Новые рибосомы в клетке образуют. Рибосомы-строение, химический состав, функции. Свободные рибосомы, полирибосомы, их связь с другими структурными компонентами клетки. Вкратце о строении клетки

Рибосома(от «РНК» и soma – тело) – клеточный немембранный органоид, осуществляющий трансляцию (считывание кода мРНК и синтез полипептидов).

Рибосомы эукариот расположены на мембранах эндоплазматической сети (гранулярная ЭС) и в цитоплазме. Прикрепленные к мембранам рибосомы синтезируют белок «на экспорт», а свободные рибосомы – для нужд самой клетки. Различают 2 основных типа рибосом – прокариотные и эукариотные. В митохондриях и хлоропластах также имеются рибосомы, которые близки к рибосомам прокариот.

Рибосома состоит из двух субъединиц – большой и малой. У прокариотических клеток они обозначены 50S и 30S субъединицы, у эукариотических – 60S и 40S. (S – коэффициент, который характеризует скорость осаждения субъединицы при ультрацентрифугировании). Субъединицы эукариотических рибосом образуются путем самосборки в ядрышке и через поры ядра поступают в цитоплазму.

Рибосомы в клетках эукариот состоят из четырех нитей РНК (три молекулы рРНК в большой субъединице и одна молекула рРНК – в малой) и примерно 80 разных белков, т.е представляют собой сложнейший комплекс из молекул, скрепленных слабыми, нековалентными связями. (Рибосомы в клетках прокариот состоят из трех нитей РНК; две нити рРНК находятся в большой субъединице и одна рРНК – в малой). Процесс трансляции (биосинтеза белка) начинается со сборки активной рибосомы. Этот процесс называется инициацией трансляции. Сборка происходит строго упорядоченным образом, что обеспечивается функциональными центрами рибосом. Все центры находятся на контактирующих поверхностях обеих субъединиц рибосомы. Каждая рибосома работает как большая биохимическая машина, а точнее, как суперфермент, который, во-первых, правильно ориентирует участников (мРНК и тРНК) процесса друг относительно друга, а во-вторых, катализирует реакции между аминокислотами.

Активные центры рибосом:

1)центр связывания мРНК (М-центр);

2) пептидильный центр (П-центр). С этим центром в начале процесса трансляции связывается инициирующая тРНК; на последующих стадиях трансляции из А-центра в П-центр перемещается тРНК, удерживающая синтезированную часть пептидной цепи;

3)аминокислотный центр (А-центр) – место связывания кодона мРНК с антикодоном тРНК, несущей очередную аминокислоту.

4)пептидилтрансферазный центр (ПТФ-центр): он катализирует реакцию связывания аминокислот. При этом образуется еще одна пептидная связь, и растущий пептид удлиняется на одну аминокислоту.

Схема синтеза белка на рибосомах гранулярной эндоплазматической сети.

(рис. из книги биология клетки, том II )

Схематическое изображение полирибосомы. Синтез белка начинается со связывания малой субчастицы, в месте расположения AUG -кодона в молекуле информационной (матричной РНК) (рис. из книги биология клетки, том II ).

Эндоплазматическая сеть

Эндоплазматическая сеть (син. эндоплазматический ретикулум)органоид эукариотической клетки. В клетках разного типа и при различных функциональных состояниях этот компонент клетки может выглядеть по-разному, но во всех случаях – это лабиринтная протяженная замкнутая мембранная структура, построенная из сообщающихся трубкообразных полостей и мешочков, называемых цистернами. Снаружи от мембран эндоплазматической сети находится цитозоль (гиалоплазма, основное вещество цитоплазмы), а просвет эндоплазматической сети представляет собой замкнутое пространство (компартмент), сообщающееся посредством везикул (транспортных пузырьков) с комплексом Гольджи и внешней для клетки средой. Эндоплазматическая сеть делится на две функционально различные структуры: гранулярную (шероховатую) эндоплазматическую сеть и гладкую(агранулярную) эндоплазматическую сеть.

