности требовали организации исследований, которые носили бы нетрадиционный характер.

На современном этапе развития системного анализа его аппарат и инструментарий опираются на широкое использование ЭВМ и включают сложную и развитую систему моделей. Развитие системного анализа определялось, с одной стороны, развитием математического аппарата и разработкой методов формализации, а с другой – новыми задачами, возникающими в промышленности, экономике, военном деле и т. д. Системный анализ включает как научное исследование систем, так и соответствующие виды деятельности, направленной на практическую реализацию результатов таких исследований.

Научная дисциплина, называемая системным анализом, изучает события и процессы в системах, разрабатывает модели, предназначенные для объяснения этих событий и процессов, использует эти модели для изучения изменения эволюции и характеристик систем при изменении ее структурных и функциональных параметров. Таким образом, системный анализ – наука, так как эта дисциплина использует научный метод для получения соответствующих знаний и отличается от других наук предметом исследований. Системный анализ, как и любая другая наука, требует разработки собственного математического аппарата методов системного анализа, ориентированного на специфику, присущую этой области и задачам исследования.

Отличительные особенности системного анализа заключаются в том, что он основан на использовании современного научного подхода к исследованию и управлению системами различной природы и назначения – системного принципа, комплексных научных коллективов и научного метода

для решения задач системного анализа. Системный принцип – это признание того, что всякая система состоит из частей, каждая из которых обладает своими собственными целями эволюции, и что в любой системе эволюция каждой части влияет на все остальные части системы. Научный метод системного анализа, в частности, основан на том, что, как правило, вся система, являющаяся объектом изучения, не может быть подвергнута натурному эксперименту. Поэтому в большинстве случаев, исследуя систему

в целом, необходимо применять подход, не связанный с проведением натурных экспериментов.

Концепция системного принципа оказала значительное влияние на планирующие и исполнительные функции управления системами. Чтобы выбрать из множества возможных решений лучшие, администраторы систем все чаще обращаются за помощью к специалистам по системному анализу. Значение системного принципа для управления системой определяется содержанием основной цели управления. Во-первых, необходимо добиться эффективности функционирования системы в целом и не допустить, чтобы интересы какой-либо одной части системы помешали достижению общих целей создания и функционирования системы. Во-вторых, необходимо добиваться этого при условии, что части системы имеют, как правило, противоречащие друг другу цели их функционирования. В- третьих, необходимо понимать, что достигнуть общих целей функционирования системы можно только в том случае, если рассматривать ее как единое целое, стремясь для этого понять и оценить взаимодействие всех ее частей и объединить их на такой основе, которая позволила бы системе в целом эффективно достигать ее цели. Любой формальный анализ системы или даже попытка формального анализа обычно ценны тем, что, как минимум, заставляют администратора системы думать о главном и двигаться

в нужном направлении. И хотя системный аналитик в своем заключении не всегда сможет безошибочно указать администратору, какое решение было бы самым лучшим, сам факт анализа потребует от него перечислить альтернативы и сформулировать цели анализа системы.

Не стремясь к исчерпывающему формальному определению системного анализа, отметим, что эта наука занимается в основном анализом организационных (функциональных) систем, т. е. систем, работа которых определяется решениями людей (в противоположность, например, физическим системам, которые подчиняются лишь законам природы). Системный анализ обеспечивает математическое описание процессов функционирования систем и управления ими. Он ориентирован на решение задач, для которых можно построить математические модели систем, позволяющие получать оптимальные решения. В любом проекте по системному анализу можно выделить следующие основные этапы: постановка задачи, разработка модели системы, нахождение решения, проверка модели и оценка решения, внедрение решения и контроль его правильности. В сис-

темном анализе главная роль отводится математическому моделированию. Для построения математической модели необходимо иметь четкое представление о цели функционирования исследуемой системы и располагать информацией об ограничениях, которые определяют область допустимых значений управляемых переменных. Анализ модели должен привести к определению наилучшего воздействия на объект исследования при выполнении всех установленных ограничений.

Сложность реальных систем может сильно затруднить представление цели и ограничений в аналитическом виде. Поэтому очень важно уменьшить «размерность» решаемой задачи таким образом, чтобы обеспечить возможность построения соответствующей модели. Несмотря на слишком большое число переменных и ограничений, которые на первый взгляд необходимо учитывать при анализе реальных систем, лишь небольшая их часть оказывается существенной для описания поведения исследуемых систем. Поэтому при упрощенном описании реальных систем, на основе которого будет строиться та или иная модель, прежде всего следует идентифицировать существенные переменные, параметры и ограничения.

