Сульфат хрома 3 химические свойства. Оксиды хрома (II), (III) и (VI). Реакции с хромом и его соединениями

Содержание статьи

ХРОМ – (Chromium) Cr, химический элемент 6(VIb) группы Периодической системы. Атомный номер 24, атомная масса 51,996. Известно 24 изотопа хрома с 42 Cr по 66 Cr. Изотопы 52 Cr, 53 Cr, 54 Cr являются стабильными. Изотопный состав природного хрома: 50 Cr (период полураспада 1,8·10 17 лет) – 4,345%, 52 Cr – 83,489%, 53 Cr – 9,501%, 54 Cr – 2,365%. Основные степени окисления +3 и +6.

В 1761 профессор химии Петербургского университета Иоганн Готтлоб Леман (Johann Gottlob Lehmann) у восточного подножия Уральских гор на Березовском руднике обнаружил замечательный красный минерал, который при измельчении в порошок давал яркую желтую окраску. В 1766 Леман привез образцы минерала в Петербург. Обработав кристаллы соляной кислотой, он получил белый осадок, в котором обнаружил свинец. Леман назвал минерал сибирским красным свинцом (plomb rouge de Sibérie), теперь известно, что это был крокоит (от греческого «krokos» – шафран) – природный хромат свинца PbCrO 4 .

Немецкий путешественник и естествоиспытатель Петер Симон Паллас (Peter Simon Pallas) (1741–1811) возглавил экспедицию Петербургской Академии наук в центральные регионы России и в 1770 побывал на Южном и Среднем Урале, в том числе на Березовском руднике и, подобно Леману, заинтересовался крокоитом. Паллас писал: «Этот удивительный красный свинцовый минерал не встречается более ни в одном месторождении. При растирании в порошок становится желтым, и может быть использован в художественной миниатюре». Несмотря на редкость и трудность доставки крокоита с Березовского рудника в Европу (на это уходило почти два года), использование минерала в качестве красящего вещества было оценено по достоинству. В Лондоне и Париже конца 17 в. все знатные особы ездили на каретах, покрашенных мелко растертым крокоитом, кроме того, лучшие образцы сибирского красного свинца пополняли коллекции многих минералогических кабинетов Европы.

В 1796 образец крокоита попал к профессору химии Парижской минералогической школы Никола Луи Вокелену (Nicolas-Louis Vauquelin) (1763–1829), который проанализировал минерал, но не нашел в нем ничего кроме оксидов свинца, железа и алюминия. Продолжая исследования сибирского красного свинца, Вокелен прокипятил минерал с раствором поташа и после отделения белого осадка карбоната свинца получил желтый раствор неизвестной соли. При обработке его солью свинца образовывался желтый осадок, солью ртути – красный, а при добавлении хлорида олова раствор становился зеленым. Разлагая крокоит минеральными кислотами, он получил раствор «кислоты красного свинца», упаривание которой давало рубиново-красные кристаллы (сейчас понятно, что это был хромовый ангидрид). Прокалив их с углем в графитовом тигле, обнаружил после реакции множество сросшихся серых игольчатых кристаллов неизвестного до того времени металла. Вокелен констатировал высокую тугоплавкость металла и его устойчивость по отношению к кислотам.

Вокелен назвал новый элемент хромом (от греческого crwma – цвет, окраска) ввиду множества образуемых им разноцветных соединений. На основании своих исследований Вокелен впервые констатировал, что изумрудная окраска некоторых драгоценных камней объясняется примесью в них соединений хрома. Например, природный смарагд представляет собой окрашенный в глубокий зеленый цвет берилл, в котором алюминий частично замещен хромом.

Скорее всего, Вокеленом был получен не чистый металл, а его карбиды, о чем свидетельствует игольчатая форма полученных кристаллов, но Парижская Академия наук тем не менее зарегистрировала открытие нового элемента, и сейчас Вокелен справедливо считается первооткрывателем элемента № 24.

