Необходимые и достаточные условия для прохождения электрического тока в проводнике. Электрический ток. Условия существования тока. Основные понятия. Что такое электрический ток

Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

Если увеличить в несколько раз напряжение, действующее в электрической цепи, то ток в этой цепи увеличится во столько же раз. А если увеличить в несколько раз сопротивление цепи, то ток во столько же раз уменьшится. Подобно этому водяной поток в трубе тем больше, чем сильнее давление и чем меньше сопротивление, которое оказывает труба движению воды.


Электрическое сопротивление - физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему.

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление.

Электронная теория так объясняет сущность электрического сопротивления металлических проводников. Свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии. Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Сопротивление проводника не зависит от силы тока в цепи и напряжения, а определяется только формой, размерами и материалом проводника.

Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.

2 вопрос. Видимые движения небесных тел. Законы движения планет.

А) Темной ночью мы можем увидеть на небе около 2500 звезд (с учетом невидимого полушария 5000), которые отличаются по блеску и цвету. Кажется, что они прикреплены к небесной сфере и вместе с ней обращаются вокруг Земли. Чтобы ориентироваться среди них, небо разбили на 88 созвездий. Особое место среди созвездий занимали 12 зодиакальных созвездий, через которые проходит годичный путь Солнца - эклиптика. для ориентации среди звезд астрономы используют различные системы небесных координат. Одна из них - экваториальная система координат (рис. 15.1). В ее основе лежит небесный экватор - проекция земного экватора на небесную сферу. Эклиптика и экватор пересекаются в двух точках: весеннего и осеннего равноденствия. Любая звезда имеет две координаты: α – прямое восхождение (измеряется в часовой мере), b – отклонение (измеряют в градусной мере). Звезда Альтаир имеет следующие координаты: α = 19 ч 48 м 18 с; b = +8° 44 ‘. Измеренные координаты звезд хранят в каталогах, по ним строят звездные карты, которые используют астрономы при поиске нужных светил. Взаимное расположение звезд на небе не меняется, они совершают суточное вращение вместе с небесной сферой. Планеты наряду с суточным вращением совершают медленное движение среди звезд, и называются блуждающая звезда.

Видимое движение планет и Солнца описал Николай Коперник, с помощью геоцентрической системы мира.

Б) Движение планет и других небесных тел вокруг Солнца происходит по трем законам Кеплера:

Первый закон Кеплера – поддействием силы притяжения одно небесное тело движется в поле тяготения другого небесного тела по одному из конических сечений - кругу, эллипсу, параболе или гиперболе.

Второй закон Кеплера - каждая планета движется так, что радиус-вектор планеты за равные промежутки времени описывает равные площади.

Третий закон Кеплера - куб большой полуоси орбиты тела, деленный на квадрат периода его обращения и на сумму масс тел, есть величина постоянная.

а 3 /[Т 2 *(M 1+ M 2) ] = G/4П 2 G – гравитационная постоянная.

Луна движется вокруг Земли по эллиптической орбите. Смена лунных фаз определяется изменением вида освещенности стороны Луны. Движение Луны вокруг Земли объясняются лунные и солнечные затмения. Явления приливов и отливов обусловлено притяжением Луны и большими размерами Земли.

Для начала ответим себе на вопрос, что такое электрический ток. Простая батарейка, стоящая на столе, сама по себе ток не создает. И фонарик, лежащий на столе, ток через свои светодиоды просто так, ни с того ни с сего, не создаст. Чтобы появился ток, что-то куда-то должно потечь, хотя бы начать двигаться, а для этого цепь из светодиодов фонарика и батарейки необходимо замкнуть. Не даром, в былые времена электрический ток сравнивали с движением некой заряженной жидкости.

На самом деле мы теперь знаем, что электрический ток - это направленное движение заряженных частиц, и что более близким к реальности аналогом был бы заряженный газ, - газ заряженных частиц, движущийся под действием электрического поля. Но обо всем по порядку.


Электрический ток - это направленное движение заряженных частиц

Итак, электрический ток - это движение заряженных частиц, но даже хаотичное движение заряженных частиц - это тоже движение, однако оно еще не является током. Так и молекулы жидкости, все время пребывающие в тепловом движении, течения не создают, ведь суммарное перемещение всего объема покоящейся жидкости ровно нулю.

Чтобы возникло течение жидкости, должно возникнуть суммарное перемещение, то есть общее движение молекул жидкости должно стать направленным. Так хаотичное движение молекул сложится с направленным движением всего объема, и возникнет течение всего объема жидкости.

