Энергия связи с н. Основные типы химической связи. Характеристики химической связи. Энергия связи. Длина связи. Длина химической связи

При образовании химической связи происходит перераспределение в пространстве электронных плотностей, первоначально принадлежавших разным атомам. Поскольку наименее прочно связаны с ядром электроны внешнего уровня, то этим электронам принадлежит главная роль в образовании химической связи. Количество химических связей, образованных данным атомом в соединении, называют валентностью. Электроны, принимающие участие в образовании химической связи, называются валентными: у s- и р элементов -- это внешние электроны, у d- элементов -- внешние (последние) s-электроны и предпоследние d-электроны. С энергетической точки зрения наиболее устойчивым является атом, на внешнем уровне которого содержится максимальное число электронов (2 и 8 электронов). Такой уровень называют завершенным. Завершенные уровни отличаются большой прочностью и характерны для атомов благородных газов, поэтому при обычных условиях они находятся в состоянии химически инертного одноатомного газа.

У атомов других элементов внешние энергетические уровни незавершенные. В процессе химической реакции осуществляется завершение внешних уровней, что достигается либо присоединением, либо отдачей электронов, а также образованием общих электронных пар. Эти способы приводят к образованию двух основных типов связи: ковалентной и ионной. Таким образом, при образовании молекулы каждый атом стремится приобрести устойчивую внешнюю электронную оболочку: либо двухэлектронную (дублет), либо восьми-электронную (октет). Эта закономерность положена в основу теории образования химической связи. Образование химической связи за счет завершения внешних уровней в образующих связь атомах сопровождается выделением большого количества энергии, то есть возникновение химической связи всегда протекает экзотермически, поскольку оно приводит к появлению новых частиц (молекул), обладающих при обычных условиях большей устойчивостью, а следовательно, они меньшей энергией, чем у исходных. Одним из существенных показателей, определяющих какая связь образуется между атомами, является электроотрицательность, то есть способность атомом притягивать к себе электроны от других атомов. Электроотрицательность атомов элементов изменяется постепенно: в периодах периодической системы слева направо ее значение возрастает а в группах сверху вниз -- уменьшается.

Химическая связь, осуществляемая за счет образования общих (связывающих) электронных пар, называется ковалентной.1) Разберем пример образования химической связи между атомами с одинаковой электроотрицательностью, например, молекулы водорода Н2 Образование химической связи в молекуле водорода можно представить в виде двух точек: Н- + -Н -> Н: Н или черточкой, которая символизирует пару электронов: H-H Ковалентная связь, образованная атомами с одинаковой электроотрицательностью называется неполярной. Такую связь образуют двухатомные молекулы, состоящие из атомов одного химического элемента: H 2, Cl 2 и др.2) Образование ковалентной связи между атомами, электроотрицательность которых различается незначительно. Ковалентная связь, образованная атомами с различной электроотрицательностью, называется полярной. При ковалентной полярной связи электронная плотность от общей пары электронов смещена к атому с большей электроотрицательностью. Примерами могут служить молекулы Н2О, NH3, H2S, CH3Cl. Ковалентная (полярная и неполярная) связь в наших примерах образовалась за счет неспаренных электронов связывающихся атомов. Такой механизм образования ковалентной связи называется обменным. Другой механизм образования ковалентной связи -- донорно-акцепторный. В этом случае связь возникает за счет двух спаренных электронов одного атома (донора) и свободной орбитали другого атома (акцептор). Хорошо известный пример -- образование иона аммония: Н++:NH 3 -> [ Н: NH3 | + <=====> NH4+ акцептор донор ион аммония электронов. При образовании иона аммония электронная пара азота становится общей для атомов N и Н, то есть возникает четвертая связь, которая не отличается от остальных трех. Их изображают одинаково:

Ионная связь возникает между атомами, электроотрицательность которых резко различается Рассмотрим способ образования на примере хлорида натрия NaCl. Электронную конфигурацию атомов натрия и хлора можно представить: 11 Na ls2 2s2 2p 6 3s1; 17 Cl ls2 2p 6 Зs2 3р5 Как это атомы с незавершенными энергетическими уровнями. Очевидно, для их завершения атому натрия легче отдать один электрон, чем присоединить семь, а атому хлора легче присоединить один электрон, чем отдать семь. При химическом взаимодействии атом натрия полностью отдает один электрон, а атом хлора принимает его. Схематично это можно записать так: Na. -- l е --> Na+ ион натрия, устойчивая восьмиэлектронная 1s2 2s2 2p6 оболочка за счет второго энергетического уровня. :Cl + 1е -->.Cl - ион хлора, устойчивая восьмиэлектронная оболочка. Между ионами Na+ и Cl- возникают силы электростатического притяжения, в результате чего образуется соединение.

Химическая связь, осуществляемая за счет электростатического притяжения между ионами, называется ионной связью. Соединения, образованные путем притяжения ионов называются ионными. Ионные соединения состоят из отдельных молекул только в парообразном состоянии. В твердом (кристаллическом) состоянии ионные соединения состоят из закономерно расположенных положительных и отрицательных ионов. Молекулы в этом случае отсутствуют. Ионные соединения образуют резко различные по величине электроотрицательности элементы главных подгрупп I и II групп и главных подгрупп VI и VII групп. Ионных соединений сравнительно немного. Например неорганические соли: NH4Cl (ион аммония NH4 + и ион хлора Cl-), а также солеобразные органические соединения: алкоголяты соли карбоновых кислот, соли аминов Неполярная ковалентная связь и ионная связь -- два предельных случая распределения электронной плотности. Неполярной связи отвечает равномерное распределение связующего двух электронного облака между одинаковыми атомами. Наоборот, при ионной связи связующие электронное облако практически полностью принадлежит одному из атомов. В большинстве же соединений химические связи оказывают промежуточными между этими видами связи, то есть в них осуществляется полярная ковалентная связь.

Металлическая связь существует в металлах в твердом в жидком состоянии. В соответствии с положением в периодической системе атомы металлов имеют небольшое число валентных электронов (1-3 электрона) и низкую энергию ионизации (отрыва электрона). Поэтому валентные электроны слабо удерживаются в атоме, легко отрываются и имеют возможность перемещаться по всему кристаллу. В узлах кристаллической решетки металлов находятся свободные атомы, положительно заряженные коны, а часть валентных электронов, свободно перемещаясь в объеме кристаллической решетки, образует «электронный газ», обеспечивающий связь между атомами металла. Связь, которую осуществляют относительно свободные электроны между ионами металлов в кристаллической решетке, называется металлической связью. Металлическая связь возникает за счет обобществления атомами валентных электронов. Однако между этими видами связи есть существенное различие. Электроны, осуществляющие ковалентную связь, в основном пребывают в непосредственной близости от двух соединенных атомов. В случае металлической связи электроны, осуществляющие связь, перемещаются по всему куску металла. Этим определяются общие признаки металлов: металлический блеск, хорошая проводимость теплоты и электричества, ковкость, пластичность и т. д. Общим химическим свойством металлов является их относительно высокая восстановительная способность.

Водородные связи могут образовываться между атомом водорода, связанным с атомом электроотрицательного элемента, и электроотрицательным элементом, имеющим свободную пару электронов(О,F,N). Водородная связь обусловлена электростатическим притяжением, которому способствуют малые размеры атома водорода, и отчасти, донорно-акцепторным взаимодействием. Водородная связь может быть межмолекулярной и внутримолекулярной. Связи 0-Н имеют выраженный полярный характер: Водородная связь гораздо более слабая, чем ионная или ковалентная, но более сильная, чем межмолекулярное взаимодействие. Водородные связи обуславливают некоторые физические свойства веществ (например, высокие температуры кипения). Особенно распространены водородные связи в молекулах белков, нуклеиновых кислот и других биологически важных соединений, обеспечивая им определенную пространственную структуру (организацию).