Юрий Крутяков

Среди многообразия химических элементов и их соединений сложно выделить наиболее полезное для человечества вещество. Каждое уникально по своим свойствам и возможностям применения. Технический прогресс значительно облегчает исследовательский процесс, но и ставит перед ним новые задачи. Химические элементы, открытые несколько сотен лет назад и изученные во всех проявлениях, получают в современном мире более технологичные направления использования. Данная тенденция распространяется на соединения, существующие в природе и созданные людьми.

Оксид

В земной коре и на просторах Вселенной существует множество химических соединений, которые отличаются по классам, типам, характеристикам. Одним из самых распространенных видов соединений является оксид (окись, окисел). К нему относят песок, воду, углекислый газ, т. е. основополагающие вещества для существования человечества и всей биосферы Земли. Оксидами называют вещества, которые имеют в составе атомы кислорода со степенью окисления -2, при этом связь между элементами является бинарной. Их образование происходит в результате химической реакции, условия которой разнятся в зависимости от состава оксида.

Характерными признаками данного вещества являются три позиции: вещество сложное, состоит из двух атомов, один из них - кислород. Большое количество существующих оксидов объясняется тем, что многие химические элементы образуют несколько веществ. Они идентичны по составу, но атом, вступающий в реакцию с кислородом, проявляет несколько степеней валентности. Например, оксид хрома (2, 3, 4, 6), азота (1, 2, 3, 4 ,5) и т. д. При этом их свойства зависят от степени валентности элемента, вступающего в окислительную реакцию.

По принятой классификации оксиды бывают основными и кислотными. Также выделяется амфотерный вид, который проявляет свойства основного окисла. Кислотные оксиды - это соединения неметаллов или элементов с высокой валентностью, их гидратами являются кислоты. К основным окислам относят все вещества, имеющие связь кислород + металл, их гидратами являются основания.

Хром

В 18 веке химик И. Г. Леман обнаружил неизвестный минерал, который был назван красным сибирским свинцом. Профессор Парижской минералогической школы Вокелен провел ряд химических реакций с полученным образцом, в результате которых был выделен неизвестный металл. Основными свойствами, обозначенными ученым, стали его устойчивость к кислотным средам и тугоплавкость (жаропрочность). Название "хром" (Chromium) возникло из-за широкой цветовой гаммы, которая характеризуется соединениям элемента. Металл достаточно инертен, в чистом виде не встречается в природных условиях.

Основными минералами, содержащими хром, являются: хромит (FeCr 2 O 4), меланохроит, вокеленит, дитцеит, тарапакаит. Химический элемент Cr располагается в 6 группе периодической системы Д. И. Менделеева, имеет атомный номер 24. Электронная конфигурация атома хрома позволяет элементу иметь валентность +2, +3, +6, при этом наиболее устойчивыми являются соединения трехвалентного металла. Возможны реакции, при которых степень окисления равна +1, +5, +4. Хром химически не активен, поверхность металла покрывается пленкой (эффект пассивирования), предотвращающей реакции с кислородом и водой при нормальных условиях. Оксид хрома, образующийся на поверхности, предохраняет металл от взаимодействия с кислотами и галогенами при отсутствии катализаторов. Соединения с простыми веществами (не металлами) возможны при температуре от 300 о С (хлор, бром, сера).

При взаимодействии со сложными веществами требуются дополнительные условия, например, с раствором щелочи реакция не происходит, с ее расплавами процесс происходит очень медленно. С кислотами хром вступает в реакцию при наличии в качестве катализатора высокой температуры. Оксид хрома можно получить из различных минералов путем воздействия температуры. В зависимости от будущей степени окисления элемента применяются концентрированные кислоты. При этом валентность хрома в соединении варьируется от +2 до +6 (высший оксид хрома).

Применение

За счет уникальных антикоррозийных свойств и жаропрочности большое практическое значение имеют сплавы на основе хрома. При этом в процентном соотношении его доля не должна превышать половины общего объема. Большим недостатком хрома является его хрупкость, что уменьшает возможности обработки сплавов. Наиболее распространенным способом применения металла является изготовление покрытий (хромирование). Защитная пленка может составлять слой в 0,005 мм, но она будет надежно предохранять металлическое изделие от коррозии и внешних воздействий. Соединения хрома используются для изготовления жаропрочных конструкций в металлургической промышленности (плавильные печи). Антикоррозийные покрытия декоративного направления (металлокерамика), специальная легированная сталь, электроды для сварочных аппаратов, сплавы на основе кремния, алюминия являются востребованными на мировых рынках. Оксид хрома за счет низкой возможности окисления и высокой жаропрочности служит катализатором многих химических реакций, протекающих при высоких температурах (1000 о С).