Когда используют термин «системный анализ», то почти всегда имеют в виду применение математических методов для моделирования систем и анализа их характеристик. Действительно, математические модели и методы занимают в системном анализе центральное место. Однако следует иметь в виду, что решение задач организационного управления далеко не всегда сводится к построению моделей и выполнению соответствующих экспериментов с ними. Это обусловлено, в частности, тем, что в ходе формирования управляющих решений нередко сталкиваются с факторами, которые для правильного решения поставленной задачи являются существенными, но не поддаются строгой формализации и, следовательно, не могут непосредственно вводиться в математическую модель. Одним из трудноформализуемых факторов такого рода является фактор человеческой деятельности.

Системный анализ как методологию решения задач исследования и управления системами можно рассматривать и как науку, и как искусство. Научное содержание системного анализа обеспечивается эффективным использованием математических моделей и методов при решении проблем исследования и управления системами. В то же время успешное выполнение всех этапов исследования – от его начала до реализации решения, полученного с помощью разработанной математической модели, – во многом определяется творческими способностями и интуицией исследователей.

ПРОБЛЕМЫ СИСТЕМНОГО АНАЛИЗА

1.1. Системы и модели

Система – это множество объектов вместе с отношениями между объектами и между их атрибутами.

Это определение предполагает, что система имеет свойства, функции и цели, отличные от свойств, функций и целей составляющих ее объектов, отношений и атрибутов.

Объекты – это просто части или компоненты системы. Большинство систем, окружающих или интересующих нас, состоит

из физических частей, однако в системы могут входить и абстрактные объекты: математические переменные, уравнения, законы и т. п.

Атрибуты – это свойства объектов.

Отношение – одна из форм всеобщей взаимосвязи всех предметов, явлений, процессов в природе, обществе и мышлении.

Отношения предметов друг к другу исключительно многообразны: причина и следствие, часть и целое, отношение между частями внутри целого, аргумент и функция и т. д. В математике и логике используются такие виды отношений, как «... больше, чем...», «... влечет...» и т. п. Любое множество объектов имеет внутренние отношения, потому что всегда можно принять за отношение расстояние между объектами. Предполагается, что рассматриваемые в определенном контексте отношения зависят от решаемой задачи, и на этой основе в рассмотрение включаются те или иные существенные или интересующие нас отношения и исключаются тривиальные или несущественные отношения. Исследователь, решающий проблему, сам принимает решение, какие отношения существенны, а какие тривиальны.

Окружающая среда системы – это совокупность всех объектов, изменение атрибутов которых или отношений между которыми влияет на систему, а также тех объектов, чьи атрибуты или отношения между данными объектами меняются в результате действия системы.

Приведенное определение вызывает естественный вопрос: когда объект считается принадлежащим окружающей среде, а когда он принадлежит системе? Если некоторый объект взаимодействует с системой так, как указано в определении, не означает ли это, что он является частью системы? Ответы на эти вопросы не являются очевидными. В известном

смысле система вместе с окружающей средой представляет набор объектов, интересующих исследователя в конкретной задаче. Разделение этого набора на две совокупности – система и окружающая среда – может быть произведено разными способами, причем все они достаточно произвольны. В конечном счете решение этой проблемы зависит от целей того, кто рассматривает некоторый набор объектов как систему.

Общая проблема определения окружающей среды данной системы является далеко не простой. Для того чтобы полностью определить окружающую среду, надо знать все факторы, которые влияют на систему или определяются системой. Как правило, исследователь включает в состав системы и ее окружающей среды все те объекты, которые ему кажутся наиболее важными, описывает внутренние отношения системы так полно, как это возможно, и уделяет большее внимание наиболее важным ее свойствам, пренебрегая теми свойствами, которые, по его мнению, не играют существенной роли. Такой метод идеализации широко применяется, например, в физике и химии. Биологи, социологи, экономисты и другие ученые, интересующиеся живыми системами и их поведением, находятся в более трудном положении. В этих науках очень трудно отличить существенные переменные систем от несущественных; иначе говоря, проблема спецификации исследуемого набора объектов и последующее деление его на две совокупности – систему и окружающую среду – представляет здесь фундаментальную трудность.