Энергия связи(Eсв). Кол-во энергии, выделяющейся при образовании химической связи, называется энергией химической связи[кДж/моль]. Для многоатомных соединений принимают среднее её значение. Чем больше Eсв тем устойчивее молекула.

Длина связи(lсв). Расстояние между ядрами в соединении. Чем больше длина связи -- тем меньше энергия связи.

Метод валентных связей.

  • А) химическая связь между двумя атомами возникает как результат перекрытия АО с образованием электронных пар.
  • Б) атомы вступающие в химическую связь, обмениваются между собой электронами, которые образуют связывающие пары. Энергия обмена электронами между атомами(энергия притяжения атомов) вносит основной вклад в энергию химической связи. Дополнительный вклад в энергию связи дают кулоновские силы взаимодействия частиц.
  • В) в соответствии с принципом Паули химическая связь образуется лишь при взаимодействии электронов с разными спинами.
  • Г)характеристики химической связи(энергия, длина, полярность) определяются типом перекрывающихся АО.

Метод валентных связей. Ковалентная связь направлена в сторону максимального перекрывания АО реагирующих атомов.

Валентность. Способность атома присоединять или замещать определённое число других атомов с образованием химических связей.

При переходе в возбуждённое состояние, один из спаренных электронов переходит в свободную орбиталь той же оболочки.

Донорно-акцепторный механизм: образуется общая электронная пара за счёт неподелённой пары электронов одного атома и вакантной орбитали другого атома.

Метод молекулярных орбиталей. Электроны в молекуле распределены по МО, которые подобно АО характеризуются определённой энергией и формой. МО охватывают всю молекулу. Молекула рассматривается как единая система.

  • 1. Число МО равно общему числу АО, из которых комбинируется МО.
  • 2. Энергия одних МО оказывается выше, других -- ниже энергии исходных АО. Средняя энергия МО, полученная из набора АО, приблизительно совпадает с средней энергией этих АО.
  • 3. Электроны заполняют МО, как и АО, в порядке возрастания энергии, при это соблюдается принцип запрета Паули и правило Гунда.
  • 4. Наиболее эффективно комбинируются АО с теми АО которые характеризуются сопоставимыми энергиями и соответствующей симметрией.
  • 5. Как и в методе ВС, прочность связи в методе МО пропорциональна степени перекрывания атомных орбиталей.

Порядок и энергия связи. Порядок связи n=(Nсв-Nр)/2. Nсв -- число e на связывающих молекулярных орбиталях, Nр -- число e на разрыхляющих молекулярных орбиталях.

Если Nсв = Nр, то n=0 и молекула не образуется. С увеличением n в однотипных молекулах растёт энергия связи. В отличии от метода АО, в методе МО допускается, что связь может быть образована одним электроном.

Комплексные соеденения. Сложные соединения у которых имеются ковалентные связи, образованные по донорно акцепторному механизму

Энергия связи – это энергия, которая выделяется при образовании молекулы из одиночных атомов. Энергия связи - это энергия, которая поглощается при удалении двух атомов на бесконечно большое расстояние друг от друга. А энтальпия образования - это теплота, которая выделяется при получении вещества из простых веществ, то есть, если говорить на языке энергий связи, сначала атомы простых веществ разносятся на бесконечно большое расстояние (с поглощением энергии), потом соединяются с образованием нужного вещества (выделяется энергия). Разность - энтальпия образования.

Энергия связи отличается от ΔH обр. Теплота образования – это энергия, которая выделяется или поглощается при образовании молекул из простых веществ. Так:

N 2 + O 2 → 2NO + 677,8 кДж/моль – ∆H обр.

N + O → NO - 89,96 кДж/моль – Е св.

Для двухатомных молекул энергия связей равна энергии диссоциации, взятой с обратным знаком: например в молекуле F 2 энергия связи между атомами F-F равна - 150,6 кДж/моль.

Для многоатомных молекул с одним типом связи, например, для молекул АВ n , средняя энергия связи равна 1/n части полной энергии образования соединения из атомов. Так, энергия образования СН 4 = -1661,1 кДж/моль. Так как в молекуле СН 4 четыре связи, то энергия одной связи С – Н равна 415,3 кДж/моль. Исследование большого числа известных в настоящее время данных по энергиям связи показывает, что энергия связи между конкретной парой атомов часто оказывается величиной постоянной при условии, что остальная часть молекулы изменяется незначительно. Так, в насыщенных углеводородах Е св (C – Н) = 415,3 кДж/моль, Е св (C – С) = 331,8 кДж/моль.

Энергии связей в молекулах, состоящих из одинаковых атомов, уменьшаются по группам сверху вниз По периоду энергии связей растут. В этом же направлении возрастает и сродство к электрону

В прошлом параграфе мы привели пример вычисления теплового эффекта реакции:

С(тв) + 2 H 2 (г) = CH 4 (г) + 76 кДж/моль.

В данном случае 76 кДж - это не просто тепловой эффект данной химической реакции, но еще и теплота образования метана из элементов .

ЭНТАЛЬПИЯ - это тепловой эффект реакции, измеренный (или вычисленный) для случая, когда реакция происходит в открытом сосуде (т.е. при неизменном давлении). Обозначается как ΔH.

Когда объем, занимаемый продуктами реакции, отличается от объема, занимаемого реагентами, химическая система может совершить дополнительную работу PΔV (где P - давление, а ΔV - изменение объема). Поэтому ΔН и ΔЕ связаны между собой соотношением:

ΔН = ΔЕ + PΔV

Итак, если реакция проводится не в "бомбе", то ЭНТАЛЬПИЯ и ТЕПЛОВОЙ ЭФФЕКТ совпадают между собой. Энтальпию называют также "теплосодержанием". Если мы проводим реакцию получения воды в открытом сосуде, то 286 кДж/моль - это "тепло" ΔН, содержащееся в водороде и кислороде для случая, когда мы получаем из них воду. Поскольку исходные вещества (водород и кислород) находились в нашем опыте в стандартных условиях (25 о С и давлении 1 атм), а продукт реакции (воду) мы тоже привели к стандартным условиям, мы вправе сказать, что 286 кДж/моль - это СТАНДАРТНАЯ ТЕПЛОТА ОБРАЗОВАНИЯ ВОДЫ или, что то же - СТАНДАРТНАЯ ЭНТАЛЬПИЯ ОБРАЗОВАНИЯ ВОДЫ. Если мы будем получать из тех же элементов не воду, а перекись водорода H 2 O 2 , то "теплосодержание" такой химической системы будет иным (187,6 кДж/моль). Во время протекания реакций с образованием 1 моля воды или 1 моля H 2 O 2 освобождается разное количество энергии, чего и следовало ожидать. В дальнейшем стандартную теплоту образования веществ мы чаще будем называть именно стандартной энтальпией образования ΔН . Чтобы подчеркнуть справедливость этой величины только длястандартных условий, в таблицах её обозначают следующим образом: ΔН о 298


Маленький "нолик" рядом с ΔН по традиции символизирует некое стандартное состояние, а цифра 298 напоминает, что значения приведены для веществ при 25 о С (или 298 К). Стандартная энтальпия не обязательно должна быть энтальпией образования вещества из элементов . Можно получить значение стандартной энтальпии ΔН о 298 для любой химической реакции. Но в нашем случае с получением воды из водорода и кислорода мы получили именно стандартную энтальпию образования воды. Записывается это так: H 2 + 0,5 O 2 = H 2 O (ΔН о 298 = -286 кДж/моль)

Откуда взялся знак "минус" перед значением теплового эффекта? Здесь автор со вздохом должен сообщить читателю о еще одной особенности представления теплоты (и энтальпии) в термодинамике. Здесь принято потерянную любой системой энергию представлять со знаком "минус" . Рассмотрим, например, уже знакомую нам систему из молекул метана и кислорода. В результате экзотермической реакции между ними происходит выделение теплоты: СH 4 (г) + 2 O 2 (г) = СO 2 (г) + 2 H 2 О(ж) + 890 кДж

Можно записать эту реакцию и другим уравнением, где выделившаяся ("потерянная") теплота имеет знак "минус": СH 4 (г) + 2 O 2 (г) – 890 кДж = СO 2 (г) + 2 H 2 О(ж)

По традиции энтальпию этой и других экзотермических реакций в термодинамике принято записывать со знаком "минус" : ΔН о 298 = –890 кДж/моль (энергия выделяется).