Двухвалентные соединения

Оксид хрома (2) CrO (закись) является порошком ярко-красного или черного цвета. В воде нерастворим, при нормальных условиях не окисляется, проявляет ярко выраженные основные свойства. Вещество твердое, тугоплавкое (1550 о С), не является токсичным. В процессе нагревания до 100 о С окисляется до Cr 2 O 3 . В слабых растворах азотной и серной кислот не растворяется, реакция происходит с хлороводородной кислотой.

Получение, применение

Данное вещество считается низшим оксидом. Имеет достаточно узкую сферу применения. В химической промышленности оксид хрома 2 используется для очистки углеводородов от кислорода, который он притягивает в процессе окисления при температуре свыше 100 о С. Получить закись двухвалентного хрома можно тремя способами:

  1. Разложением карбонила Cr(CO) 6 при наличии в качестве катализатора высокой температуры.
  2. Восстанавливая при помощи фосфорной кислоты оксид хрома 3.
  3. Амальгама хрома окисляется кислородом или азотной кислотой.

Трехвалентные соединения

Для оксидов хрома степень окисления +3 является самой устойчивой формой вещества. Cr 2 O 3 (хромовая зелень, сесквиоксид, эсколаид) в химическом отношении инертен, нерастворим в воде, имеет высокую температуру плавления (более 2000 о С). Оксид хрома 3 - зеленый тугоплавкий порошок, очень твердый, имеет амфотерные свойства. Вещество растворимо в концентрированных кислотах, реакция со щелочами происходит в результате сплавления. Может восстанавливаться до чистого металла при взаимодействии с сильным восстановителем.

Получение и применение

За счет высокой твердости (сопоставимой с корундом) наиболее распространено использование вещества в абразивных и полирующих материалах. Оксид хрома (формула Cr 2 O 3) имеет зеленый цвет, поэтому его применяют в качестве пигмента при изготовлении стекол, красок, керамики. Для химической промышленности данное вещество используется как катализатор для протекания реакций с органическими соединениями (синтез аммиака). Трехвалентный оксид хрома применяется для создания искусственных драгоценных камней и шпинелей. Для получения используется несколько видов химических реакций:

  1. Окисление закиси хрома.
  2. Нагревание (прокаливанием) бихромата или хромата аммония.
  3. Разложение гидроксида трехвалентного хрома или шестивалентного оксида.
  4. Прокаливание хромата или бихромата ртути.

Шестивалентные соединения

Формула высшего оксида хрома - CrO 3 . Вещество фиолетового или темно-красного цвета, может существовать в виде кристаллов, игл, пластин. Химически активен, токсичен, при взаимодействии с органическими соединениями существует опасность самовозгорания и взрыва. Оксид хрома 6 - хромовый ангидрид, трёхокись хрома - хорошо растворим в воде, при нормальных условиях взаимодействует с воздухом (расплывается), температура плавления - 196 о С. Вещество имеет ярко выраженные кислотные характеристики. При химической реакции с водой образуется дихромовая или хромовая кислота, без дополнительных катализаторов взаимодействует со щелочами (хроматы желтого цвета). Для галогенов (йод, сера, фосфор) является сильным окислителем. В результате нагревания свыше 250 о С образуется свободный кислород и трехвалентный оксид хрома.

Как получают и где применяют

Оксид хрома 6 получают обработкой хроматов (бихроматов) натрия или калия концентрированной серной кислотой либо при реакции хромата серебра с хлороводородной кислотой. Высокая химическая активность вещества обуславливает основные направления его применения:

  1. Получение чистого металла - хрома.
  2. В процессе хромирования поверхностей, в том числе электролитическим способом.
  3. Окисление спиртов (органических соединений) в химической промышленности.
  4. В ракетной технике используется в качестве воспламенителя топлива.
  5. В химических лабораториях очищает посуду от органических соединений.
  6. Используется в пиротехнической отрасли.