Гранулярная эндоплазматическая сеть, в клетках секретирующих белок, представлена системой многочисленных плоских мембранных цистерн с рибосомами на наружной поверхности. Комплекс мембран гранулярной эндоплазматической сети связан с наружной мембраной оболочки ядра и перинуклеарной (околоядерной) цистерной.

В гранулярной эндоплазматической сети происходит синтез белков и липидов для всех мембран клетки, синтезируются ферменты лизосом, а также осуществляется синтез секретируемых белков, т.е. предназначенных для экзоцитоза. (Остальные белки синтезируются в цитоплазме на рибосомах, не связанных с мембранами ЭС.) В просвете гранулярной ЭС белок окружается мембраной, и образующиеся пузырьки отделяются (отпочковываются) от несодержащих рибосомы областей ЭС, которые и доставляют содержимое в другую органеллу – комплекс Гольджи – путем слияния с ее мембраной.

Та часть ЭС, на мембранах которой рибосомы отсутствуют, называется гладким эндоплазматическим ретикулумом. Гладкая эндоплазматическая сеть не содержит уплощенных цистерн, а представляет собой систему анастомозирующих мембранных канал

ов, пузырьков и трубочек. Гладкая сеть является продолжением гранулярной, однако не содержит рибофоринов – гликопротеиновых рецепторов, с которыми соединяется большая субъединица рибосом и поэтому не связана с рибосомами.

Функции гладкой эндоплазматической сети многообразны и зависят от типа клеток. Гладкая эндоплазматическая сеть участвует в метаболизме стероидных, например, половых гормонов. В ее мембранах локализованы управляемые кальциевые каналы и энергозависимые кальциевые насосы. Цистерны гладкой эндоплазматической сети специализированы для накопления в них Са 2+ путем постоянного откачивания Са 2+ из цитозоля. Подобные депо Са 2+ существуют в скелетной и сердечной мышцах, нейронах, яйцеклетке, эндокринных клетках и др. Различные сигналы (например, гормоны, нейромедиаторы, факторы роста) влияют на активность клеток путем изменения концентрации внутриклеточного посредника – Са 2+ . В гладкой эндоплазматической сети клеток печени происходит обезвреживание вредных веществ, (например ацетальдегида, образующегося из алкоголя), метаболическая трансформация лекарств, образование большей части липидов клетки и их накопление, например при жировой дистрофии. В полости ЭС содержится много различных молекул-компонентов. Среди них имеют большое значение белки шапероны.

Шапероны (англ. букв. – пожилая дама, сопровождающая молодую девушку на балах) – семейство специализированных внутриклеточных белков, обеспечивающих быстрое и правильное сворачивание (фолдинг) вновь синтезированных молекул белка. Связывание с шаперонами препятствует агрегации с другими белками и тем самым создает условия для формирования вторичной и третичной структуры растущего пептида. Шапероны принадлежат к трем белковым семействам, так называемым белкам теплового шока (hsp 60, hsp 70, hsp 90). Синтез этих белков активируется при многих стрессах, в частности, при тепловом шоке (отсюда и название h eart shook protein – белок теплового шока, а цифра обозначает его молекулярную массу в килодальтонах). Эти шапероны предотвращают денатурацию белков при высокой температуре и др. экстремальных факторах. Связываясь с аномальными белками, восстанавливают их нормальную конформацию и тем самым повышают выживаемость организма при резком ухудшении физико-химических параметров среды.

Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой . Синтез рибосом у эукариот происходит в специальной внутриядерной структуре - ядрышке .