Наоборот, если в результате эндотермической реакции система поглотила энергию, то энтальпия такой эндотермической реакции записывается со знаком "плюс" . Например, для уже знакомой нам реакции получения CO и водорода из угля и воды (при нагревании): C(тв) + H 2 О(г) + 131,3 кДж = CO(г) + H 2 (г)

(ΔН о 298 = +131,3 кДж/моль)

К этой особенности термодинамического языка следует просто привыкнуть, хотя на первых порах путаница со знаками может изрядно досаждать при решении задач.

Давайте попробуем решить одну и ту же задачу сначала в термодинамической шкале (где выделяемая реакцией теплота имеет знак "минус"), а потом в термохимической шкале (которой мы пользовались в предыдущем параграфе и где выделяемая реакцией энергия имеет знак "плюс").

Итак, приведем пример расчета теплового эффекта реакции: Fe 2 O 3 (тв) + 3 C(графит) = 2 Fe(тв) + 3 CO(г)

Эта реакция происходит в доменной печи при очень высокой температуре (около 1500 о С). В справочниках, где используется термодинамическая шкала, можно найти стандартные теплоты образования Fe 2 O 3 (ΔН о 298 = –822,1 кДж/моль) и СО (ΔН о 298 = – 110,5 кДж/моль). Два других вещества из этого уравнения - углерод и железо - являются элементами, то есть их теплота образования по определению равна нулю. Поэтому стандартная теплота рассматриваемой реакции равна:

ΔН о 298 = 3× (-110,5) - (-822,1) = -331,5 + 822,1 = +490,6 кДж

Итак, реакция восстановления оксида железа (III) углерода является эндотермической (ΔН о 298 положительна!), причем на восстановление одного моля Fe 2 O 3 тремя молями углерода надо было бы затратить 490,6 кДж, если исходные вещества до начала реакции и продукты после окончания реакции находятся в стандартных условиях (то есть при комнатной температуре и атмосферном давлении). Не имеет значения, что исходные вещества пришлось сильно нагреть для того, чтобы реакция произошла. ВеличинаΔН о 298 = +490,6 кДж отражает "чистый" тепловой эффект эндотермической реакции, в которой реагенты сначала разогревались внешним источником тепла от 25 до 1500 о С, а в конце реакции продукты опять остывали до комнатной температуры, отдав все тепло в окружающую среду. При этом отданного тепла будет меньше, чем пришлось потратить на разогрев, потому что часть тепла поглотилась в реакции.

Проведем тот же расчет, используя термохимическую шкалу. Допустим, известны теплоты сгорания углерода и железа в кислороде (при неизменном давлении):

1) C + 1/2 O 2 = CO + 110,5 кДж

2) 2 Fe + 3/2 O 2 = Fe 2 O 3 + 822,1 кДж

Чтобы получить тепловой эффект интересующей нас реакции, умножим первое уравнение на 3, а второе перепишем в обратном порядке:

1) 3 C + 3/2 O 2 = 3 CO + 331,5 кДж

2) Fe 2 O 3 + 822,1 кДж = 2 Fe + 3/2 O 2

Теперь почленно сложим оба уравнения:3 C + 3/2 O 2 + Fe 2 O 3 + 822,1 кДж = 3 CO + 331,5 кДж + 2 Fe + 3/2 O 2

После сокращения в обоих частях уравнения кислорода (3/2 O 2) и переноса 822,1 кДж в правую часть получим: 3 C + Fe 2 O 3 = 3 CO + 2 Fe – 490,6 кДж

кинетика химических реакций - раздел физической химии, изучающий закономерности протекания химических реакций во времени, зависимости этих закономерностей от внешних условий, а также механизмы химических превращений Химическая кинетика – наука о скоростях и закономерно-стях протекания химических процессов во времени.

Химическая кинетика изучает механизм протекания процесса, т.е. те промежуточные стадии, состоящие из элементарных актов, через которые система переходит из начального состояния в конечное.

Химическая кинетика изучает скорости этих стадий и факторы, влияющие на их скорость.

Уравнение химической реакции показывает начальное состояние системы (исходные вещества) и её конечное состояние (продукты реакции), но не отражает механизма процесса.

Билет №10.
1.Характеристики химической связи – энергия, длина, кратность, полярность.
Причина образования химической связи.

Химическая связь – совокупность взаимодействий атомов, приводящая к образованию устойчивых систем (молекул, комплексов, кристаллов.). Она возникает, если в результате перекрывания е облаков атомов происходит уменьшение полной энергии системы. Мерой прочности служит энергия связи, которая определяется работой, нужной для разрушения данной связи.
Виды хим. связи: ковалентная (полярная, неполярная, обменная и донорно-акцепторная), ионная, водородная и металлическая.
Длина связи – расстояние между центрами атомов в молекуле. Энергия и длина связей зависят от характера распределения Эл. плотности между атомами. На распределение е плотности влияет пространственная направленность хим. связи. Если 2-х атомные молекулы всегда линейны, то формы многоатомных молекул м.б. различны.
Угол между воображаемыми линиями, которые можно провести через центры связанных атомов называется валентным. Распределение е плотности так же зависит от размеров ат. и их эо. В гомоатомных Эл. плотность распределена равномерно. В гетероатомных смещена в том направлении, которое способствует уменьшению энергии системы.
Энергия связи – это энергия, которая выделяется при образовании молекулы из одиночных атомов. Энергия связи отличается от ΔHобр. Теплота образования – это энергия, которая выделяется или поглощается при образовании молекул из простых веществ. Так:

N2 + O2 → 2NO + 677,8 кДж/моль – ∆Hобр.

N + O → NO - 89,96 кДж/моль – Е св.

Кратность связи определяется количеством электронных пар, участвующих в связи между атомами. Химическая связь обусловлена перекрыванием электронных облаков. Если это перекрывание происходит вдоль линии, соединяющей ядра атомов, то такая связь называется σ-связью. Она может быть образована за счет s – s электронов, р – р электронов, s – р электронов. Химическая связь, осуществляемая одной электронной парой, называется одинарной.
Если связь образуется более чем одной парой электронов, то она называется кратной.
Кратная связь образуется в тех случаях, когда имеется слишком мало электронов и связывающихся атомов, чтобы каждая пригодная для образования связи валентная орбиталь центрального атома могла перекрыться с какой-либо орбиталью окружающего атома.
Поскольку р-орбитали строго ориентированы в пространстве, то они могут перекрываться только в том случае, если перпендикулярные межъядерной оси р-орбитали каждого атома будут параллельны друг другу. Это означает, что в молекулах с кратной связью отсутствует вращение вокруг связи.