Аналогично обстоит дело и с электрическим током - направленное движение электрически заряженных частиц - есть электрический ток. Скорость теплового движения заряженных частиц, например в металле, измеряется сотнями метров в секунду, однако при направленном движении, когда в проводнике установлен какой-то определенный ток, скорость общего движения частиц измеряется долями и единицами миллиметров в секунду.

Так, если в металлическом проводнике сечением 1 кв.мм течет постоянный ток равный 10 А, то средняя скорость упорядоченного движения электронов составит от 0,6 до 6 миллиметров в секунду. Это уже будет электрическим током. И этого медленного движения электронов достаточно, чтобы проводник, например из нихрома, неплохо разогрелся, повинуясь .

Скорость частиц - это не скорость распространения электрического поля!

Отметим, что ток начинается в проводнике почти мгновенно по всему объему, то есть распространяется это «движение» по проводнику со скоростью света, а вот движение непосредственно самих заряженных частиц в 100 миллиардов раз медленнее. Можно рассмотреть аналогию с трубой, по которой течет жидкость.


1. Для существования электрического тока необходимы заряженные частицы

Электроны в металлах и в вакууме, ионы в растворах электролитов - служат носителями заряда и обеспечивают наличие тока в разных веществах. В металлах электроны очень подвижны, некоторые из них свободно могут двигаться от атома к атому, словно газ заполняя пространство между узлами кристаллической решетки.

В электронных лампах электроны покидают катод в процессе термоэлектронной эмиссии, устремляясь под действием электрического поля к аноду. В электролитах молекулы распадаются в воде на положительно и отрицательно заряженные части, и становятся ионами - свободными носителями заряда в электролитах. То есть везде, где может существовать электрический ток, есть свободные носители заряда, способные перемещаться . Это и есть первое условие существования электрического тока - наличие свободных носителей заряда.


2. Второе условие существования электрического тока - на заряд должны действовать сторонние силы

Если теперь взглянуть на проводник, допустим это медный провод, то можно задаться вопросом: а что нужно для того, чтобы электрический ток в нем возник? Заряженные частицы, электроны, есть, они способны свободно перемещаться.

Что заставит их двигаться? Известно, что электрически заряженная частица взаимодействует с электрическим полем. Следовательно в проводнике необходимо создать электрическое поле, тогда в каждой точке проводника возникнет потенциал, между концами проводника будет иметь место разность потенциалов, и электроны придут в движение по направлению поля - по направлению от «-» к «+», то есть в направлении против вектора напряженности электрического поля. Электрическое поле станет ускорять электроны, увеличивая их (кинетическую и магнитную) энергию.

В итоге, если мы рассматриваем просто приложенное снаружи к проводнику электрическое поле (поместили проводник в электрическое поле вдоль силовых линий), то электроны станут скапливаться у одного конца провода, и на этом конце возникнет отрицательный заряд, а поскольку с другого конца провода электроны сместились, то на нем будет иметь место заряд положительный.

В результате электрическое поле проводника, заряженного приложенным снаружи электрическим полем, будет такого направления, чтобы своим действием ослаблять внешнее электрическое поле.

Процесс перераспределения зарядов протечет почти мгновенно, и по его завершении ток в проводнике прекратится. Результирующее электрическое поле внутри проводника станет равным нулю, а напряженность по краям окажется равной по модулю, но противоположной по направлению к приложенному снаружи электрическому полю.

Если электрическое поле в проводнике создается источником постоянного тока, например батарейкой, то такой источник станет для проводника источником сторонних сил, то есть тем источником, который создаст в проводнике постоянную ЭДС, и будет поддерживать разность потенциалов. Очевидно, чтобы ток источником сторонних сил поддерживался, цепь должна быть замкнутой.

Заряд в движении. Он может принимать форму внезапного разряда статического электричества, такого как, например, молния. Или это может быть контролируемый процесс в генераторах, батареях, солнечных или топливных элементах. Сегодня мы рассмотрим само понятие "электрический ток" и условия существования электрического тока.

Электрическая энергия

Большая часть электроэнергии, которую мы используем, поступает в виде переменного тока из электрической сети. Он создается генераторами, работающими по закону индукции Фарадея, благодаря которому изменяющееся магнитное поле может индуцировать электрический ток в проводнике.

Генераторы имеют вращающиеся катушки провода, которые проходят через магнитные поля по мере их вращения. Когда катушки вращаются, они открываются и закрываются относительно магнитного поля и создают электрический ток, меняющий направление на каждом повороте. Ток проходит через полный цикл вперед и назад 60 раз в секунду.