Схема синтеза рибосом в клетках эукариот .
1. Синтез мРНК рибосомных белков РНК полимеразой II. 2. Экспорт мРНК из ядра. 3. Узнавание мРНК рибосомой и 4. синтез рибосомных белков. 5. Синтез предшественника рРНК (45S - предшественник) РНК полимеразой I. 6. Синтез 5S pРНК РНК полимеразой III. 7. Сборка большой рибонуклеопротеидной частицы, включающей 45S-предшественник, импортированные из цитоплазмы рибосомные белки, а также специальные ядрышковые белки и РНК, принимающие участие в созревании рибосомных субчастиц. 8. Присоединение 5S рРНК, нарезание предшественника и отделение малой рибосомной субчастицы. 9. Дозревание большой субчастицы, высвобождение ядрышковых белков и РНК. 10. Выход рибосомных субчастиц из ядра. 11. Вовлечение их в трансляцию.

Рибосомы представляют собой нуклеопротеид , в составе которого отношение РНК/белок составляет 1:1 у высших животных и 60-65:35-40 у бактерий. Рибосомная РНК составляет около 70 % всей РНК клетки. Рибосомы эукариот включают четыре молекулы рРНК, из них 18S , 5.8S и 28S рРНК синтезируются в ядрышке РНК полимеразой I в виде единого предшественника (45S), который затем подвергается модификациям и нарезанию. 5S рРНК синтезируется РНК полимеразой III в другой части генома и не нуждаются в дополнительных модификациях. Почти вся рРНК находится в виде магниевой соли, что необходимо для поддержания структуры; при удалении ионов магния рибосома подвергается диссоциации на субъединицы.

Механизм трансляции

Трансляция - синтез белка рибосомой на основе информации, записанной в матричной РНК (мРНК). мРНК связывается с малой субъединицей рибосомы, когда происходит узнавание 3"-концом 16S рибосомной РНК комплементарной последовательности Шайн-Далгарно, расположенной на 5"-конце мРНК (у прокариот), а также позиционирование стартового кодона (как правило, AUG) мРНК на малой субъединице. Ассоциация малой и большой субъединиц происходит при связывании формилметионил-тРНК (fMET-тРНК) и участии факторов инициации (IF1, IF2 и IF3 у прокариот; их аналоги и дополнительные факторы участвуют в инициации трансляции у эукариотических рибосом). Таким образом, распознавание антикодона (в тРНК) происходит на малой субъединице.

После ассоциации, fMET-тРНК оказывается в P (peptidyl-) центре рибосомы. Следующая тРНК, несущая на 3"-конце аминокислоту, и комплементарная второму кодону на мРНК , связывается с помощью фактора EF-Tu на А (аминоацил-) центре рибосомы. Затем, на большой субъединице, в пептидил-трансферазном центре рибосомы, образуется пептидная связь между формилметионином (связанным с тРНК, находящейся в Р-центре) и аминокислотой, находящейся в А-центре. По поводу деталей механизма катализа образования пептидной связи в пептидил-трансферазном центре консенсус до сих пор не достигнут. На данный момент существует несколько гипотез механизма катализа рибосомой: 1. оптимальное позиционирование субстратов (induced fit) , 2. исключение из активного центра воды, способной прервать образование пептидной цепи посредством гидролиза , 3. участие нуклеотидов рРНК (таких как А2450 и А2451) в переносе протона , 4. участие 2"-гидроксильной группы 3"-концевого нуклеотида тРНК (А76) в переносе протона ; а также комбинации этих механизмов.

После образования пептидной связи, полипептид оказывается связанным с тРНК, находящейся в А-центре. Следующим шагом является движение деацилированной тРНК из Р- в Е (exit-) центр, а пептидил-тРНК из А- в Р-центр. Этот процесс называется транслокация и происходит с помощью фактора EF-G. тРНК , комплементарная следующему кодону мРНК , связывается с А-центром рибосомы, что ведет к повторению описанных шагов. Стоп-кодоны (UGA, UAG и UAA) сигнализируют об окончании трансляции. Обрыв полипептидной цепи и диссоциация субъединиц (для приготовления к связыванию следующей мРНК и синтезу соответствующего белка) происходит при участии факторов (RF1, RF2, RF3, RRF в прокариотах).