Если двухатомная молекула состоит из атомов одного элемента, как, например, молекулы Н2, N2, Cl2 и т. п., то каждое электронное облако, образованное общей парой электронов и осуществляющее ковалентную связь, распределяется в пространстве симметрично относительно ядер обоих атомов. В подобном случае ковалентная связь называется неполярной или гомеополярной. Если же двухатомная молекула состоит из атомов различных элементов, то общее электронное облако смещено в сторону одного из атомов, так что возникает асимметрия в распределении заряда. В таких случаях ковалентная связь называется полярной или гетерополярной.

Для оценки способности атома данного элемента оттягивать к себе общую электронную пару пользуются величиной относительной электроотрицательности. Чем больше электроотрицательность атома, тем сильнее притягивает он общую электронную пару. Иначе говоря, при образовании ковалентной связи между двумя атомами разных элементов общее электронное облако смещается к более электроотрицательному атому, и в тем большей степени, чем больше различаются электроотрицательности взаимодействующих атомов. Значения электроотрицательности атомов некоторых элементов по отношению к электроотрицательности фтора, которая принята равной 4.
Электроотрицательность закономерно изменяется в зависимости от положения элемента в периодической системе. В начале каждого периода находятся элементы с наиболее низкой электроотрицательностью - типичные металлы, в конце периода (перед благородными газами) - элементы с наивысшей электроотрицательностью, т. е. типичные неметаллы.

У элементов одной и той же подгруппы электроотрицательность с ростом заряда ядра проявляет тенденцию к уменьшению. Таким образом, чем более типичным металлом является элемент, тем ниже его электроотрицательность; чем более типичным неметаллом является элемент, тем выше его электроотрицательность.

Причина образования химической связи. Атомы большинства химических элементов в индивидуальном виде не существует, так как взаимодействуют между собой, образуя сложные частицы (молекулы, ионы и радикалы). Между атомами действуют электоростатические силы, т.е. сила взаимодействия электрических зарядов, носителями которых являются электроны и ядра атомов. В образовании химической связи между атомами главную роль играют валентные электроны.
Причины образования химической связи между атомами можно искать в электростатической природе самого атома. Благодаря наличию в атомах пространственно разделенных областей, обладающих электрическим зарядом, между различными атомами могут возникать электростатические взаимодействия, способные удерживать эти атомы вместе.
При образовании химической связи происходит перераспределение в пространстве электронных плотностей, исходно относившихся к различным атомам. Поскольку наименее прочно связаны с ядром электроны внешнего уровня, то в образовании химической связи именно этим электронам принадлежит главная роль. Количество химических связей, образованных данным атомом в соединении, называют валентностью. По этой причине электроны внешнего уровня называют валентными электронами.

2.Характеристики химической связи - энергия, длина, кратность, полярность.

Энергия связи – это энергия, которая выделяется при образовании молекулы из одиночных атомов. Энергия связи отличается от ΔHобр. Теплота образования – это энергия, которая выделяется или поглощается при образовании молекул из простых веществ.(Энергии связей в молекулах, состоящих из одинаковых атомов, уменьшаются по группам сверху вниз)

Для двухатомных молекул энергия связей равна энергии диссоциации, взятой с обратным знаком: например в молекуле F2 энергия связи между атомами F-F равна - 150,6 кДж/моль. Для многоатомных молекул с одним типом связи, например, для молекул АВn, средняя энергия связи равна 1/n части полной энергии образования соединения из атомов. Так, энергия образования СН4 = -1661,1 кДж/моль.

Если в молекуле соединяются более двух различных атомов, то средняя энергия связи не совпадает с величиной энергии диссоциации молекулы. Если в молекуле представлены различные типы связи, то каждому из них можно приближенно приписать определенное значение Е. Это позволяет оценить энергию образования молекулы из атомов. Например, энергию образования молекулы пентана из атомов углерода и водорода можно вычислить по уравнению:

Е = 4EC-C + 12EC-H.

Длина связи – это расстояние между ядрами взаимодействующих атомов. Ориентировочно оценить длину связи можно, исходя из атомных или ионных радиусов, или из результатов определения размеров молекул с помощью числа Авогадро. Так, объем, приходящийся на одну молекулу воды: , о

Чем выше порядок связи между атомами, тем она короче.

Кратность: Кратность связи определяется количеством электронных пар, участвующих в связи между атомами. Химическая связь обусловлена перекрыванием электронных облаков. Если это перекрывание происходит вдоль линии, соединяющей ядра атомов, то такая связь называется σ-связью. Она может быть образована за счет s – s электронов, р – р электронов, s – р электронов. Химическая связь, осуществляемая одной электронной парой, называется одинарной.

Если связь образуется более чем одной парой электронов, то она называется кратной.

Кратная связь образуется в тех случаях, когда имеется слишком мало электронов и связывающихся атомов, чтобы каждая пригодная для образования связи валентная орбиталь центрального атома могла перекрыться с какой-либо орбиталью окружающего атома.

Поскольку р-орбитали строго ориентированы в пространстве, то они могут перекрываться только в том случае, если перпендикулярные межъядерной оси р-орбитали каждого атома будут параллельны друг другу. Это означает, что в молекулах с кратной связью отсутствует вращение вокруг связи.

Полярность: Если двухатомная молекула состоит из атомов одного элемента, как, например, молекулы Н2, N2, Cl2 и т. п., то каждое электронное облако, образованное общей парой электронов и осуществляющее ковалентную связь, распределяется в пространстве симметрично относительно ядер обоих атомов. В подобном случае ковалентная связь называется неполярной или гомеополярной. Если же двухатомная молекула состоит из атомов различных элементов, то общее электронное облако смещено в сторону одного из атомов, так что возникает асимметрия в распределении заряда. В таких случаях ковалентная связь называется полярной или гетерополярной.

Для оценки способности атома данного элемента оттягивать к себе общую электронную пару пользуются величиной относительной электроотрицательности. Чем больше электроотрицательность атома, тем сильнее притягивает он общую электронную пару. Иначе говоря, при образовании ковалентной связи между двумя атомами разных элементов общее электронное облако смещается к более электроотрицательному атому, и в тем большей степени, чем больше различаются электроотрицательности взаимодействующих атомов.

Смещение общего электронного облака при образовании полярной ковалентной связи приводит к тому, что средняя плотность отрицательного электрического заряда оказывается выше вблизи более электроотрицательного атома и ниже - вблизи менее электроотрицательного. В результате первый атом приобретает избыточный отрицательный, а второй - избыточный положительный заряд; эти заряды принято называть эффективными зарядами атомов в молекуле.

3.Причина образования химической связи - является стремление атомов металлов и неметаллов путём взаимодействия с другими атомами достичь более устойчивой электронной структуры, подобной структуре инертных газов. Различают три основных вида связи: ковалентную полярную, ковалентную неполярную и ионную.

Ковалентная связь называется неполярной, если общая электронная пара в равной степени принадлежит обоим атомам. Ковалентная неполярная связь возникает между атомами, электроотрицательности которых одинаковы (между атомами одного и того же неметалла),т.е. в простых веществах. Например, в молекулах кислорода, азота, хлора, брома связь ковалентная неполярная.
Ковалентная связь называется полярной, если общая электронная пара смещена к одному из элементов. Ковалентная полярная связь возникает между атомами, электроотрицательности которых отличаются, но не сильно, т.е. в сложных веществах между атомами неметаллов. Например, в молекулах воды, хлороводорода, аммиака, серной кислоты связь ковалентная полярная.
​Ионная связь – это связь между ионами, осуществляется за счёт притяжения разноимённо заряженных ионов. Ионная связь возникает между атомами типичных металлов (главная подгруппа первой и второй группы) и атомами типичных неметаллов (главная подгруппа седьмой группы и кислород).
4. Химическое равновесие. Константа равновесия. Расчёт равновесных концентраций.
Химическое равновесие - состояние химической системы, в котором обратимо протекает одна или несколько химических реакций, причём скорости в каждой паре прямая-обратная реакция равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временем.