Из определения системы и окружающей среды следует, что любая система может быть разделена на подсистемы . Объекты, принадлежащие одной подсистеме, могут рассматриваться как части окружающей среды другой подсистемы. Анализ подсистемы требует, конечно, рассмотрения новой совокупности отношений. Разумеется, поведение подсистемы не может быть полностью аналогично поведению включающей ее системы. В частности, такое свойство систем, как иерархическая упорядоченность системы, по сути дела, отражает возможность разделения системы на подсистемы. Другими словами, можно сказать, что части системы сами могут быть системами более низких порядков. Одним из методов изучения сложной системы является рассмотрение в деталях поведения одной из ее подсистем. Другой метод заключается в наблюдении только макроскопического поведения системы как целого. Оба эти метода широко используются в различных областях знаний, и оба они имеют важное значение.

В определении системы отмечено, что для всех систем характерно наличие отношений между объектами и между их атрибутами.

Если каждая часть системы так соотносится с каждой другой частью, что изменение в некоторой части вызывает изменения во всех других час-

тях и во всей системе в целом, то система ведет себя как целостность , или как некоторое связанное образование.

Если в совокупности совершенно не связанных между собой объектов изменение в каждой части совокупности зависит только от самой этой части, а изменение в совокупности в целом является физической суммой изменений в ее отдельных частях, то такая совокупность называется обо - собленной или физически аддитивной.

Целостность и обособленность, очевидно, являются не двумя разными свойствами, а предельными значениями некоторой меры одного и того же свойства. Целостность и обособленность различаются по степени наличия этого свойства, и в настоящее время не существует метода их измерения. Для описания совокупности частей, независимых друг от друга, часто используется термин «комплекс», а термин «система» употребляется только тогда, когда для совокупности объектов характерна некоторая степень целостности. Однако более правильно использовать для совокупности совершенно независимых друг от друга частей термин «вырожденная система».

Моделирование – это замещение одной системы (оригинала) другой (моделью) и изучение свойств оригинала путем исследования свойств модели. Замещение производится с целью упрощения изучения свойств оригинала.

В общем случае системой-оригиналом может быть любая естественная или искусственная, реальная или абстрактная система. Она имеет некоторое множество параметров и характеризуется определенными свойствами. Система проявляет свои свойства под влиянием внешних воздействий. Множество параметров системы и их значений отражает ее внутреннее содержание – состав, структуру и алгоритмы функционирования. Набор и значения параметров выделяют систему среди других систем. Характеристики системы – это в основном ее внешние признаки, которые важны при взаимодействии с другими системами. Характеристики системы находятся в функциональной зависимости от ее параметров. Очевидно, что каждая характеристика системы определяется в основном ограниченным подмножеством параметров. Предполагается, что влиянием остальных параметров системы на значение данной характеристики системы можно пренебречь. Исследователя интересуют, как правило, только некоторые характеристики изучаемой системы при конкретных внешних воздействиях на систему.

Модель – это тоже система со своими множествами параметров и характеристик, отображающими соответственно множества параметров и характеристик системы-оригинала. С некоторым приближением можно считать, что характеристики модели связаны с характеристиками оригинала.

В этом случае множество характеристик модели является отображением множества интересующих характеристик оригинала. Моделирование целесообразно, когда у модели отсутствуют те признаки оригинала, которые препятствуют его исследованию, или имеются отличные от оригинала параметры, способствующие изучению свойств модели.

Теория моделирования представляет собой взаимосвязанную совокупность положений, определений, методов и средств создания и изучения моделей. Эти положения, определения, методы и средства, как и сами модели, являются предметом теории моделирования. Основная задача теории моделирования заключается в том, чтобы вооружить исследователей методологией создания таких моделей, которые достаточно точно и полно фиксируют интересующие свойства оригиналов, проще или быстрее поддаются исследованию и обеспечивают использование его результатов для получения необходимых данных о характеристиках моделируемых системоригиналов. Теория моделирования является основной составляющей общей теории систем – системологии, в которой в качестве главного принципа постулируется осуществимость моделей: система представима конечным множеством моделей, каждая из которых отражает определенную грань ее сущности.

1.2. Классификация систем

При рассмотрении систем можно использовать различные способы их классификации: по происхождению , по описанию входных и выходных

переменных, по описанию оператора системы, по типу управления.

