Теорема Пифагора: история вопроса, доказательства, примеры практического применения. Древние теоремы. История теоремы Пифагора Что доказал пифагор

Привиденцев Владислав, Фарафонова Екатерина

Проектная работа учащихся к математической конференции

Скачать:

Предварительный просмотр:

БОУ ТР ОО «Троснянская средняя общеобразовательная школа»

Ученическая математическая конференция, посвященная великому математику Пифагору

(в рамках Недели математики в школе)

История теоремы Пифагора

(проект)

Подготовили

учащиеся 9 б класса

Фарафонова Екатерина и Привиденцев Владислав

Учитель Билык Т.В.

Январь – 2016г.

Цели:

  • 1.Расширить свои знания по истории математики.
  • 2.Познакомиться с биографическими фактами из жизни Пифагора, связанными с теоремой.
  • 3.Изучить историю теоремы Пифагора через мифы, легенды древности.
  • 4.Рассмотреть применение теоремы Пифагора при решении задач из различных разделов геометрии.

План.

1.Введение

2. Из истории теоремы

3. Стихи о Пифагоре

4. Итог

5. Заключение

Введение.

Теорема Пифагора издавна широко применялась в разных областях науки, техники и практической жизни. О ней писали в своих произведениях римский архитектор и инженер Витрувий, греческий писатель-моралист Плутарх, греческий учёный lll в. Диоген Лаэрций, математик V в. Прокл и многие другие. Легенда о том, что в честь своего открытия Пифагор принёс в жертву быка или, как рассказывают другие, сто быков, послужила поводом для юмора в рассказах писателей и в стихах поэтов.

Поэт Генрих Гейне(1797-1856), известный своими антирелигиозными взглядами и язвительными насмешками над суевериями, в одном из своих произведений высмеивает «учение» о переселении душ следующим образом:

«Кто знает! Кто знает! Душа Пифагора поселилась, быть может, бедняку - кандидата, не сумевшего доказать теоремы Пифагора и поэтому провалившегося на экзамене, тогда как в его экзаменаторах обитают души тех самых быков, которых некогда Пифагор принес в жертву бессмертным богам, обрадованный открытием своей теоремы». История Пифагоровой теоремы начинается задолго до Пифагора. На протяжении веков были даны многочисленные разные доказательства теоремы Пифагора.

Из истории теоремы

Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4". В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

  • Кантор (крупнейший немецкий историк математики) считает, что равенство 32 + 42 = 52 было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5. Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3м. от одного конца и 4 метра от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра. Гарпедонаптам можно было бы возразить, что их способ построения становиться излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, например рисунки, изображающие столярную мастерскую.
  • Несколько больше известно о теореме Пифагора у вавилонян . В одном тексте, относимом ко времени Хаммураби , т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой-на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал следующий вывод: "Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку." Геометрия у индусов , как и у египтян и вавилонян, была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 18 века до н. э.
  • В первом русском переводе евклидовых "Начал", сделанном Ф. И. Петрушевским, теорема Пифагора изложена так: прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол". В настоящее время известно, что эта теорема не была открыта Пифагором. Однако одни полагают, что Пифагор первым дал ее полноценное доказательство, а другие отказывают ему и в этой заслуге. Некоторые приписывают Пифагору доказательство, которое Евклид приводит в первой книге своих "Начал". С другой стороны, Прокл утверждает, что доказательство в "Началах" принадлежит самому Евклиду. Как мы видим, история математики почти не сохранила достоверных данных о жизни Пифагора и его математической деятельности. Зато легенда сообщает, даже ближайшие обстоятельства, сопровождавшие открытие теоремы. Рассказывают, что в честь этого открытия Пифагор принес в жертву 100 быков.
  • Долгое время считали, что до Пифагора эта теорема не была известна и названа ее потому «теоремой Пифагора». Это название сохранилось поныне. Однако в настоящее время установлено, что эта важнейшая теорема встречается в вавилонских текстах, написанных за 1200 лет до Пифагора.
  • О том, что треугольник со сторонами 3, 4 и 5 есть прямоугольник, знали за 2000 лет до н.э. египтяне, которые, вероятно пользовались этим отношением для построения прямых углов при сооружении зданий. В Китае предложение о квадрате гипотенузы было известно, по крайней мере, за 500 лет до Пифагора. Эта теорема была известна и в Древней,Индии; об этом свидетельствуют предложения, содержащиеся в «Сутрах».