А2 + В2 ⇄ 2AB

В состоянии равновесия скорости прямой и обратной реакции становятся равными.

Конста́нта равнове́сия - величина, определяющая для данной химической реакции соотношение между исходных веществ и продуктов в состоянии химического равновесия. Зная константу равновесия реакции, можно рассчитать равновесный состав реагирующей смеси, предельный выход продуктов, определить направление протекания реакции.

Способы выражения константы равновесия:
Для реакции в смеси идеальных газов константа равновесия может быть выражена через равновесные парциальные давления компонентов pi по формуле:

где νi - стехиометрический коэффициент (для исходных веществ принимается отрицательным, для продуктов - положительным). Kp не зависит от общего давления, от исходных количеств веществ или от того, какие участники реакции были взяты в качестве исходных, но зависит от температуры.

Например, для реакции окисления монооксида углерода:
2CO + O2 = 2CO2

Константа равновесия может быть рассчитана по уравнению:

Если реакция протекает в идеальном растворе и концентрация компонентов выражена через молярность ci, константа равновесия принимает вид:

Для реакций в смеси реальных газов или в реальном растворе вместо парциального давления и концентрации используют соответственно фугитивность fi и активность ai:

В некоторых случаях (в зависимости от способа выражения) константа равновесия может являться функцией не только температуры, но и давления. Так, для реакции в смеси идеальных газов парциальное давление компонента может быть выражено по закону Дальтона через суммарное давление и мольную долю компонента (), тогда легко показать, что:

где Δn - изменение числа молей веществ в ходе реакции. Видно, что Kx зависит от давления. Если число молей продуктов реакции равно числу молей исходных веществ (Δn = 0), то Kp = Kx.

Гибридизация атомных орбиталей. Понятие о методе молекулярных орбиталей. Энергетические диаграммы образования молекулярных орбиталей для бинарных гомоядерных молекул. При образовании химической связи изменяются свойства взаимодействующих атомов и прежде всего энергия и заполненность их внешних орбиталей.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


PAGE 13

Лебедев Ю.А. Лекция 0 2

Лекция №0 2

Химическая связь. Характеристики химической связи: энергия, длина, валентный угол. Типы химической связи. Полярность связи. Квантово-механические представления о природе ковалентной связи. Понятие о методе валентных связей. Гибридизация атомных орбиталей. - (c игма) и (пи)-связи. Геометрическая конфигурация молекул. Электрический момент диполя молекулы. Понятие о методе молекулярных орбиталей. Энергетические диаграммы образования молекулярных орбиталей для бинарных гомоядерных молекул. Сигма () и Пи()-молекулярные орбитали. Диа- и парамагнитные молекулы.

НАПОМИНАНИЕ

Уравнение Шредингера. - волновая функция.

Е= f (n , l , m , s ).

Химическая связь. Характеристики химической связи: энергия, длина, валентный угол.

Мы рассмотрели структуру электронных уровней изолированных атомов. Это – весьма редкие в практике объекты. Единственное исключение – это инертный газ аргон с электронной формулой 1 s 2 2 s 2 2 p 6 3 s 2 3 p 6 . И хотя его в атмосфере «только» 0,93% об, каждый из вас за один вдох буквально «заглатывает» около трехсот квинтиллионов штук атомов аргона.

Все остальные вещества и материалы, с которыми мы имеем дело, содержат химически связанные атомы. Взаимодействие свободных атомов друг с другом приводит к образованию молекул, ионов и кристаллов. Это – «классические» химические объекты. Однако в последнее время важную роль приобрели такие объекты, как наноструктуры, поверхностные соединения, бертоллиды и ряд других, практически важных «неклассических» химическх объектов.

Химическая связь обусловлена взаимодействием электронов внешних электронных оболочек атомов. Те орбитали, которые принимают участие в образовании химической связи, называются валентными орбиталями, а находящиеся на нах электроны – валентными электронами.

При образовании химической связи изменяются свойства взаимодействующих атомов и, прежде всего, энергия и заполненность их внешних орбиталей.

При образовании химической связи суммарная энергия электронов на валентных орбиталях меньше, чем их энергия в свободных атомах. Эта разница в энергиях называется энергией химической связи.

Типичная величина энергии химической связи – это сотни кДж/моль.

Важной количественной характеристикой химической связи является ее длина. Длина связи – это расстояние между ядрами химически связанных атомов в стабильном состоянии молекулы.

Типичная длина химической связи – это десятые доли нанометра. 1

Если в образовании молекулы при взаимодействии с данным атомом принимают участие два и более других атомов, то возникает вопрос о её геометрической структуре или химическом строении. Основы теории химического строения молекул положил А.М.Бутлеров 2

Одной из важнейших количественных характеристик строения сложных молекул является валентный угол - угол, образованный двумя направлениями химических связей, исходящими из одного атома.

Типы химической связи. Полярность связи.

По характеру взаимодействия валентных электронов и типу образующихся в ходе взаимодействия орбиталей, химические связи подразделяются на следующие основные типы: ковалентные (полярные и неполярные), ионные, донорно-акцепторные, водородные и межмолекулярные (называемые также ван-дер-ваальсовскими).

Ещё в 1916 году американский химик Г.Н.Льюис 3 высказал идею о том, что химическая связь образуется электронной парой, которая графически изображается валентной чертой:

F + F = F 2 (F-F).

Если электроотрицательности атомов равны, то такая связь называется неполярной. Если различны – полярной.

При образовании полярной ковалентной связи атомы приобретают дополнительный заряд – отрицательный у атома с большей электроотрицательностью и положительный – у атома с меньшей электроотрицательностью:

H+Cl = HCl (
–
)

В случае, когда разница электроотрицательностей взаимодействующих атомов велика, связь считается ионной:

Na + Cl = NaCl (Na + Cl - ).

Если электронная пара, образующая связь, до взаимодействия принадлежала одному из атомов, то такая связь называется донорно-акцепторной. Атом, который предоставил электронную пару называется донором, а принявший ее на свободную орбиталь – акцептором.

Особенно характерно возникновение донорно-акцепторных связей d - металлами, имеющими свободные или частично заполненные d -орбитали с образованием комплексных соединений.

О других видах связи мы поговорим позже.

Квантово-механические представления о природе ковалентной связи.

С современной точки зрения ковалентная связь возникает при квантово-механическом взаимодействии всех электронов всех взаимодействующих атомов. Но, как мы уже говорили на лекции №1, точного решения уравнения Шредингера, описывающего орбитали многих электронов в молекулах, нет. Облегчает задачу квантово-механического описания химической связи то, что при ее образовании роль электронов, находящихся на внутренних и внешних электронных оболочках, существенно различна.

Поэтому удалось создать различные приближенные методы описания химической связи.

Квантовая химия имеет богатый арсенал прикладных программ, позволяющих проводить расчеты с большой точностью для широкого класса молекул и ионов. 4

Однако универсального и достаточно точного квантово-химического алгоритма пока нет.

Для качественного понимания структуры химических соединений используются два метода – метод валентных связей (МВС) и метод молекулярных орбиталей (МО).

Понятие о методе валентных связей. Геометрическая конфигурация молекул. Электрический момент диполя молекулы.