На рис. 1.1 приведена схема двухуровневой классификации систем по происхождению. Если полнота классификации первого уровня логически ясна, то второй уровень является явно неполным. Классификация естественных систем ясна из рисунка, ее неполнота очевидна. Неполнота разбиения искусственных систем связана, например, с еще незавершенным развитием систем искусственного интеллекта. В качестве примеров подклассов смешанных систем можно привести эргономические системы (комплексы машина–человек-оператор), биотехнические (системы, в которые входят живые организмы и технические устройства) и организационные системы (состоящие из коллективов людей, которые оснащены необходимыми техническими средствами).

С И С Т Е М Ы

ЕСТЕСТВЕННЫЕ

ИСКУССТВЕННЫЕ

СМЕШАННЫЕ

Механизмы

Эргономические

Биотехнические

Экологические

Автоматы

Организационные

Социальные

. . . . . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

Рис. 1.1. Классификация систем по происхождению.

Трехуровневая схема классификации систем по типу входных, выходных и внутренних переменных приведена на рис. 1.2. Существует принципиальное различие между переменными, описываемыми качест - венно и количественно , что и является основой первого уровня классификации. Для полноты введен третий класс, к нему отнесены системы, у которых часть переменных носит качественный характер, а остальные являются количественными. На следующем уровне классификации систем с качественными переменными различаются случаи, когда описание ведется средствами естественного языка, и случаи, допускающие более глубокую формализацию. Второй уровень классификации систем с количественными переменными вызван различиями в методах дискретной и непрерывной математики, что и отражено в названиях вводимых подклассов; предусмотрен и случай, когда система имеет как непрерывные, так и дискретные переменные. Для систем со смешанным количественно-качественным описанием переменных второй уровень является объединением подклассов первых двух классов и на рисунке не приводится. Третий уровень классификации одинаков для всех подклассов второго уровня и изображен только для одного из них.

С И С Т Е М Ы

С КАЧЕСТВЕННЫМИ

С КОЛИЧЕСТВЕННЫМИ

СО СМЕШАННЫМ

ПЕРЕМЕННЫМИ

ПЕРЕМЕННЫМИ

ОПИСАНИЕМ

ПЕРЕМЕННЫХ

описание

Дискретные

Формализованное

описание

Непрерывные

Смешанное

описание

Смешанные

Детерминированные

Стохастические

Смешанные

Рис. 1.2. Фрагмент классификации систем по описанию переменных.

Следующая классификация (рис. 1.3) – по типу оператора системы, т. е. классификация типов связей между входными и выходными переменными.

С И С Т Е М Ы

НЕПАРАМЕТ-

ПАРАМЕТРИ-

БЕЛЫЙ ЯЩИК

РИЗОВАННЫЙ

ЗОВАННЫЙ

(оператор

(оператор

известен

неизвестен)

(оператор

(оператор

полностью)

известен

известен

частично)

до параметров)

Инерционные (с памятью)

Безынерционные (без памяти)

Замкнутые (с обратной связью)

Разомкнутые (без обратной связи)

Линейные

Нелинейные

Квазилинейные

Рис. 1.3. Фрагмент классификации систем по типу операторов.

На первом уровне расположены классы систем, отличающиеся степенью наличия сведений об операторе системы. Ветвь «черного ящика» на этом уровне кончается: оператор считается вообще неизвестным. Чем больше сведений об операторе имеется, тем больше различий можно рассмотреть и тем более развитой окажется классификация. Например, информация об операторе может носить настолько общий характер, что описание системы нельзя получить в параметризованной функциональной форме. Непараметризованный класс систем и соответствует подобным ситуациям с очень ограниченной информацией об операторе.

Наши знания об операторе могут иметь уровень, который позволяет составить параметрическое описание этого оператора, т. е. записать зависимость выхода системы y (t ) от входа системы x (t ) в явной форме с точностью до конечного числа параметров θ = (θ 1 ,K , θ k ) : y (t ) = Φ (x (), θ ) , где Φ обозначает оператор системы. Такие системы относятся к третьему классу при классификации этого вида.

Наконец, если параметры оператора заданы точно, то всякая неопределенность исчезает и мы имеем систему с полностью определенным оператором, т. е. «белый ящик».

Дальнейшие уровни классификации на рис. 1.3 приведены только для систем третьего и четвертого классов («черный ящик» не подлежит

дальнейшей классификации, а классификация непараметризованных систем связана с типом имеющейся информации об их операторах). Второй, третий и четвертый уровни ясны из самого рисунка. Конечно, классификация может быть продолжена (например, линейные операторы принято делить на дифференциальные, интегральные и т. п.).