Ссылки

Внешние ссылки

Сайт одного из ведущих учёных по исследованию структуры рибосом, содержит большое количество иллюстраций, в том числе анимированных (англ.)


Wikimedia Foundation . 2010 .

Смотреть что такое "Рибосомы" в других словарях:

    Современная энциклопедия

    Внутриклеточные частицы, состоящие из рибосомной РНК и белков. Связываясь с молекулой мРНК, осуществляют ее трансляцию (биосинтез белка). С одной молекулой мРНК могут связываться несколько рибосом, образуя полирибосому (полисому). Рибосомы… … Большой Энциклопедический словарь

    Рибосомы - РИБОСОМЫ, внутриклеточные частицы, состоящие из рибосомной РНК и белков. Связываясь с молекулой матричной РНК (мРНК), осуществляют ее трансляцию (биосинтез белка). С одной молекулой мРНК обычно связывается несколько рибосом, образуя полирибосому… … Иллюстрированный энциклопедический словарь

    Внутриклеточные органоиды, осуществляющие синтез белка. Состоят из белка и трех типов РНК, соединенных в комплекс водородными и гидрофобными связями. Построены из 2 субъед. Различаются по константе седиментации и локализации. Бактер. Р. не… … Словарь микробиологии

    рибосомы - – органеллы клетки, состоящие из РНК и белков, принимают участие в биосинтезе белков (см. трансляция) … Краткий словарь биохимических терминов

    Внутриклеточные частицы, состоящие из рибосомной РНК и белков. Связываясь с молекулой мРНК, осуществляют её трансляцию (биосинтез белка). С одной молекулой мРНК могут связываться несколько рибосом, образуя полирибосому (полисому). Рибосомы… … Энциклопедический словарь

    Внутриклеточные частицы, осуществляющие биосинтез белка; Р. обнаружены в клетках всех без исключения живых организмов: бактерий, растений и животных; каждая клетка содержит тысячи или десятки тысяч Р. Форма Р. близка к… … Большая советская энциклопедия

    Внутриклеточные частицы, состоящие из рибосомной РНК и белков. Связываясь с молекулой мРНК, осуществляют её трансляцию (биосинтез белка). С одной молекулой мРНК могут связываться неск. Р., образуя полирибосому (полисому). Р. присутствуют в… … Естествознание. Энциклопедический словарь

    - (гр. soma тело) внутриклеточные частицы, состоящие из белка и рибонуклеиновой кислоты и свободно лежащие в цитоплазме или прикрепленные к внутриклеточным мембранам; р. служат местом биосинтеза белка. Новый словарь иностранных слов. by EdwART,… … Словарь иностранных слов русского языка

    рибосомы - рибос омы, ом, ед. ч. с ома, ы … Русский орфографический словарь

Книги

  • Молекулярная биология. Рибосомы и биосинтез белка. Учебное пособие , Спирин Александр Сергеевич. Учебное издание, написанное ведущим специалистом в данной области, посвящено структурным и функциональным аспектам биосинтеза белков. Книга охватывает часть общего курса молекулярной…

Как же выглядит данная органелла? Она похожа на телефон с трубкой. (Рис. 6) Рибосома эукариот и прокариот состоит из двух частей, одна из которых больше, другая - меньше. Но эти две ее составляющие не соединяются вместе, когда она находится в спокойном состоянии. Это происходит только тогда, когда рибосома клетки непосредственно начинает выполнять свои функции. Рибосома также имеет в своем составе информационную РНК и транспортную РНК. Данные вещества необходимы для того, чтобы записывать на них информацию о нужных клетке белках. Рибосома не имеет собственной мембраны. Ее субъединицы (так называются две ее половины) ничем не защищены.

Рисунок 6. Внешний вид рибосомы.

Большая субчастица, в свою очередь, состоит из:

  • · одной молекулы рибосомальной РНК, которая является высокополимерной;
  • · одной молекулы РНК, которая является низкополимерной;
  • · некоторого количества молекул белка, как правило, их около трех десятков.