Основными постулатами метода валентных связей являются:

1. Одинарная ковалентная химическая связь осуществляется двумя валентными электронами, которые занимают две орбитали – по одной от каждого из взаимодействующих атомов. При этом у образующих валентную пару электронов спины должны быть противоположными (связь образуют электроны с антипараллельными спинами).

2. Исходные атомные орбитали (АО) сохраняют свой абрис и в составе молекулы.

3.Связь образуется за счет перекрытия орбиталей, приводящего к увеличению электронной плотности между ядрами взаимодействующих атомов в направлении, обеспечивающем максимальное перекрытие.

Рассмотрим образование химической связи по МВС в молекуле водяного пара – H 2 O .

Молекула состоит из одного атома кислорода O и двух атомов водорода H . Электронная формула атома кислорода 1 s 2 2 s 2 2 p 4 . На внешнем энергетическом уровне находятся 6 электронов. Подуровень 2 s является заполненным. На подуровне 2 p на одной из p -орбиталей (положим, p y ,) находится электронная пара, а на двух других (p x и p z ) – по одному неспаренному электрону. Именно они и будут участвовать в образовании химической связи.

Электронная формула атома водорода 1 s 1 . У водорода один s -электрон, абрис орбитали которого сфера, и он будет участвовать в перекрытии с p -орбиталью кислорода, образуя химическую связь. Всего таких sp -перекрытий в молекуле воды будет два. И структура молекулы будет выглядеть так:

Как видно из рисунка, в молекуле воды имеется две ковалентные химические связи, направленные по осям Z и X . Следовательно, валентный угол в этой модели равен 90 о . Эксперимент свидетельствует – этот угол равен 104,5 o .

Совсем неплохое совпадение для простейшей качественной модели без всяких расчетов!

Электроотрицательность кислорода по Малликену – 3,5, а водорода – 2,1. Следовательно, каждая из связей будет полярной, причем заряд - будет на кислороде, а + - на водороде, т.е. образуются три центра электрического заряда. В молекуле образуются два электрических диполя.

Диполь – это два равных по величине заряда, расположенные на конечном расстоянии l друг от друга. Диполь характеризуется дипольным моментом

=

Диполь является вектором, направленным от отрицательного полюса к положительному. В молекуле воды образуются два дипольных момента связей, которые при сложении дают общий дипольный момент молекулы. Схема дипольных моментов молекулы воды по модели МВС имеет вид:

Важно подчеркнуть, что дипольные моменты связей складываются векторно и суммарный дипольный момент зависит от геометрии молекулы. Как видим, в данном случае, из-за того, что связи направлены под прямым углом друг к другу, молекула в целом оказывается полярной. И эксперимент подтверждает это – дипольный момент молекулы воды равен 1,84 Дебая. (1 Дебай равен 0,33*10 -29 Кл*м)

Геометрическая структура связей в молекулах может быть весьма разнообразной. Связи могут располагаться как на плоскости, так и в пространстве, образуя молекулы в виде объемных тел различной конфигурации (тригональные, тетрагональные, гексагональные пирамиды, бипирамиды, кольца, составленные из пирамид и т.д.)

Подробнее о взаимосвязи структуры химических связей и геометрией молекул нужно прочитать в учебнике на стр. 119 –128).

- (c игма) и (пи)-связи.

Вернемся к перекрытию орбиталей при образовании связей. В нашем примере область максимального перекрытия s и p -орбиталей лежит на линии, соединяющей центры атомов. Такой вид перекрытия получил название -связи.

Рассмотрим другой случай – молекулу кислорода O 2 . Как мы уже видели, атом кислорода имеет две p -орбитали, на которых находятся электроны, способные образовать химическую связь. Хорошо известная структурная формула кислорода O = O . В молекуле кислорода – двойная связь. Одна из них – это только что рассмотренная -связь. А вторая? Оказывается, что вторая связь образуется за счет другого типа перекрытия орбиталей, которое называется -связью.

Понятие о и связях выдвинул Ф.Хунд.

При образовании -связи орбитали перекрываются таким образом, что образуются две области перекрытия, причем располагаются они симметрично относительно плоскости, на которой лежат ядра взаимодействующих атомов.

Геометрически это выглядит так:

Обратите внимание на то, что -связь образована меньшими по объему частями p -орбиталей, в которых плотность «электронного облака» больше, а потому эта связь прочнее -связи. Действительно, эксперимент показывает, что в соединениях углерода этане С 2 H 6 (CH 3 - CH 3 – одна -связь), этилене C 2 H 4 (CH 2 = CH 2 - одна -связь и одна -связь) и ацетилене С 2 H 2 (C НС H - одна -связь и две -связи) энергия их разрыва соответственно равна 247, 419 и 515 кДж/моль.

Теперь мы можем дополнить список постулатов МВС:

4. Если в молекуле образуются кратные (двойные и тройные) связи, то одна из них будет -связью, а другие - -связями).

Отметим, что в соединениях d - и f -металлов возможно образование ещё одного типа связей - -связей, когда перекрытие происходит в четырех пространственных областях и плоскость симметрии перпендикулярна линии, соединяющей ядра атомов.

Гибридизация атомных орбиталей.

При образовании химических связей может происходить важное явление, которое называется гибридизацией орбиталей.

Рассмотрим атом бериллия Be . Его электронная формула – 1 s 2 2 s 2 . Судя по тому, что все электроны бериллия являются спаренными, такой атом должен вести себя химически подобно инертным газам – не вступать в химические взаимодействия.

Однако, посмотрим внимательно на электронографическую диаграмму атома бериллия:

Из диаграммы видно, что атом бериллия имеет кроме заполненной 2 s -орбитали ещё три свободных 2 p -орбитали! Правда, энергия этих орбиталей больше, чем энергия 2 s -орбитали на величину E . Но эта энергия невелика и меньше той, которая высвобождается при образовании химической связи. Поэтому атом стремится перестроить свои орбитали в ходе взаимодействия для достижения энергетически выгодного конечного состояния. Для такой перестройки используется кинетическая энергия взаимодействующих с данным атомом частиц. Подробнее об этом источнике энергии мы будем говорить при обсуждении вопросов химической кинетики. 5

Такая перестройка получила название гибридизации орбиталей, поскольку в ходе этого процесса из «двух сортов» орбиталей возникает новый.

На языке волновых функций это описывается уравнением, связывающим гибридную волновую функцию получившихся орбиталей с исходными волновыми функциями.

Количество образовавшихся гибридных орбиталей равно количеству орбиталей, принявших участие в процессе гибридизации.

Графически этот процесс может быть изображен следующей диаграммой:

Отметим, что энергия, необходимая для гибридизации E гибр меньше, чем разница энергий гибридизирующихся орбиталей E .

В обозначении гибридных орбиталей сохраняются обозначения исходных орбиталей. Так, в данном случае (атом Be ), гибридизируются одна s и одна p -орбиталь, и обе гибридные орбитали обозначаются как sp -орбитали. Необходимость гибридизации только двух орбиталей связана с тем, что у атома бериллия на внешнем энергетическом уровне только два электрона.

В других случаях, когда в гибридизации участвуют несколько одинаковых орбиталей, их количества отмечаются показателем степени. Например, при гибридизации одной s и двух p -орбиталей получаются три sp 2 -орбитали, а при гибридизации одной s и трех p -орбиталей – четыре sp 3 орбитали.

В рассматриваемом случае в соответствии с правилом Хунда атом бериллия получает два неспаренных электрона и способность образовать две ковалентные химические связи.