Рассматривая выход y (t ) системы (это может быть вектор) как ее реакцию на управляемые u (t ) и неуправляемые w (t ) входы – x (t ) = {u (t ), w (t )} , модель «черного ящика» можно представить как совокупность двух процессов: X = {x (t ), t T } и Y = { y (t ), t T } . Если считать y (t ) результатом некоторого преобразования Φ процесса x (t ) , т. е. y (t ) = Φ (x (t )) , то модель «черного ящика» предполагает, что это преобразование неизвестно. В том же случае, когда мы имеем дело с «белым ящиком», соответствие между входом и выходом можно описать тем или иным способом. Какой именно способ – зависит от того, что нам известно, и в какой форме можно использовать эти знания.

Схема следующего способа классификации систем – по типу управления – приведена на рис. 1.4. Первый уровень классификации определяется тем, входит ли управляющий блок в систему или является внешним по отношению к ней; выделен также класс систем, управление которыми разделено и частично осуществляется извне, а частично – внутри самой системы. Независимо от того, включен ли в систему или вынесен из нее управляющий блок, можно выделить четыре основных типа управления, что и отражено на втором уровне классификации. Эти типы различаются в зависимости от степени наличия сведений о траектории системы в пространстве состояний, приводящей систему к цели, и возможности управляющего блока обеспечить эволюцию системы по этой траектории.

С И С Т Е М Ы

С ВНЕШНИМ

САМОУПРАВЛЯЕМЫЕ

С КОМБИНИРОВАННЫМ

УПРАВЛЕНИЕМ

УПРАВЛЕНИЕМ

Без обратной связи

Программное управление

Автоматические

Регулирование

Автоматическое управление

Полуавтоматические

Управление

Параметрическая адаптация

Автоматизированные

по параметрам

Управление

Структурная адаптация

Организационные

по структуре

(самоорганизация)

Рис. 1.4. Классификация систем по типу управления.

Системный анализ - научный метод познания, представляющий собой последовательность действий по установлению структурных связей между переменными или элементами исследуемой системы. Опирается на комплекс общенаучных, экспериментальных, естественнонаучных, статистических, математических методов.

Для решения хорошо структурированных количественно выражаемых проблем используется известная методология исследования операций, которая состоит в построении адекватной математической модели (например, задачи линейного, нелинейного, динамического программирования, задачи теории массового обслуживания, теории игр и др.) и применении методов для отыскания оптимальной стратегии управления целенаправленными действиями.

Системный анализ предоставляет к использованию в различных науках, системах следующие системные методы и процедуры:

· абстрагирование и конкретизация

· анализ и синтез, индукция и дедукция

· формализация и конкретизация

· композиция и декомпозиция

· линеаризация и выделение нелинейных составляющих

· структурирование и реструктурирование

· макетирование

· реинжиниринг

· алгоритмизация

· моделирование и эксперимент

· программное управление и регулирование

· распознавание и идентификация

· кластеризация и классификация

· экспертное оценивание и тестирование

· верификация

и другие методы и процедуры.

Следует отметить задачи исследования системы взаимодействий анализируемых объектов с окружающей средой. Решение данной задачи предполагает:

– проведение границы между исследуемой системой и окружающей средой, предопределяющей предельную глубину

влияния рассматриваемых взаимодействий, которыми ограничивается рассмотрение;

– определение реальных ресурсов такого взаимодействия;

– рассмотрение взаимодействий исследуемой системы с системой более высокого уровня.

Задачи следующего типа связаны с конструированием альтернатив этого взаимодействия, альтернатив развития системы во времени и в пространстве. Важное направление развития методов системного анализа связано с попытками создания новых возможностей конструирования оригинальных альтернатив решения, неожиданных стратегий, непривычных представлений и скрытых структур. Другими словами, речь здесь идёт о разработке методов и средств усиления индуктивных возможностей человеческого мышления в отличие от его дедуктивных возможностей, на усиление которых, по сути дела, направлена разработка формальных логических средств. Исследования в этом направлении начаты лишь совсем недавно, и единый концептуальный аппарат в них пока отсутствует. Тем не менее, и здесь можно выделить несколько важных направлений – таких, как разработка формального аппарата индуктивной логики, методов морфологического анализа и других структурно-синтаксических методов конструирования новых альтернатив, методов синтактики и организации группового взаимодействия при решении творческих задач, а также изучение основных парадигм поискового мышления.