Что касается меньшей субчастицы, то тут немного проще. (Рис.7) В ее состав входят:

  • · молекула высокополимерной РНК;
  • · несколько десятков молекул белка, как правило, около 40 штук (молекулы при этом разнообразные по структуре и форме).

Рисунок 7. Меньшая субчастица рибосомы.

Молекула высокополимерной РНК необходима для того, чтобы все присутствующие белки соединить в одну целостную рибонуклеопротеидную составляющую клетки.

Функции рибосомы

Какие функции выполняет в клетке данный органоид? То, за что отвечает рибосома, - синтез белка. Он происходит на основе информации, которая записана на так называемой матричной РНК (рибонуклеиновой кислоте). Рибосома объединяет свои две субъединицы только на время синтеза белка - процесса под названием трансляция. (Рис.8) Во время данной процедуры синтезируемая полипептидная цепь находится между двумя субъединицами рибосомы.


Рисунок 8. Процесс трансляции.

В процессе выполнения основной своей функции, то есть во время синтеза белка, рибосома выполняет и ряд дополнительных:

  • · Связка, а также удержание всех составляющих так называемой белоксинтезирующей системы. Принято называть данную функцию информационной, или матричной. Рибосома функции эти распределяет между двумя своими субчастицами, каждая из которых выполняет свою определенную задачу в данном процессе.
  • · Рибосомы выполняют функцию каталитическую, которая заключается в образовании особой пептидной связи (амидная связь, которая возникает как при образовании белков, так и при возникновении пептидов). Сюда же можно отнести и гидролиз ГТФ (субстрата для синтеза РНК). За выполнение этой функции отвечает большая субъединица рибосомы. Именно в ней находятся специальные участки, в которых и происходит процесс синтеза пептидной связи, а также центр необходимый для гидролиза ГТФ. Помимо этого именно большая субъединица рибосомы во время биосинтеза белка удерживает на себе цепь, которая постепенно вырастает.
  • · Выполняет рибосома функции механического передвижения субстратов, к коим относятся иРНК и тРНК. Иными словами, они отвечают за транслокацию.

Рисунок 9. Синтез белка.

Каким образом происходит формирование белков? (Рис. 9, 10, 11) Биосинтез белков происходит в несколько этапов. Первый из них - это активация аминокислот. Всего их существует двадцать, при комбинировании их разными методами можно получить миллиарды различных белков. На протяжении данного этапа из аминокислот формируется аминоалиц-т-РНК.

Рисунок 10. Синтез белка (фото).

Данная процедура невозможна без участия АТФ (аденозинтрифосфорной кислоты). Также для осуществления этого процесса необходимы катионы магния. Второй этап - это инициация полипептидной цепи, или процесс объединения двух субъединиц рибосомы и поставка к ней необходимых аминокислот. В данном процессе также принимают участие ионы магния и ГТФ (гуанозинтрифосфат). Третий этап называется элонгацией. Это непосредственно синтез полипептидной цепи. Происходит методом трансляции. Терминация - следующий этап - это процесс распада рибосомы на отдельные субъединицы и постепенное прекращение синтеза полипептидной цепочки. Далее идет последний этап - пятый - это процессинг. На этой стадии из простой цепи аминокислот формируются сложные структуры, которые уже и представляют собой готовые белки. В данном процессе участвуют специфические ферменты, а также кофакторы.


Рисунок 11. Синтез белка (схема).

Так как рибосома отвечает за синтез белков, то давайте рассмотрим подробнее их структуру. Она бывает первичной, вторичной, третичной и четвертичной. Первичная структура белка - это определенная последовательность, в которой располагаются аминокислоты, формирующие данное органическое соединение. Вторичная структура белка представляет собой сформированные из полипептидных цепочек альфа-спирали и бета-складки. Третичная структура белка предусматривает определенную комбинацию альфа-спиралей и бета-складок. Четвертичная же структура заключается в формировании единого макромолекулярного образования. (Рис. 12) То есть комбинации альфа-спиралей и бета-структур формируют глобулы либо фибриллы. По этому принципу можно выделить два типа белков - фибриллярные и глобулярные.