«Национальный исследовательский Томский политехнический Университет»

Институт природных ресурсов Геоэкология и геохимия

Хром

По дисциплине:

Химия

Выполнил:

студент группы 2Г41 Ткачева Анастасия Владимировна 29.10.2014

Проверил:

преподаватель Стась Николай Федорович

Положение в периодической системе

Хром - элемент побочной подгруппы 6-ой группы 4-го периода периодической системы химических элементов Д. И. Менделеева с атомным номером 24. Обозначается символом Cr (лат. Chromium ). Простое вещество хром - твёрдый металлголубовато-белого цвета. Хром иногда относят к чёрным металлам.

Строение атома

17 Cl)2)8)7 - схема строения атома

1s2s2p3s3p- электронная формула

Атом располагается в III периоде, и имеет три энергетических уровня

Атом располагается в VII в группе, в главной подгруппе – на внешнем энергетическом уровне 7 электронов

Свойства элемента

Физические свойства

Хром - белый блестящий металл с кубической объемно-центрированной решеткой, а = 0,28845 нм, отличающийся твердостью и хрупкостью, с плотностью 7,2 г/см 3 , один из самых твердых чистых металлов (уступает только бериллию, вольфраму и урану), с температурой плавления 1903 град. И с температурой кипения около 2570 град. С. На воздухе поверхность хрома покрывается оксидной пленкой, которая предохраняет его от дальнейшего окисления. Добавка углерода к хрому еще больше увеличивает его твердость.

Химические свойства

Хром при обычных условиях – инертный металл, при нагревании становится довольно активным.

    Взаимодействие с неметаллами

При нагревании выше 600°С хром сгорает в кислороде:

4Cr + 3O 2 = 2Cr 2 O 3 .

С фтором реагирует при 350°С, с хлором – при 300°С, с бромом – при температуре красного каления, образуя галогениды хрома (III):

2Cr + 3Cl 2 = 2CrCl 3 .

С азотом реагирует при температуре выше 1000°С с образованием нитридов:

2Cr + N 2 = 2CrN

или 4Cr + N 2 = 2Cr 2 N.

2Cr + 3S = Cr 2 S 3 .

Реагирует с бором, углеродом и кремнием с образованием боридов, карбидов и силицидов:

Cr + 2B = CrB 2 (возможно образование Cr 2 B, CrB, Cr 3 B 4 , CrB 4),

2Cr + 3C = Cr 2 C 3 (возможно образование Cr 23 C 6 , Cr 7 B 3),

Cr + 2Si = CrSi 2 (возможно образование Cr 3 Si, Cr 5 Si 3 , CrSi).

С водородом непосредственно не взаимодействует.

    Взаимодействие с водой

В тонкоизмельченном раскаленном состоянии хром реагирует с водой, образуя оксид хрома (III) и водород:

2Cr + 3H 2 O = Cr 2 O 3 + 3H 2

    Взаимодействие с кислотами

В электрохимическом ряду напряжений металлов хром находится до водорода, он вытесняет водород из растворов неокисляющих кислот:

Cr + 2HCl = CrCl 2 + H 2 ;

Cr + H 2 SO 4 = CrSO 4 + H 2 .

В присутствии кислорода воздуха образуются соли хрома (III):

4Cr + 12HCl + 3O 2 = 4CrCl 3 + 6H 2 O.

Концентрированная азотная и серная кислоты пассивируют хром. Хром может растворяться в них лишь при сильном нагревании, образуются соли хрома (III) и продукты восстановления кислоты:

2Cr + 6H 2 SO 4 = Cr 2 (SO 4) 3 + 3SO 2 + 6H 2 O;

Cr + 6HNO 3 = Cr(NO 3) 3 + 3NO 2 + 3H 2 O.