Задачи третьего типа заключаются в конструировании множества имитационных моделей , описывающих влияние того или иного взаимодействия на поведение объекта исследования. Отметим, что в системных исследованиях не преследуется цель создания некоей супермодели. Речь идёт о разработке частных моделей, каждая из которых решает свои специфические вопросы.

Даже после того как подобные имитационные модели созданы и исследованы, вопрос о сведении различных аспектов поведения системы в некую единую схему остается открытым. Однако решить его можно и нужно не посредством построения супермодели, а анализируя реакции на наблюдаемое поведение других взаимодействующих объектов, т.е. путём исследования поведения объектов – аналогов и перенесения результатов этих исследований на объект системного анализа. Такое исследование даёт основание для содержательного понимания ситуаций взаимодействия и структуры взаимосвязей, определяющих место исследуемой системы в структуре суперсистемы, компонентом которой она является.

Задачи четвёртого типа связаны с конструированием моделей принятия решений. Всякое системное исследование связано с исследованием различных альтернатив развития системы. Задача системных аналитиков – выбрать и обосновать наилучшую альтернативу развития. На этапе выработки и принятия решений необходимо учитывать взаимодействие системы с её подсистемами, сочетать цели системы с целями подсистем, выделять глобальные и второстепенные цели.

Наиболее развитая и в то же время наиболее специфическая область научного творчества связана с развитием теории принятия решений и формированием целевых структур, программ и планов. Здесь не ощущается недостатка и в работах, и в активно работающих исследователях. Однако и в данном случае слишком многие результаты находятся на уровне неподтверждённого изобретательства и разночтений в понимании как существа стоящих задач, так и средств их решения. Исследования в этой области включают:

а) построение теории оценки эффективности принятых решений или сформированных планов и программ;

б) решение проблемы многокритериальности в оценках альтернатив решения или планирования;

в) исследования проблемы неопределённости, особенно связанной не с факторами статистического характера, а с неопределённостью экспертных суждений и преднамеренно создаваемой неопределённостью, связанной с упрощением представлений о поведении системы;

г) разработка проблемы агрегирования индивидуальных предпочтений на решениях, затрагивающих интересы нескольких сторон, которые влияют на поведение системы;

д) изучение специфических особенностей социально-экономических критериев эффективности;

е) создание методов проверки логической согласованности целевых структур и планов и установления необходимого баланса между предопределённостью программы действий и её подготовленностью к перестройке при поступлении новой

информации как о внешних событиях, так и изменении представлений о выполнении этой программы.

Для последнего направления требуется новое осознание реальных функций целевых структур, планов, программ и определение тех, которые они должны выполнять, а также связей между ними.

Рассмотренные задачи системного анализа не охватывают полного перечня задач. Здесь перечислены те, которые представляют наибольшую сложность при их решении. Следует отметить, что все задачи системных исследований тесно взаимосвязаны друг с другом, не могут быть изолированы и решаться отдельно как по времени, так и по составу исполнителей. Более того, чтобы решать все эти задачи, исследователь должен обладать широким кругозором и владеть богатым арсеналом методов и средств научного исследования.

АНАЛИТИЧЕСКИЕ И СТАТИСТИЧЕСКИЕ МЕТОДЫ. Эти группы методов получили наибольшее распространение в практике проектирования и управления. Правда, для представления промежуточных и окончательных результатов моделирования широко используются графические представления (графики, диаграммы и т.п.). Однако последние являются вспомогательными; основу же модели, доказательства её адекватности составляют те или иные направления аналитических и статистических представлений. Поэтому, несмотря на то что по основным направлениям этих двух классов методов в вузах читаются самостоятельные курсы лекций, мы всё же кратко охарактеризуем их особенности, достоинства и недостатки с точки зрения возможности использования при моделировании систем.

Аналитическими в рассматриваемой классификации названы методы, которые отображают реальные объекты и процессы в виде точек (безразмерных в строгих математических доказательствах), совершающих какие-либо перемещения в пространстве или взаимодействующих между собой. Основу понятийного (терминологического) аппарата этих представлений составляют понятия классической математики (величина, формула, функция, уравнение, система уравнений, логарифм, дифференциал, интеграл и т.д.).

Аналитические представления имеют многовековую историю развития, и для них характерно не только стремление к строгости терминологии, но и к закреплению за некоторыми специальными величинами определённых букв (например, удвоенное отношение площади круга к площади вписанного в него квадрата p » 3,14; основание натурального логарифма – е » 2,7 и т.д.).