К первым относятся такие, как актин и миозин, из которых сформированы мышцы. Примерами вторых могут служить гемоглобин, иммуноглобулин и другие. Фибриллярные белки напоминают собой нить, волокно. Глобулярные больше похожи на клубок сплетенных между собой альфа-спиралей и бета-складок. Что такое денатурация? Каждый наверняка слышал это слово.

Рисунок 12. Четвертичная структура белка.

рибосома клетка белок генетический

Денатурация - это процесс разрушения структуры белка - сначала четвертичной, затем третичной, а после - и вторичной. В некоторых случаях происходит и ликвидация первичной структуры белка. Данный процесс может происходить вследствие воздействия на данное органическое вещество высокой температуры. Так, денатурацию белка можно наблюдать при варке куриных яиц. В большинстве случаев этот процесс необратим. Так, при температуре выше сорока двух градусов начинается денатурация гемоглобина, поэтому сильная гипертермия опасна для жизни. Денатурацию белков до отдельных нуклеиновых кислот можно наблюдать в процессе пищеварения, когда с помощью ферментов организм расщепляет сложные органические соединения на более простые.

РИБОСОМА (от «рибонуклеиновая кислота» и греч. «сома» – тело), органоид, синтезирующий белки. Присутствует в клетках всех организмов, как эукариот, так и прокариот. Представляет собой сферическую частицу диаметром ок. 20 нм, состоящую из двух субчастиц, которые могут разъединяться и вновь объединяться. Структурный каркас рибосомы образован молекулами рибосомальной РНК (р-РНК) и связанными с ними белками. В клетках эукариот рибосомы формируются в ядрышке, где на ДНК синтезируется р-РНК, к которой затем присоединяются белки. Субчастицы рибосомы выходят из ядра в цитоплазму, и здесь завершается формирование полноценных рибосом. В цитоплазме рибосомы свободно находятся в цитоплазматическом матриксе (гиалоплазме) или прикрепляются к внешним мембранам ядра и эндоплазматической сети. Свободные рибосомы синтезируют белки для внутренних нужд клетки. Рибосомы на мембранах образуют комплексы – полирибосомы, которые синтезируют белки, поступающие через эндоплазматическую сеть в аппарат Гольджи и затем секретируемые клеткой. Количество рибосом в клетке зависит от интенсивности биосинтеза белка – их больше в клетках активно растущих тканей (меристем растений, зародышей и т. п.). В хлоропластах и митохондриях есть свои собственные мелкие рибосомы, они обеспечивают этим органоидам автономный (независимый от ядра) биосинтез белков (см. Трансляция).

Схема строения рибосомы, сидящей на мембране эндоплазматнческой сети:
1 — малая субъединица;
2 — иРНК;
3 — аминоацил — тРНК;
4 — аминокислота;
5 — большая субъединица;
6 — мембрана эндоплазматической сети;
7 — синтезируемая полипептидная цепь.