Генераторы могут питаться от паровых турбин, нагретых углем, природным газом, нефтью или ядерным реактором. Из генератора ток проходит через ряд трансформаторов, где растет его напряжение. Диаметр проводов определяет величину и силу тока, которую они могут переносить без перегрева и потери энергии, а напряжение ограничено только тем, насколько хорошо линии изолированы от земли.

Интересно отметить, что ток переносится только одним проводом, а не двумя. Две его стороны обозначаются как положительная и отрицательная. Однако, поскольку полярность переменного тока изменяется 60 раз в секунду, они имеют и другие названия - горячие (магистральные линии электропередач) и заземленные (проходящие под землей для замыкания цепи).

Зачем нужен электрический ток?

Существует масса возможностей применения электротока: он может осветить ваш дом, вымыть и высушить одежду, поднять дверь вашего гаража, заставить вскипеть воду в чайнике и дать возможность работать другим бытовым предметам, которые значительно облегчают нам жизнь. Тем не менее все более важным становится способность тока передавать информацию.

При подключении к Интернету компьютером используется лишь небольшая часть электрического тока, но это то, без чего современный человек не представляет своей жизни.

Понятие об электрическом токе

Подобно речному течению, потоку молекул воды, электрический ток - это поток заряженных частиц. Что это такое, что его вызывает, и почему он не всегда идет в одном направлении? Когда вы слышите слово «течет», о чем вы думаете? Возможно, это будет река. Это хорошая ассоциация, потому что именно по этой причине электрический ток получил свое название. Он очень похож на поток воды, только вместо молекул воды, движущихся по руслу, заряженные частицы движутся по проводнику.

Среди условий, необходимых для существования электрического тока, есть пункт, предусматривающий наличие электронов. Атомы в проводящем материале имеют много этих свободных заряженных частиц, которые плавают вокруг и между атомами. Их движение является случайным, поэтому поток в каком-либо заданном направлении отсутствует. Что же нужно, чтобы существовал электрический ток?

Условия существования электрического тока включают в себя наличие напряжения. Когда оно применяется к проводнику, все свободные электроны будут двигаться в одном направлении, создавая ток.

Любопытно об электрическом токе

Интересно то, что когда электрическая энергия передается через проводник со скоростью света, сами электроны движутся намного медленнее. На самом деле, если бы вы не спеша прошли рядом с токопроводящей проволокой, ваша скорость была бы в 100 раз быстрее, чем двигаются электроны. Это обусловлено тем, что им не нужно преодолевать огромные расстояния, чтобы передавать энергию друг другу.

Прямой и переменный ток

Сегодня широко используются два разных типа тока - постоянный и переменный. В первом электроны движутся в одном направлении, с «отрицательной» стороны на «положительную». Переменный ток толкает электроны назад и вперед, изменяя направление потока несколько раз в секунду.

Генераторы, используемые на электростанциях для производства электроэнергии, предназначены для производства переменного тока. Вы, наверное, никогда не обращали внимание на то, что свет в вашем доме на самом деле мерцает, поскольку текущее направление меняется, но это происходит слишком быстро, чтобы глаза смогли это распознать.

Каковы условия существования постоянного электрического тока? Зачем нам нужны оба типа и какой из них лучше? Это хорошие вопросы. Тот факт, что мы все еще используем оба типа тока, говорит о том, что они оба служат определенным целям. Еще в XIX веке было понятно, что эффективная передача мощности на большие расстояния между электростанцией и домом была возможна лишь при очень высоком напряжении. Но проблема заключалась в том, что отправка действительно высокого напряжения была чрезвычайно опасной для людей.

Решение этой проблемы состояло в том, чтобы уменьшить напряжение вне дома, прежде чем отправлять его внутрь. И по сей день постоянный электрический ток используется для передачи на большие расстояния, в основном из-за его способности легко преобразовываться в другие напряжения.

Как работает электрический ток

Условия существования электрического тока включают в себя наличие заряженных частиц, проводника и напряжения. Многие ученые изучали электричество и обнаружили, что существует два его типа: статическое и текущее.

Именно второе играет огромную роль в повседневной жизни любого человека, так как представляет собой электрический ток, который проходит через цепь. Мы ежедневно используем его для питания наших домов и многого другого.

Что такое электрический ток?

Когда в цепи циркулируют электрические заряды из одного места в другое, возникает электрический ток. Условия существования электрического тока включают в себя, помимо заряженных частиц, наличие проводника. Чаще всего это провод. Схема его представляет собой замкнутый контур, в котором ток проходит от источника питания. Когда же цепь разомкнута, он не может закончить путь. Например, когда свет в вашей комнате выключен, цепь разомкнута, но когда цепь замкнута, свет горит.