На базе аналитических представлений возникли и развиваются математические теории различной сложности – от аппарата классического математического анализа (методов исследования функций, их вида, способов представления, поиска экстремумов функций и т.п.) до таких новых разделов современной математики, как математическое программирование (линейное, нелинейное, динамическое и т.п.), теория игр (матричные игры с чистыми стратегиями, дифференциальные игры и т.п.).

Эти теоретические направления стали основой многих прикладных, в том числе теории автоматического управления, теории оптимальных решений и т.д.

При моделировании систем применяется широкий спектр символических представлений, использующих «язык» классической математики. Однако далеко не всегда эти символические представления адекватно отражают реальные сложные процессы, и их в этих случаях, вообще говоря, нельзя считать строгими математическими моделями.

Большинство из направлений математики не содержат средств постановки задачи и доказательства адекватности модели. Последняя доказывается экспериментом, который по мере усложнения проблем становится также всё более сложным, дорогостоящим, не всегда бесспорен и реализуем.

В то же время в состав этого класса методов входит относительно новое направление математики математическое программирование, которое содержит средства постановки задачи и расширяет возможности доказательства адекватности моделей.

Статистические представления сформировались как самостоятельное научное направление в середине прошлого века (хотя возникли значительно раньше). Основу их составляет отображение явлений и процессов с помощью случайных (стохастических) событий и их поведений, которые описываются соответствующими вероятностными (статистическими) характеристиками и статистическими закономерностями. Статистические отображения системы в общем случае (по аналогии с аналитическими) можно представить как бы в виде «размытой» точки (размытой области) в n-мерном пространстве, в которую переводит систему (её учитываемые в модели свойства) оператор Ф. «Размытую» точку следует понимать как некоторую область, характеризующую движение системы (её поведение); при этом границы области заданы с некоторой вероятностью p («размыты») и движение точки описывается некоторой случайной функцией.

Закрепляя все параметры этой области, кроме одного, можно получить срез по линии а – b, смысл которого – воздействие данного параметра на поведение системы, что можно описать статистическим распределением по этому параметру. Аналогично можно получить двумерную, трёхмерную и т.д. картины статистического распределения. Статистические закономерности можно представить в виде дискретных случайных величин и их вероятностей, или в виде непрерывных зависимостей распределения событий, процессов.

Для дискретных событий соотношение между возможными значениями случайной величины xi и их вероятностями pi, называют законом распределения.

Метод "мозговой атаки"

Группа исследователей (экспертов) разрабатывает способы решения поставленной задачи, при этом любой способ (любая мысль, высказанная вслух) включается в число рассматриваемых, чем больше идей - тем лучше. На предварительном этапе качество предложенных способов не учитывается, то есть предметом поиска является создание возможно большего количества вариантов решения задачи. Но для достижения успеха должны соблюдаться следующие условия:

· наличие вдохновителя идей;

· группа экспертов не превышает 5-6 человек;

· потенциал исследователей соизмерим;

· обстановка спокойная;

· соблюдены равные права, может быть предложено любое решение, критика идей не допускается;

· продолжительность работы не более 1 часа.

После того, как прекращается "поток идей", эксперты осуществляют критический отбор предложений, учитывая ограничения организационного и экономического характера. Отбор лучшей идеи может осуществляться по нескольким критериям.

Данный метод наиболее продуктивен на этапе разработки решения по реализации поставленной цели, при раскрытии механизма функционирования системы, при выборе критерия решения проблемы.

Метод "концентрации внимания на целях поставленной проблемы"

Этот метод состоит в том, что отбирается один из объектов (элементов, понятий), ассоциируемых с решаемой проблемой. При этом известно, что принятый к рассмотрению объект связан непосредственно с конечными целями этой проблемы. Затем исследуется связь между этим объектом и каким-либо другим, выбранным наугад. Далее отбирается третий элемент, точно также наугад, и исследуется его связь с первыми двумя и так далее. Таким образом создается некая цепь связанных между собой объектов, элементов или понятий. Если цепь обрывается, то процесс возобновляется, создается вторая цепочка и так далее. Таким образом происходит исследование системы.

Метод "входы-выходы системы"

Исследуемая система рассматривается обязательно совместно с окружающей средой. При этом особое внимание обращается на ограничения, которые накладывает внешняя среда на систему, а также ограничения, свойственные самой системе.