Каждая рибосома состоит из двух субчастиц-большой и малой. Рибосомы состоят из примерно равных (по массе) количеств РНК и белка (т.е. представляют собой рибонуклеопротеиновые частицы). Входящая в их состав РНК, называемая рибосомной РНК (рРНК), синтезируется в ядрышке. Вместе те и другие образуют сложную трехмерную структуру, обладающую способностью к самосборке.
Во время синтеза белка на рибосомах аминокислоты, из которых строится полипептидная цепь, последовательно одна за другой присоединяются к растущей цепи. Рибосома служит местом связывания для молекул, участвующих в синтезе, т. е. таким местом, где эти молекулы могут занять по отношению друг к другу совершенно определенное положение. В синтезе участвуют: матричная РНК (мРНК), несущая генетические инструкции от ядра клетки, транспортная РНК (тРНК), доставляющая к рибосоме требуемые аминокислоты, растущая полипептидная цепь, а также ряд факторов, ответственные за инициацию, элонгацию и терминацию цепи.
В эукариотических клетках отчетливо видны две популяции рибосом - свободные рибосомы и рибосомы, присоединенные к эндоплазматическому ретикулуму. Строение тех и других идентично, но часть рибосом связана с эндоплазматическим ретикулоумом через белки, которые они синтезируют. Такие белки обычно секретируются. Примером белка, синтезируемого свободными рибосомами, может служить гемоглобин, образующийся в молодых эритроцитах.
В процессе синтеза белка рибосома перемещается вдоль нитевидной молекулы мРНК. Процесс идет более эффективно, когда вдоль мРНК перемещается не одна рибосома, а одновременно много рибосом, напоминающих в этом случае бусины на нитке. Такие цепи рибосом называются полирибосомами или полисомами. На эндоплазматическом ретикулуме полисомы обнаруживаются в виде характерных завитков.

Рибосомный синтез белка-многоэтапный процесс. Первая стадия (инициация) начинается с присоединения матричной РНК (мРНК) к малой рибосомной субчастице, не связанной с большой субчастицей. Характерно, что для начала процесса необходима именно диссоциированная рибосома. К образовавшемуся т. наз. инициаторному комплексу присоединяется большая рибосомная субчастица. В стадии инициации участвуют спец. инициирующий кодон (см. Генетический код), инициаторная транспортная РНК (тРНК) и специфич. белки (т. наз. факторы инициации). Пройдя стадию инициации, рибосома переходит к последоват. считыванию кодонов мРНК по направлению от 5"- к 3"-концу, что сопровождается синтезом полипептидной цепи белка, кодируемого этой мРНК (подробнее о механизме синтеза полипептидов см. в ст. Трансляция). В этом процессе рибосома функционирует как циклически работающая мол. машина. Рабочий цикл рибосомы при элонгации состоит из трех тактов: 1) кодонзависимого связывания аминоацил-тРНК (поставляет аминокислоты в рибосому), 2) транспептидации-переноса С-конца растущего пептида на аминоацил-тРНК, т.е. удлинения строящейся белковой цепи на одно звено, 3) транслокации-перемещения матрицы (мРНК) и пептидил-тРНК относительно рибосомы и переход рибосомы в исходное состояние, когда она может воспринять след. аминоацил-тРНК. Когда рибосома достигнет специального терминирующего кодона мРНК, синтез полипептида прекращается. При участии специфич. белков (т. наз. факторов терминации) синтезир. полипептид освобождается из рибосомы. После терминации рибосома может повторить весь цикл с др. цепью мРНК или др. кодирующей последовательностью той же цепи.

Схема синтеза полипептидной цепи полирибосомой: I-начал о синтеза, II-окончание синтеза; а-мРНК, б-рибосома, в-большая субъединица рибосомы, г-малая субъединица рибосомы.

В клетках с интенсивной секрецией белка и развитым эндоплазматич. ретикулумом значит. часть цитоплазматической рибосомы прикреплена к его мембране на пов-сти, обращенной к цитоплазме. Эти рибосомы синтезируют полипептиды, к-рые непосредственно транспортируются через мембрану для дальнейшей секреции. Синтез полипептидов для внутриклеточных нужд происходит в осн. на свободных (не связанных с мембраной) рибосомах цитоплазмы. При этом транслирующие рибосомы не равномерно диспергированы в цитоплазме, а собраны в группы. Такие агрегаты рибосом представляют собой структуры, где мРНК ассоциирована со многими рибосомами, находящимися в процессе трансляции; эти структуры получили назв. полирибосом или полисом.

При интенсивном синтезе белка расстояние между рибосомами вдоль цепи мРНК в полирибосоме м. б. предельно коротким, т.е. рибосомы находятся почти вплотную друг к другу. Рибосомы, входящие в полирибосомы, работают независимо и каждая из них синтезирует полную полипептидную цепь.