    Взаимодействие с щелочными реагентами

В водных растворах щелочей хром не растворяется, медленно реагирует с расплавами щелочей с образованием хромитов и выделением водорода:

2Cr + 6KOH = 2KCrO 2 + 2K 2 O + 3H 2 .

Реагирует с щелочными расплавами окислителей, например хлоратом калия, при этом хром переходит в хромат калия:

Cr + KClO 3 + 2KOH = K 2 CrO 4 + KCl + H 2 O.

    Восстановление металлов из оксидов и солей

Хром – активный металл, способен вытеснять металлы из растворов их солей: 2Cr + 3CuCl 2 = 2CrCl 3 + 3Cu.

Свойства простого вещества

Устойчив на воздухе за счёт пассивирования. По этой же причине не реагирует с серной и азотной кислотами. При 2000 °C сгорает с образованием зелёного оксида хрома(III) Cr 2 O 3 , обладающего амфотерными свойствами.

Синтезированы соединения хрома с бором (бориды Cr 2 B, CrB, Cr 3 B 4 , CrB 2 , CrB 4 и Cr 5 B 3), с углеродом (карбиды Cr 23 C 6 , Cr 7 C 3 и Cr 3 C 2), c кремнием (силициды Cr 3 Si, Cr 5 Si 3 и CrSi) и азотом (нитриды CrN и Cr 2 N).

Соединения Cr(+2)

Степени окисления +2 соответствует основный оксид CrO (чёрный). Соли Cr 2+ (растворы голубого цвета) получаются при восстановлении солей Cr 3+ или дихроматов цинком в кислой среде («водородом в момент выделения»):

Все эти соли Cr 2+ - сильные восстановители вплоть до того, что при стоянии вытесняют водород из воды. Кислородом воздуха, особенно в кислой среде, Cr 2+ окисляется, в результате чего голубой раствор быстро зеленеет.

Коричневый или желтый гидроксид Cr(OH) 2 осаждается при добавлении щелочей к растворам солей хрома(II).

Синтезированы дигалогениды хрома CrF 2 , CrCl 2 , CrBr 2 и CrI 2

Соединения Cr(+3)

Степени окисления +3 соответствует амфотерный оксид Cr 2 O 3 и гидроксид Cr(OH) 3 (оба - зелёного цвета). Это - наиболее устойчивая степень окисления хрома. Соединения хрома в этой степени окисления имеют цвет от грязно-лилового (ион 3+) до зелёного (в координационной сфере присутствуют анионы).

Cr 3+ склонен к образованию двойных сульфатов вида M I Cr(SO 4) 2 ·12H 2 O (квасцов)

Гидроксид хрома (III) получают, действуя аммиаком на растворы солей хрома (III):

Cr+3NH+3H2O→Cr(OH)↓+3NH

Можно использовать растворы щелочей, но в их избытке образуется растворимый гидроксокомплекс:

Cr+3OH→Cr(OH)↓

Cr(OH)+3OH→

Сплавляя Cr 2 O 3 со щелочами получают хромиты:

Cr2O3+2NaOH→2NaCrO2+H2O

Непрокаленный оксид хрома(III) растворяется в щелочных растворах и в кислотах:

Cr2O3+6HCl→2CrCl3+3H2O

При окислении соединений хрома(III) в щелочной среде образуются соединения хрома(VI):

2Na+3HO→2NaCrO+2NaOH+8HO

То же самое происходит при сплавлении оксида хрома (III) со щелочью и окислителями, или со щелочью на воздухе (расплав при этом приобретает жёлтую окраску):

2Cr2O3+8NaOH+3O2→4Na2CrO4+4H2O

Соединения хрома (+4) [

При осторожном разложении оксида хрома(VI) CrO 3 в гидротермальных условиях получают оксид хрома(IV) CrO 2 , который является ферромагнетикоми обладает металлической проводимостью.

Среди тетрагалогенидов хрома устойчив CrF 4 , тетрахлорид хрома CrCl 4 существует только в парах.

Соединения хрома (+6)

Степени окисления +6 соответствует кислотный оксид хрома (VI) CrO 3 и целый ряд кислот, между которыми существует равновесие. Простейшие из них - хромовая H 2 CrO 4 и двухромовая H 2 Cr 2 O 7 . Они образуют два ряда солей: желтые хроматы и оранжевые дихроматы соответственно.