Мощность тока

На условия существования электрического тока в проводнике большое влияние оказывает такая характеристика напряжения, как мощность. Это показатель того, сколько энергии используется в течение определенного периода времени.

Существует много разных единиц, которые могут использоваться для выражения данной характеристики. Однако электрическая мощность почти измеряется в ваттах. Один ватт равен одному джоулю в секунду.

Электрический заряд в движении

Каковы условия существования электрического тока? Он может принимать форму внезапного разряда статического электричества, такого как молния или искра от трения с шерстяной тканью. Однако чаще, когда мы говорим об электрическом токе, мы имеем в виду более контролируемую форму электричества, благодаря которой горит свет и работают приборы. Большая часть электрического заряда переносится отрицательными электронами и положительными протонами внутри атома. Однако вторые в основном иммобилизованы внутри атомных ядер, поэтому работа по переносу заряда из одного места в другое проделывается электронами.

Электроны в проводящем материале, таком как металл, в значительной степени свободны для перехода от одного атома к другому вдоль их зон проводимости, которые являются высшими электронными орбитами. Достаточная электродвижущая сила или напряжение создает дисбаланс заряда, который может вызвать движение электронов через проводник в виде электрического тока.

Если провести аналогию с водой, то возьмем, к примеру, трубу. Когда мы открываем клапан на одном конце, чтобы вода попала в трубу, то нам не нужно ждать, пока эта вода проложит весь путь до ее конца. Мы получаем воду на другом конце почти мгновенно, потому что входящая вода толкает воду, которая уже находится в трубе. Это то, что происходит в случае электрического тока в проводе.

Электрический ток: условия существования электрического тока

Электрический ток обычно рассматривается как поток электронов. Когда два конца батареи соединены друг с другом с помощью металлической проволоки, эта заряженная масса через провод попадает из одного конца (электрода или полюса) батареи на противоположный. Итак, назовем условия существования электрического тока:

  1. Заряженные частицы.
  2. Проводник.
  3. Источник напряжения.

Однако не все так просто. Какие условия необходимы для существования электрического тока? На этот вопрос можно ответить более подробно, рассмотрев следующие характеристики:

  • Разность потенциалов (напряжение). Это одно из обязательных условий. Между 2 точками должна быть разница потенциалов, означающая, что отталкивающая сила, которая создается заряженными частицами в одном месте, должна быть больше, чем их сила в другой точке. Источники напряжения, как правило, не встречаются в природе, и электроны распределяются в окружающей среде достаточно равномерно. Все же ученым удалось изобрести определенные типы приборов, где эти заряженные частицы могут накапливаться, тем самым создавая то самое необходимое напряжение (например, в батарейках).
  • Электрическое сопротивление (проводник). Это второе важное условие, которое необходимо для существования электротока. Это путь, по которому перемещаются заряженные частицы. В качестве проводников выступают только те материалы, которые дают возможность электронам свободно перемещаться. Те же, у которых этой способности нет, называются изоляторами. Например, проволока из металла будет отличным проводником, в то время как ее резиновая оболочка будет превосходным изолятором.

Тщательно изучив условия возникновения и существования электрического тока, люди смогли приручить эту мощную и опасную стихию и направить ее на благо человечества.

Электрический ток - упорядоченное по направлению движение электрических зарядов. За направление тока принимается направление движения положительных зарядов.


Прохождение тока по проводнику сопровождается следующими его действиями:

* магнитным (наблюдается во всех проводниках)
* тепловым (наблюдается во всех проводниках, кроме сверхпроводников)
* химическим (наблюдается в электролитах).

Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:

* наличие в среде свободных электрических зарядов
* создание в среде электрического поля.

Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = q* E, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника,
Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля.

Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).
Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.
Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока.
основные характеристики

1. Сила тока - I, единица измерения - 1 А (Ампер).
Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени.
I = Dq/Dt .

Формула справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным.
Для переменного тока:
I = lim Dq/Dt ,
Dt - 0

т.е. I = q", где q" - производная от заряда по времени.
2. Плотность тока - j, единица измерения - 1 А/м2.
Плотностью тока называется величина, равная силе тока, протекающего через единичное поперечное сечение проводника:
j = I/S .

3. Электродвижущая сила источника тока - э.д.с. (e), единица измерения - 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:
e = Аст./q .

4. Сопротивление проводника - R, единица измерения - 1 Ом.
Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях.

Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, что
R = r*l/S ,

где
l - длина проводника,
S - площадь поперечного сечения,
r - коэффициент пропорциональности, названный удельным сопротивлением материала.
Эта формула хорошо подтверждается на опыте.
Взаимодействие частиц проводника с движущимися в токе зарядами зависит от хаотического движения частиц, т.е. от температуры проводника. Известно, что
r = r0(1 + a t) ,
R = R0(1 + a t) .

Коэффициент a называется температурным коэффициентом сопротивления:
a = (R - R0)/R0*t .

Для химически чистых металлов a > 0 и равно 1/273 К-1. Для сплавов температурные коэффициенты имеют меньшее значение. Зависимость r(t) для металлов линейная:

В 1911 году открыто явление сверхпроводимости, заключающееся в том, что при температуре, близкой к абсолютному нулю, сопротивление некоторых металлов падает скачком до нуля.

У некоторых веществ (например, у электролитов и полупроводников) удельное сопротивление с ростом температуры уменьшается, что объясняется ростом концентрации свободных зарядов.
Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью s
s = 1/r .

5. Напряжение - U , единица измерения - 1 В.
Напряжение - физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда.

U = (Aст.+ Аэл.)/q .

Так как Аст./q = e, а Аэл./q = f1-f2, то
U = e + (f1 - f2) .

Направленное (упорядоченное) движение свободных заряженных частиц под действием электрического поля называется электрическим током .

Условия существования тока :

1. Наличие свободных зарядов.

2. Наличие электрического поля, т.е. разности потенциалов. Свободные заряды имеются в проводниках. Электрическое поле создается источниками тока.

При прохождении тока через проводник он оказывает следующие действия:

· Тепловое (нагревание проводника током). Например: работа электрического чайника, утюга и т.д.).

· Магнитное (возникновение магнитного поля вокруг проводника с током). Например: работа электродвигателя, электроизмерительных приборов).

· Химическое (химические реакции при прохождении тока через некоторые вещества). Например: электролиз.

Можно также говорить о

· Световом (сопровождает тепловое действие). Например: свечение нити накала электрической лампочки.

· Механическом (сопровождает магнитное или тепловое). Например: деформация проводника при нагревании, поворот рамки с током в магнитном поле).

· Биологическом (физиологическом). Например: поражение человека током, использование действия тока в медицине.

Основные величины, описывающие процесс прохождения тока по проводнику .

1. Сила тока I - скалярная величина, равная отношению заряда, прошедшего через поперечное сечение проводника, промежутку времени, в течение которого шел ток. Сила тока показывает, какой заряд проходит через поперечное сечение проводника за единицу времени. Ток называют постоянным , если сила тока не меняется со временем. Для того чтобы ток через проводник был постоянным необходимо, чтобы разность потенциалов на концах проводника была постоянной.

2. Напряжение U . Напряжение численно равно работе электрического поля по перемещению единичного положительного заряда вдоль силовых линий поля внутри проводника.

3. Электрическое сопротивление R - физическая величина, численно равная отношению напряжения (разности потенциалов) на концах проводника к силе тока, проходящего через проводник.

60. Закон Ома для участка цепи.

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого проводника и обратно пропорциональна его сопротивлению:

I = U / R;

Ом установил, что сопротивление прямо пропорционально длине проводника и обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.

где ρ - удельное сопротивление, l - длина проводника, S - площадь поперечного сечения проводника.

61. Сопротивление как электрическая характеристика резистора. Зависимость сопротивления металлических проводников от рода материала и геометрических размеров.


Электри́ческое сопротивле́ние - физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему. Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

Где R - сопротивление; U - разность электрических потенциалов на концах проводника; I - сила тока, протекающего между концами проводника под действием разности потенциалов.

Сопротивление проводника является такой же характеристикой проводника как и его масса. Сопротивление проводника не зависит ни от силы тока в проводнике, ни от напряжения на его концах, а зависит только от рода вещества, из которого изготовлен проводник и его геометрических размеров: , где: l - длина проводника, S - площадь поперечного сечения проводника, ρ - удельное сопротивление проводника, показывающее каким сопротивлением будет обладать проводник длиной 1 м и площадью сечения 1 м 2 , изготовленный из данного материала.

Проводники, подчиняющиеся закону Ома, называются линейными. Существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Зависимость сопротивления проводника от температуры выражается формулой: , где: R - сопротивление проводника при температуре Т, R 0 - сопротивление проводника при температуре 0ºС, α - температурный коэффициент сопротивления.

mob_info