Пифагор сделал много важных открытий, но наибольшую славу учёному принесла доказанная им теорема, которая сейчас носит его имя. Действительно, в современных учебниках теорема сформулирована так: "В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов". - Как записать теорему Пифагора для прямоугольного треугольника АВС с катетами а , b и гипотенузой с.

а 2 + b 2 = с 2

Предполагают, что во времена Пифагора теорема звучала по-другому: "Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах". Действительно, с 2 – площадь квадрата, построенного на гипотенузе, а 2 и b 2 – площади квадратов, построенных на катетах.

Вероятно, факт, изложенный в теореме Пифагора, был сначала установлен для равнобедренных прямоугольных треугольников. Квадрат, построенный на гипотенузе, содержит четыре треугольника. А на каждом катете построен квадрат, содержащий два треугольника. Из рисунка 9 видно, что площадь квадрата, построенного на гипотенузе равна сумме площадей квадратов, построенных на катетах.

Стихи о Пифагоре.
Немецкий писатель-романист А. Шамиссо, который в начале Xl X в. Участвовал в кругосветном путешествии на русском корабле «Рюрик», написал следующие стихи:
Пребудет вечной истина, как скоро
Её познает слабый человек!
И ныне теорема Пифагора
Верна, как и его далёкий век.
Обильно было жертвоприношение
Богам от Пифагора. Сто быков
Он отдал на закланье и сожженье
За света луч, пришедший с облаков.
Поэтому всегда с тех самых пор,
Чуть истина рождается на свет,
Быки ревут, её почуя, вслед.
Они не в силах свету помешать,
А могут лишь, закрыв глаза, дрожать
От страха, что вселил в них Пифагор

Подводим итог:
Если дан нам треугольник
И притом с прямым углом,
То квадрат гипотенузы
Мы всегда легко найдём:
Катеты в квадрат возводим,
Сумму степеней находим
И таким простым путём
К результату мы придём.

Приближается зачёт по геометрии, а на зачётах и экзаменах иногда бывают случаи, когда ученики, вытянув билет, помнят формулировку теоремы, но забывают с чего начать доказательство. Чтобы этого не произошло с вами, предлагаю рисунок – опорный сигнал. Думаю, он надолго останется в вашей памяти.

Отрубил Иван-царевич дракону голову, а у него две новые выросли. На математическом языке это означает: провели в Δ АВС высоту CD , и образовалось два новых прямоугольных треугольника ADC и BDC .

Заключение.

После изучения построенного материала можно заключить, что теорема Пифагора - одна из самых главных теорем геометрии потому, что с её помощью можно доказать много других теорем и решить множество задач.

Пифагор и школа Пифагора сыграли большую роль в усовершенствовании методов решения научных проблем: в математику твёрдо вошло положение о необходимости строгих доказательств, что и придало ей значение особой науки.





Введение

Трудно найти человека, у которого имя Пифагора не ассоциировалось бы с его теоремой. Пожалуй, даже те, кто в своей жизни навсегда распрощался с математикой, сохраняют воспоминания о «пифагоровых штанах» - квадрате на гипотенузе, равновеликом двум квадратам на катетах.

Причина такой популярности теоремы Пифагора триедина: это

простота - красота - значимость. В самом деле, теорема Пифагора проста, но не очевидна. Это сочетание двух противоречивых

начал придает ей особую притягательную силу, делает ее красивой.

Кроме того, теорема Пифагора имеет огромное значение: она применяется в геометрии буквально на каждом шагу, и тот факт, что существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т. д.), свидетельствует о гигантском числе её конкретных реализаций.

В современных учебниках теорема сформулирована так: «В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов».

Во времена Пифагора она звучала так: «Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах» или «Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах».

Цели и задачи

Основная цель работы состояла в том, чтобы показать значение теоремы Пифагора в развитие науки и техники многих стран и народов мира, а также в наиболее простой и интересной форме преподать содержание теоремы.

Основной метод, который использовали в работе, - это метод систематизации и обработки данных.

Привлекая информационные технологии, разнообра зили материал различными красочными иллюстрациями.

«ЗОЛОТЫЕ СТИХИ» ПИФАГОРА

Будь справедлив и в словах, и в поступках своих... Пифагор (ок. 570- ок. 500 гг. до н. э.)

Древнегреческий философ и математик, просла вившийся своим учением о космической гармонии и переселении душ. Предание приписывает Пифагору доказательство теоремы, носящей его имя. Многое в учении Платона восходит к Пифагору и его последова телям.