Гибридные орбитали, образованные s , p и даже d -орбиталями мало отличаются по форме и выглядят так («несимметричная гантель»):

Отметим, что количество гибридных орбиталей равно количеству орбиталей, участвующих в их создании вне зависимости от количества и типа гибридизирующихся орбиталей.

Расположение гибридных орбиталей в пространстве определяется их количеством.

Конкретно у атома бериллия две гибридные sp -орбитали расположены вдоль одной прямой (под углом 180 o ), что соответствует стремлению занимающих их одноименно заряженных электронов максимально удалиться друг от друга:

Подробнее о методе валентных связей и гибридизации можно прочесть здесь:

http://center.fio.ru/method/resources/Alikberovalyu/2004/stroenie/gl_10.html#104

Часто в молекулах имеются орбитали, занятые электронной парой («неподеленная электронная пара»). Такие орбитали не принимают участия в образовании химических связей, но влияют на геометрическую структуру молекулы.

Модификация МВС, учитывающая влияние таких орбиталей, называется теорией отталкивания электронных пар валентных орбиталей (ОЭПВО) и познакомиться с ней можно по учебнику на стр.124 – 128.

Понятие о методе молекулярных орбиталей.

Мы рассмотрели явление гибридизации АО в рамках МВС. Оказалось, что идея гибридизации является плодотворной и при более глубоком моделировании химических связей. Она является основой второго метода их описания, который рассматривается в нашем курсе – метода молекулярных орбиталей (МО).

Главным постулатом этого метода является утверждение о том, что АО взаимодействующих друг с другом атомов утрачивают свою индивидуальность и образуют обобщенные МО, т.е. что электроны в молекулах «принадлежат» не какому-то конкретному атому, а квантово-механически движутся по всей молекулярной структуре.

Существует несколько разновидностей метода МО, учитывающих б о льшее или меньшее число факторов и, соответственно, более или менее сложных математически. Наиболее простым является приближение, которое учитывает только линейные эффекты взаимодействия электронов. Это приближение называется методом МО ЛКАО (линейной комбинации атомных орбиталей).

На языке квантовой механики это утверждение для простейшего случая взаимодействия двух орбиталей записывается так:

Где - волновая функция МО,
- волновая функция АО первого атома,
- волновая функция АО второго атома, a и b – численные коэффициенты, характеризующие вклад данной АО в общую структуру МО.

Поскольку в правой части записан линейный многочлен, эта модификация метода МО и получила название ЛКАО.

Из уравнения видно, что при взаимодействии двух АО получаются две МО . Одна из них называется связывающей МО, а другая – разрыхляющей МО.

Почему они получили такое название, ясно из рисунка, на котором изображена энергетическая диаграмма орбиталей в молекуле:

Как видно из рисунка, связывающая МО имеет энергию меньшую, чем энергии исходных АО, а разрыхляющая – большую. (Соответственно,). Естественно, в соответствии с принципом минимальной энергии электроны в молекуле будут при образовании связи в первую очередь занимать связывающую орбиталь.

В общем случае, при взаимодействии N AO получается N MO .

Сигма () и пи()-молекулярные орбитали.

В результате количественных расчетов по методу МО ЛКАО выяснилось, что введенные в методе МВС понятия о и видах симметрии орбиталей сохраняются и в методе МО ЛКАО.

Вот как выглядят абрисы -связывающих (обозначаются как или) и -разрыхляющих (обозначаются как или) орбиталей в методе МО ЛКАО:

А вот как выглядят абрисы - связывающих () и -разрыхляющих (* ) орбиталей методе МО ЛКАО:

Энергетические диаграммы образования молекулярных орбиталей для бинарных гомоядерных молекул.

Расчет энергии молекулярных орбиталей для сложных молекул, в состав которых входят ядра различных элементов (гетероядерных молекул) является сложной вычислительной задачей даже для современных компьютеров. Поэтому каждый расчет индивидуальных молекул является отдельной творческой работой.

Тем не менее оказалось, что энергетическая диаграмма для бинарных гомоядерных молекул элементов второго периода Периодической системы Д.И.Менделеева является универсальной и имеет вид:

Иногда в литературе приводятся разные диаграммы для элементов B ,C,N и последующих O , F , Ne , однако исследования магнитных свойств молекулы B 2 при сверхнизких температурах не подтверждают однозначно необходимости усложнения вида энергетических диаграмм для B ,C,N.

Диа- и парамагнитные молекулы. Кратность связей по МО ЛКАО.

Одним из серьезных преимуществ метода МО ЛКАО по сравнению с методом ВС является более правильное описание магнитных свойств молекул и, в частности, объяснение парамагнетизма молекулярного кислорода. 6

Вспомним структуру молекулы кислорода по МВС, рассмотренную нами ранее. В соответствии с этой структурой все валентные электроны и и -связей в молекуле O 2 образуют электронные пары и суммарный спин молекулы равен нулю.

Структура орбиталей этой молекулы по методу МО ЛКАО, полученная заполнением электронами МО в соответствии с приведенной выше энергетической диаграммой имеет вид:

Как видно из этой диаграммы, в молекуле кислорода присутствуют два неспаренных электрона на разрыхляющих
и
орбиталях. Их магнитные моменты складываются и дают суммарный магнитный момент молекулы. Эксперимент показывает, что магнитный момент молекулы кислорода равен 2,8 (Собственный магнитный момент электрона – 1 ). Учитывая, что полный магнитный момент кроме собственного электронного включает в себя и орбитальный, количественное совпадение весьма убедительно свидетельствует в пользу справедливости именно метода МО.

При наличии магнитного момента вещество становится парамагнетиком – оно «притягивается магнитом». 7 При отсутствии магнитного момента вещество диамагнитно – оно «выталкивается» магнитным полем . 8

Кроме магнитных свойств анализ энергетических диаграмм МО ЛКАО дает возможность определить кратность (или порядок) химической связи (КС или ПС).

КС= ½(N связ – N разр )

где N связ – общее число электронов на связывающих орбиталях; N разр – общее число электронов на разрыхляющих орбиталях).

Мы рассмотрели различные случаи проявления и описания ковалентных химических связей. Это основной вид химической связи, поскольку причина ее возникновения – наличие валентных электронов – есть у подавляющего большинства химических элементов.

Однако в некоторых случаях взаимодействия атомов возникают особые условия, которые порождают особые виды связи, которые мы рассмотрим на следующей лекции.

равна работе, которую необходимо затратить, чтобы разделить молекулу на две части (атомы, группы атомов) и удалить их друг от друга на бесконечное расстояние. Например, если рассматривается Э. х. с. H 3 C-H в молекуле метана, то такими частицами являются метильная группа CH 3 и атом водорода Н, если рассматривается Э. х. с. Н-Н в молекуле водорода, такими частицами являются атомы водорода. Э. х. с. - частный случай энергии связи (См. Энергия связи), обычно ее выражают в кдж/моль (ккал/моль ); в зависимости от частиц, образующих химическую связь (См. Химическая связь), характера взаимодействия между ними (Ковалентная связь, Водородная связь и другие виды химической связи), кратности связи (например, двойные, тройные связи) Э. х. с. имеет величину от 8-10 до 1000 кдж/моль. Для молекулы, содержащей две (или более) одинаковых связей, различают Э. х. с. каждой связи (энергию разрыва связи) и среднюю энергию связи, равную усредненной величине энергии разрыва этих связей. Так, энергия разрыва связи HO-H в молекуле воды, т. е. Тепловой эффект реакции H 2 O = HO + H равен 495 кдж/моль, энергия разрыва связи Н-О в гидроксильной группе - 435 кдж/моль, средняя же Э. х. с. равна 465 кдж/моль. Различие между величинами энергий разрыва и средней Э. х. с. обусловлено тем, что при частичной диссоциации (См. Диссоциация) молекулы (разрыве одной связи) изменяется электронная конфигурация и взаимное расположение оставшихся в молекуле атомов, в результате чего изменяется их энергия взаимодействия. Величина Э. х. с. зависит от начальной энергии молекулы, об этом факте иногда говорят как о зависимости Э. х. с. от температуры. Обычно Э. х. с. рассматривают для случаев, когда молекулы находятся в стандартном состоянии (См. Стандартные состояния) или при 0 К. Именно эти значения Э. х. с. приводятся обычно в справочниках. Э. х. с. - важная характеристика, определяющая реакционную способность (См. Реакционная способность) вещества и использующаяся при термодинамических и кинетических расчетах реакций химических (См. Реакции химические). Э. х. с. может быть косвенно определена по данным калориметрических измерений (см. Термохимия), расчетным способом (см. Квантовая химия), а также с помощью масс-спектроскопии (См. Масс-спектроскопия) и спектрального анализа (См. Спектральный анализ).