Оксид хрома (VI) CrO 3 образуется при взаимодействии концентрированной серной кислоты с растворами дихроматов. Типичный кислотный оксид, при взаимодействии с водой он образует сильные неустойчивые хромовые кислоты: хромовую H 2 CrO 4 , дихромовую H 2 Cr 2 O 7 и другие изополикислоты с общей формулой H 2 Cr n O 3n+1 . Увеличение степени полимеризации происходит с уменьшением рН, то есть увеличением кислотности:

2CrO+2H→Cr2O+H2O

Но если к оранжевому раствору K 2 Cr 2 O 7 прилить раствор щёлочи, как окраска вновь переходит в жёлтую так как снова образуется хромат K 2 CrO 4:

Cr2O+2OH→2CrO+HO

До высокой степени полимеризации, как это происходит у вольфрама и молибдена, не доходит, так как полихромовая кислота распадается на оксид хрома(VI) и воду:

H2CrnO3n+1→H2O+nCrO3

Растворимость хроматов примерно соответствует растворимости сульфатов. В частности, желтый хромат бария BaCrO 4 выпадает при добавлении солей бария, как к растворам хроматов, так и к растворам дихроматов:

Ba+CrO→BaCrO↓

2Ba+CrO+H2O→2BaCrO↓+2H

Образование кроваво-красного малорастворимого хромата серебра используют для обнаружения серебра в сплавах при помощи пробирной кислоты.

Известны пентафторид хрома CrF 5 и малоустойчивый гексафторид хрома CrF 6 . Также получены летучие оксигалогениды хрома CrO 2 F 2 и CrO 2 Cl 2 (хромилхлорид).

Соединения хрома(VI) - сильные окислители, например:

K2Cr2O7+14HCl→2CrCl3+2KCl+3Cl2+7H2O

Добавление к дихроматам перекиси водорода, серной кислоты и органического растворителя (эфира) приводит к образованию синего пероксида хрома CrO 5 L (L - молекула растворителя), который экстрагируется в органический слой; данная реакция используется как аналитическая.

Гидроксид хрома (II) Cr(ОН) 2 получают в виде желтого осадка, обрабатывая растворы солей хрома (II) щелочами в отсутствие кислорода:

CrСl 2 +2NaOH=Cr(OH) 2 ¯+2NaCl

Cr(OH) 2 обладает типичными основными свойствами и явля­ется сильным восстановителем:

2Cr(OH) 2 +H 2 O+1/2O 2 =2Cr(OH) 3 ¯

Водные растворы солей хрома (II) получают без доступа воз­духа растворением металлического хрома в разбавленных кисло­тах в атмосфере водорода или восстановлением цинком в кислой среде солей трехвалентного хрома. Безводные соли хрома (II) белого цвета, а водные растворы и кристаллогидраты - синего цвета.

По своим химическим свойствам соли хрома (II) похожи на соли двухвалентного железа, но отличаются от последних более ярко выраженными восстановительными свойствами, т.е. легче, чем соответствующие соединения двухвалентного железа, окис­ляются. Именно поэтому очень трудно получать и хранить соеди­нения двухвалентного хрома.

Гидроксид хрома (III) Cr(ОН) 3 - студнеобразный осадок серо-зеленого цвета, его получают при действии щелочей на растворы солей хрома (III):

Cr 2 (SO 4) 3 +6NaOH=2Cr(OH) 3 ¯+3Na 2 SO 4

Гидроксид хрома (III) обладает амфотерными свойствами, растворяясь как в кислотах с образованием солей хрома (III):

2Cr(ОН) 3 +3H 2 SO 4 =Cr 2 (SO 4) 3 +6Н 2 О так и в щелочах с образованием гидроксихромитов: Cr(OH) 3 +NaOH=Na 3

При сплавлении Cr(ОН) 3 с щелочами образуются метахромиты и ортохромиты:

Cr(ОН) 3 +NaOH=NaCrO 2 +2Н 2 O Cr(ОН) 3 +3NaOH=Na 3 CrO 3 +3Н 2 О

При прокаливании гидроксида хрома (III) образуется оксид хрома (III):

2Cr(ОН) 3 =Cr 2 O 3 +3Н 2 O

Соли трехвалентного хрома как в твердом состоянии, так и в водных растворах окрашены. Например, безводный сульфат хрома (III) Cr 2 (SO 4) 3 фиолетово-красного цвета, водные растворы сульфата хрома (III) в зависимости от условий могут менять цвет от фиолетового до зеленого. Это объясняется тем, что в водных растворах катион Cr 3+ существует только в виде гидратированного иона 3+ благодаря склонности трехвалентного хрома к образованию комплексных соединений. Фиолетовый цвет вод­ных растворов солей хрома (III) обусловлен именно катионом 3+ . При нагревании комплексные соли хрома (III) могут

частично терять воду, образуя соли различного цвета, вплоть до зеленого.

Соли трехвалентного хрома сходны с солями алюминия по составу, строению кристаллической решетки, по растворимости; так, для хрома (III) так же, как и для алюминия, типично образо­вание хромокалиевых квасцов KCr(SO 4) 2 12Н 2 О, их применяют для дубления кож и в качестве протравы в текстильном деле.

Соли хрома (III)Cr 2 (SО 4) 3 , CrСl 3 и т.д. при хранении на воздухе устойчивы, а в растворах подвергаются гидролизу:

Cr 3+ +3Сl - +НОН«Cr(ОН) 2+ +3Сl - +Н +

Гидролиз идет по I ступени, но есть соли, которые гидролизуются нацело:

Cr 2 S 3 +Н 2 O=Cr(OH) 3 ¯+H 2 S­

В окислительно-восстановительных реакциях в щелочной среде соли хрома (III) ведут себя как восстановители:

Следует отметить, что в ряду гидроксидов хрома различных степеней окисления Cr(ОН) 2 - Cr(ОН) 3 - Н 2 CrО 4 закономерно происходит ослабление основных свойств и усиление кислотных. Такое изменение свойств обусловлено увеличением степени окис­ления и уменьшением ионных радиусов хрома. В этом же ряду последовательно усиливаются окислительные свойства. Соедине­ния Cr (II) - сильные восстановители, легко окисляются, превра­щаясь в соединения хрома (III). Соединения хрома(VI) - сильные окислители, легко восстанавливаются в соединения хрома (III). Соединения с промежуточной степенью окисления, т.е. соедине­ния хрома (III), могут при взаимодействии с сильными восстано­вителями проявлять окислительные свойства, переходя в соеди­нения хрома (II), а при взаимодействии с сильными окислителями проявлять восстановительные свойства, превращаясь в соедине­ния хрома (VI).

Оксид хрома(II ) и гидроксид хрома(II) имеют основной характер

Cr(OH)+2HCl→CrCl+2HO

Соединение хрома(II)-сильные восстановители; переходят в соединение хрома(III) под действием кислорода воздуха.

2CrCl+ 2HCl → 2CrCl+ H

4Cr(OH)+O+ 2HO→4Cr(OH)

Оксид хрома(III ) CrO- зеленый, нерастворимый в воде порошок. Может быть получен при прокаливании гидроксида хрома(III) или дихроматов калия и аммония:

2Cr(OH)-→CrO+ 3HO

4KCrO-→ 2CrO + 4KCrO + 3O

(NH)CrO-→ CrO+ N+ HO

С концентрированными растворами кислот и щелочей взаимодействует с трудом:

Сr 2 О 3 + 6 КОН + 3Н 2 О = 2К 3 [Сr(ОН) 6 ]

Сr 2 О 3 + 6НСl = 2СrСl 3 + 3Н 2 О

Гидроксид хрома (III) Сr(ОН) 3 получают при действии щелочей на на растворы солей хрома (III):

СrСl 3 +3КОН = Сr(ОН) 3 ↓ + 3КСl

Гидроксид хрома (III) представляет собой осадок серо – зеленого цвета, при получении которого, щелочь надо брать в недостатке. Полученный таким образом гидроксид хрома (III), в отличие от соответствующего оксида легко взаимодействует с кислотами и щелочами, т.е. проявляет амфотерные свойства:

Сr(ОН) 3 + 3НNО 3 = Сr(NО 3) 3 + 3Н 2 О

Сr(ОН) 3 + 3КОН = К 3 [Сr(ОН)6](гексагидроксохромит К)

При сплавлении Сr(ОН) 3 со щелочами получаются метахромиты и ортохромиты:

Cr(OH) 3 + KOH = KCrO 2 (метахромит К) + 2H 2 O

Cr(OH) 3 + KOH = K 3 CrO 3 (ортохромит К) + 3H 2 O

Соединения хрома(VI ).

Оксид хрома (VI ) - СrО 3 – темно – красное кристаллическое вещество, хорошо растворимо в воде – типичный кислотный оксид. Этому оксиду соответствует две кислоты:

    СrО 3 + Н 2 О = Н 2 СrО 4 (хромовая кислота – образуется при избытке воды)

    СrО 3 + Н 2 О =Н 2 Сr 2 О 7 (дихромовая кислота – образуется при большой концентрации оксида хрома (3)).

Оксид хрома (6) – очень сильный окислитель, поэтому энергично взаимодействует с органическими веществами:

    С 2 Н 5 ОН + 4СrО 3 = 2СО 2 + 2Сr 2 О 3 + 3Н 2 О

Окисляет также иод, серу, фосфор, уголь:

    3S + 4CrO 3 = 3SO 2 + 2Cr 2 O 3

При нагревании до 250 0 С оксид хрома (6) разлагается:

    4CrO 3 = 2Cr 2 O 3 + 3O 2

Оксид хрома (6) можно получить при действии концентрированной серной кислоты на твердые хроматы и дихроматы:

    К 2 Сr 2 О 7 + Н 2 SО 4 = К 2 SО 4 + 2СrО 3 + Н 2 О

Хромовая и дихромовая кислоты.

Хромовая и дихромовая кислоты существуют только в водных растворах, образуют устойчивые соли, соответственно хроматы и дихроматы. Хроматы и их растворы имеют желтую окраску, дихроматы – оранжевую.

Хромат - ионы СrО 4 2- и дихромат – ионы Сr2О 7 2- легко переходят друг в друга при изменении среды растворов

В кислой среде раствора хроматы переходят в дихроматы:

    2К 2 СrО 4 + Н 2 SО 4 = К 2 Сr 2 О 7 + К 2 SО 4 + Н 2 О

В щелочной среде дихроматы переходят в хроматы:

    К 2 Сr 2 О 7 + 2КОН = 2К 2 СrО 4 + Н 2 О

При разбавлении дихромовая кислота переходит в хромовую кислоту:

    H 2 Cr 2 O 7 + H 2 O = 2H 2 CrO 4

Зависимость свойств соединений хрома от степени окисления.

Степень окисления

Характер оксида

основной

амфотерный

кислотный

Гидроксид

Сr(ОН) 3 – Н 3 СrО 3

Характер гидроксида

основной

амфотерный

кислотный

ослабление основных свойств и усиление кислотных→

Окислительно – восстановительные свойства соединений хрома.

Реакции в кислотной среде.

В кислотной среде соединения Сr +6 переходят в соединения Сr +3 под действием восстановителей: H 2 S, SO 2 , FeSO 4

    К 2 Сr 2 О 7 +3Н 2 S +4Н 2 SО 4 = 3S + Сr 2 (SО 4) 3 + K 2 SO 4 + 7Н 2 О

    S -2 – 2e → S 0

    2Cr +6 + 6e → 2Cr +3

Реакции в щелочной среде.

В щелочной среде соединения хрома Сr +3 переходят в соединения Сr +6 под действием окислителей: J2, Br2, Cl2, Ag2O, KClO3, H2O2, KMnO4:

    2KCrO 2 +3 Br2 +8NaOH =2Na 2 CrO 4 + 2KBr +4NaBr + 4H 2 O

    Cr +3 - 3e → Cr +6

mob_info