Рибосома – это тот самый рабочий, который претворяет генеральный план в жизнь, изготовляя по лекалам ДНК соответствующие белки.

В бактериальной клетке рибосомы составляют до 30% ее сухой массы: на одну бактериальную клетку приходится примерно 10 4 рибосом. В эукариотич. клетках (клетки всех организмов , за исключением бактерий и синезеленых водорослей) относит. содержание рибосом меньше, и их кол-во очень сильно варьирует в зависимости от белок-синтезирующей активности соответствующей ткани или отдельной клетки .

В эукариотич. клетке все рибосомы цитоплазмы (как мембрано-связанные, так и свободные) образуются в ядрышке; считается, что там они неактивны. Эукариотич. клетка имеет также специальные рибосомы в митохондриях (у животных и растений) и хлоропластах (у растений). Рибосомы этих органелл отличаются от цитоплазматических размерами и нек-рыми функцион. св-вами. Они образуются непосредственно в этих органеллах.

Различают два осн. типа рибосом. Всем прокариотич. организмам (бактерии и синезеленые водоросли) свойственны т. наз. 70S рибосомы, характеризующиеся коэф. (константой) седиментации ок. 70 единиц Сведберга, или 70S (по коэф. седиментации различают и рибосомы др. типов, а также субчастицы и биополимеры , входящие в состав рибосом). Их мол. м. составляет 2,5 · 10 6 , линейные размеры 20-25 нм. По хим. составу это рибонуклеопротеиды; они состоят только из рРНК и белка (соотношение этих компонентов 2:1). Рибосомная РНК в рибосомах присутствует гл. обр. в виде Mg-соли (по-видимому, частично и в виде Са-соли); магния в рибосомах до 2% от сухой массы. Кроме того, в разл. кол-вах (до 2,5%) могут присутствовать также катионы аминов-спермина H 2 N(CH 2) 3 NH(CH 2) 4 NH(CH 2) 3 NH 2 , спермидина H 2 N(CH 2) 3 NH(CH 2) 4 NH 2 и др.

По-видимому, рРНК определяет осн. структурные и функцион. св-ва рибосом, в частности обеспечивает целостность рибосомных субъединиц, обусловливает их форму и ряд структурных особенностей. Специфич. пространств. структура рРНК детерминирует локализацию всех рибосомных белков , играет ведущую роль в организации функцион. центров рибосом.

Рибосомный синтез белка-многоэтапный процесс. Первая стадия (инициация) начинается с присоединения матричной РНК (мРНК) к малой рибосомной субчастице, не связанной с большой субчастицей. Характерно, что для начала процесса необходима именно диссоциированная рибосома. К образовавшемуся т. наз. инициаторному комплексу присоединяется большая рибосомная субчастица. В стадии инициации участвуют спец. инициирующий кодон (см. Генетический код), инициаторная транспортная РНК (тРНК) и специфич. белки (т. наз. факторы инициации). Пройдя стадию инициации, рибосома переходит к последоват. считыванию кодонов мРНК по направлению от 5"- к 3"-концу, что сопровождается синтезом полипептидной цепи белка , кодируемого этой мРНК (подробнее о механизме синтеза полипептидов см. в ст. Трансляция). В этом процессе рибосома функционирует как циклически работающая мол. машина. Рабочий цикл рибосомы при элонгации состоит из трех тактов: 1) кодонзависимого связывания аминоацил-тРНК (поставляет аминокислоты в рибосому), 2) транспептидации-переноса С-конца растущего пептида на аминоацил-тРНК, т.е. удлинения строящейся белковой цепи на одно звено, 3) транслокации-перемещения матрицы (мРНК) и пептидил-тРНК относительно рибосомы и переход рибосомы в исходное состояние, когда она может воспринять след. аминоацил-тРНК. Когда рибосома достигнет специального

mob_info