"Энергия химической связи" в книгах

17. Длина химической связи

Из книги Химия автора Данина Татьяна

17. Длина химической связи Расстояние между химическими элементами – это длина химической связи – величина, известная в химии. Она определяется соотношением Сил Притяжения и Отталкивания взаимодействующих химических

03. Энергия, сила, импульс, кинетическая энергия, теплород…

Из книги Механика тел автора Данина Татьяна

03. Энергия, сила, импульс, кинетическая энергия, теплород… В физике существует немалая путаница, связанная с использованием понятий «энергия», «сила», «импульс» и «кинетическая энергия».Сразу скажу, что, несмотря на то, что эти четыре понятия существуют в физике

Галактическая Энергия – Энергия Мысли

Из книги Золотые ангелы автора Климкевич Светлана Титовна

Галактическая Энергия – Энергия Мысли 543 = Галактическая энергия – это энергия мысли = «Числовые коды». Книга 2. Крайон Иерархия 06.09.2011 г.Я ЕСМЬ Что Я ЕСМЬ!Я ЕСМЬ Манас! Приветствую Тебя, Владыка!Что мне сегодня надо знать?Светлана, Дорогая! Умница ты моя! Как хорошо, что ты

А энергия – Космическая энергия (Кундалини)

Из книги Ангелы автора Климкевич Светлана Титовна

А энергия – Космическая энергия (Кундалини) 617 = Только добро встречая зло и не заражаясь им, побеждает зло = Утратив веру, человек теряет способность любить = «Числовые коды». Книга 2. Крайон Иерархия 11.04.14 г.Я ЕСМЬ ЧТО Я ЕСМЬ!Я ЕСМЬ Отец Небесный! Я ЕСМЬ Вечность!Светлана, ты

МАГНИТНАЯ ЭНЕРГИЯ - ЭНЕРГИЯ НОВОГО ВРЕМЕНИ (KPАЙON)

Из книги Крайон. Я выбираю тебя. Ченнелинг через Нама Ба Хала автора Крайон Нам Ба Хал

МАГНИТНАЯ ЭНЕРГИЯ - ЭНЕРГИЯ НОВОГО ВРЕМЕНИ (KPАЙON) Мой дорогой друг, ты - сияющий Высший Свет, решивший когда-то в теле человека с целью приобрести жизненный опыт погрузиться в призрачную реальность, которой, собственно говоря, и не существует.Я, Крайон, приветствую тебя

Ангел – Вселенская Энергия – Энергия Жизни

Из книги Я ЕСМЬ Вечность. Литературные беседы с Творцом (сборник) автора Климкевич Светлана Титовна

Ангел – Вселенская Энергия – Энергия Жизни 958 = Есть много вещей которые не увидишь глазами, их надо видеть душой – в том-то и сложность = «Числовые коды». Книга 2. Крайон Иерархия И тот в ком светоч разума горит, Дурных деяний в мире не свершит. Ливий Тит (380 лет до

ЭНЕРГИЯ СВОБОДНАЯ – ЭНЕРГИЯ СВЯЗАННАЯ

Из книги Словарь по психоанализу автора Лапланш Ж

ЭНЕРГИЯ СВОБОДНАЯ – ЭНЕРГИЯ СВЯЗАННАЯ Нем.: freie Energie – gebundene Energie. – Франц.: йnergie libre – йnergie liйe. – Англ.: free energy – bound energy. – Исп.: energia libre – energia ligada. – Итал.::energia libйra – energia legata. – Португ.: energia uvre – energia ligada. Термины, которые подразумевают, с точки зрения экономической,

12. Энергия действия и энергия сдерживания

Из книги Образ жизни, который мы выбираем автора Фёрстер Фридрих Вильгельм

12. Энергия действия и энергия сдерживания Упражнения в энергии сдерживания необычайно важны и для развития энергии действия. Кто хочет совершить что-то определенное, тот должен все свои силы сконцентрировать на одной цели. Поэтому он должен решительно противостоять

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

ЭНЕРГИЯ ИЗ СРЕДЫ - ВЕТРЯК И СОЛНЕЧНЫЙ ДВИГАТЕЛЬ - ДВИЖУЩАЯ ЭНЕРГИЯ ИЗ ЗЕМНОГО ТЕПЛА - ЭЛЕКТРИЧЕСТВО ИЗ ЕСТЕСТВЕННЫХ ИСТОЧНИКОВ Есть множество веществ помимо топлива, которые возможно смогли бы давать энергию. Огромное количество энергии заключено, например, в

№175 Доклад инспектора химической подготовки РККА В.Н. Баташева начальнику ГУ РККА С.С. Каменеву о реорганизации химических войск и органов химической службы военного и мирного времени

Из книги Реформа в Красной Армии Документы и материалы 1923-1928 гг. [Книга 2] автора Военное дело Коллектив авторов --

№175 Доклад инспектора химической подготовки РККА В.Н. Баташева начальнику ГУ РККА С.С. Каменеву о реорганизации химических войск и органов химической службы военного и мирного времени №049015/сс5 мая 1927 г.Сов. секретноИнспекция химподготовки считает необходимым

Что больше: энергия, выделяемая при распаде одного ядра урана, или энергия, затрачиваемая комаром на один взмах крыла?

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Что больше: энергия, выделяемая при распаде одного ядра урана, или энергия, затрачиваемая комаром на один взмах крыла? Энергия, выделяемая при распаде одного ядра урана, составляет величину порядка 10 триллионных джоуля, а затрачиваемая комаром на один взмах крыла –

Энергия связи

БСЭ

Энергия химической связи

Из книги Большая Советская Энциклопедия (ЭН) автора БСЭ

III. Порядок присоединения сетей связи телерадиовещания и их взаимодействия с сетью связи телерадиовещания оператора сети связи телерадиовещания, занимающего существенное положение

Из книги Комментарий к правилам оказания услуг связи автора Сухарева Наталия Владимировна

III. Порядок присоединения сетей связи телерадиовещания и их взаимодействия с сетью связи телерадиовещания оператора сети связи телерадиовещания, занимающего существенное положение Комментарий к пункту 14Реестр ведется по форме, установленной Мининформсвязи .

Сексуальная энергия – энергия денег

Из книги Меня любят деньги. Прямой путь к вашему изобилию! автора Тихонова – Айыына Снежана

Сексуальная энергия – энергия денег Власть – это возбуждающее средство. Секс равен власти. Майкл Хатчинсон Психолог Карл Юнг изобрел психологическую модель для мужчин и женщин, которых он обозначал anima и animus. Он допустил, что каждый мужчина обладает внутренней

mob_info