На первом этапе изучения системы рассматриваются возможные выходы системы и оцениваются результаты ее функционирования по изменениям окружающей среды. Затем исследуются возможные входы системы и их параметры, позволяющие системе функционировать в рамках принятых ограничений. И, в конце концов, на третьем этапе выбирают приемлемые входы, не нарушающие ограничения системы и не приводящие ее в рассогласование с целями окружающей среды.

Данный способ наиболее эффективен на этапах познания механизма функционирования системы и принятия решений.

Метод сценариев

Особенность метода состоит в том, что группа высококвалифицированных специалистов в описательной форме представляет возможный ход событий в той или иной системе - начиная от сложившейся ситуации и заканчивая некоторой результирующей ситуацией. При этом соблюдаются искусственно воздвигаемые, но возникающие в реальной жизни ограничения на вход и выход системы (по сырью, энергетическим ресурсам, финансам и так далее).

Основная идея данного метода - выявление связей различных элементов системы, которые проявляются при том или ином событии или ограничении. Результатом такого исследования является совокупность сценариев - возможных направлений решения проблемы, из которых путем сопоставления по какому-либо критерию можно было бы выбрать наиболее приемлемые.

Морфологический метод

Данный метод предусматривает поиск всех возможных решений проблемы путем исчерпывающей переписи этих решений. Например, Ф.Р.Матвеев выделяет шесть этапов претворения в жизнь этого метода:

· формулировка и определение ограничений проблемы;

· поиск возможных параметров решений и возможных вариаций этих параметров;

· нахождение всех возможных комбинаций этих параметров в получаемых решениях;

· сравнение решений с точки зрения преследуемых целей;

· выбор решений;

· углубленное изучение отобранных решений.

Методы моделирования

Модель представляет собой некоторую систему, созданную с целью представления в упрощенной и понятной форме сложной реальности, другими словами - модель представляет собой имитацию этой реальности.

Проблемы, решаемые при помощи моделей, многочисленны и разнообразны. Важнейшие из них:

· с помощью моделей исследователи пытаются лучше понять протекание сложного процесса;

· с помощью моделей осуществляют экспериментирование в том случае, когда это невозможно на реальном объекте;

· с помощью моделей оценивают возможность осуществления различных альтернативных решений.

Кроме того модели обладают такими ценными свойствами как:

· воспроизводимостью независимыми экспериментаторами;

· изменчивостью и возможностью совершенствования путем введения в модель новых данных или модификаций связей внутри модели.

Среди основных типов моделей следует отметить символические и математические модели.

Символические модели - схемы, диаграммы, графики, блок-схемы и так далее.

Математические модели - абстрактные построения, которые в математической форме описывают связи, отношения между элементами системы.

При построении моделей необходимо соблюдать следующие условия:

· иметь достаточно большой объем информации о поведении системы;

· стилизация механизмов функционирования системы должна происходить в таких пределах, чтобы имелась возможность достаточно точно отразить число и природу отношений и связей существующих в системе;

· использование методов автоматической обработки информации, особенно когда количество данных велико или природа взаимоотношений между элементами системы весьма сложна.

Вместе с тем математические модели имеют некоторые недостатки:

· стремление отразить изучаемый процесс в форме условий приводит к модели, которая может быть понятна только ее разработчику;

· с другой стороны, упрощение ведет к ограничению числа факторов, включенных в модель; следовательно, появляется неточность в отражении действительности;

· автор, создав модель, "забывает", что не учитывает действие многочисленных, может быть малозначительных факторов. Но совместное воздействие этих факторов на систему бывает таково, что конечные результаты не могут быть достигнуты на данной модели.

С целью нивелирования указанных недостатков модель необходимо проверить:

· насколько она правдоподобно и удовлетворительно отражает реальный процесс;

· вызывает ли изменение параметров соответствующее изменение результатов.

Сложные системы, в силу наличия множества дискретно функционирующих подсистем, как правило не могут быть адекватно описаны с помощью только математических моделей, поэтому широкое распространение получило имитационное моделирование. Имитационные модели получили большое распространение по двум причинам: во-первых, данные модели позволяют использовать всю располагаемую информацию (графическую, словесную, математические модели…) и, во-вторых, потому, что эти модели не накладывают жестких ограничений на используемые исходные данные. Таким образом имитационные модели позволяют творчески использовать всю имеющеюся информацию об объекте исследования.

mob_info