Письменных документов о Пифагоре Самосском, сыне Мнесарха, не осталось, а по более поздним свидетельствам трудно восстановить подлинную картину его жизни и достижений. (Электронная энциклопедия: Star World ) Известно, что Пифагор покинул свой родной остров Самос в Эгейском море у бере гов Малой Азии в знак протеста против тирании правителя и уже в зрелом возрасте (по преданию в 40 лет) появился в греческом городе Кротоне на юге Италии. Пифагор и его последователи - пифагорейцы - образовали тайный союз, игравший немалую роль в жизни греческих колоний в Ита лии. Пифагорейцы узнавали друг друга по звёздчатому пятиугольнику - пентаграмме. Но Пифагору пришлось удалиться в Метапонт, где он и умер. Позднее, во второй половине V до н. э., его орден был разгромлен.

На учение Пифагора большое влияние оказала философия и рели гия Востока. Он много путешествовал по странам Востока: был в Египте и Вавилоне. Там Пифагор познакомился и с восточной матема тикой.

Пифагорейцы верили, что в числовых закономерностях спрятана тай на мира. Мир чисел жил для пифагорейца особой жизнью, числа имели свой особый жизненный смысл. Числа, равные сумме своих делителей, воспринимались как совершенные (6, 28, 496, 8128); дружественными называли пары чисел, из которых каждое равнялось сумме делителей дру гого (например, 220 и 284). Пифагор впервые разделил числа на четные и нечетные, простые и составные, ввел понятие фигурного числа. В его школе были подробно рассмотрены пифагоровы тройки натуральных чисел, у которых квадрат одного равнялся сумме квадратов двух других (великая теорема Ферма).

Пифагору приписывается высказывание: «Все есть число». К числам (а он имел ввиду лишь натуральные числа) он хотел свести весь мир, и математику в частности. Но в самой школе Пифагора было сделано открытие, нарушавшее эту гармонию. Было доказано, что корень из 2 не является рациональным числом, т. е. не выражается через натуральные числа.

Естественно, что геометрия у Пифагора была подчинена арифметике. Это ярко проявилось в теореме, носящей его имя и ставшей в дальнейшем основой применения численных методов геометрии. (Позже Евклид вновь вывел на первое место геометрию, подчинив ей алгебру.) По-видимому, пифагорейцы знали правильные тела: тетраэдр, куб и додекаэдр.

Пифагору приписывают систематическое введение доказательств в геометрию, создание планиметрии прямолинейных фигур, учение о подо бии.

С именем Пифагора связывают учение об арифметических, геометрических и гармонических пропорциях.

Следует заметить, что Пифагор считал Землю шаром, движущимся вокруг солнца. Когда в XVI веке церковь начала ожесточённо преследо вать учение Коперника, это учение упорно именовалось пифагорейским. (Энциклопедический словарь юного математика: Э-68. А. П. Савин. - М.: Педагогика, 1989, с. 28.)

Некоторые фундаментальные концепции, несомненно, принадлежат самому Пифагору. Первая из них - представление о космосе как о матема тически упорядоченном целом. Пифагор пришел к нему после того, как открыл, что основные гармонические интервалы, т. е. октава, чистая квинта и чистая кварта, возникают, когда длины колеблющихся струн относятся как 2:1, 3:2 и 4:3 (легенда гласит, что открытие было сделано, когда Пифагор проходил мимо кузницы: имевшие разную массу наковальни порождали при ударе соответствующие соотношения звучаний) . Усмот рев аналогию между упорядоченностью в музыке, выражаемой открытыми им отношениями, и упорядоченностью материального мира, Пифагор пришел к заключению, что математическими соотношениями пронизан весь космос. Попытка применить математические открытия Пифагора к умозрительным физическим построениям приводила к любопытным ре зультатам. Так, предполагалось, что каждая планета при своем обращении вокруг Земли издает, проходя сквозь чистый верхний воздух, или «эфир», тон определенной высоты. Высота звука меняется в зависимости от скоро сти движения планеты, скорость же зависит от расстояния до Земли. Слива ясь, небесные звуки образуют то, что получило название «гармонии сфер», или «музыки сфер», ссылки на которую нередки в европейской литературе.

Ранние пифагорейцы считали, что Земля плоская и находится в центре космоса. Позднее они стали считать, что Земля имеет сферическую форму и вместе с другими планетами (к числу которых они относили Солнце) обра щается вокруг центра космоса, т. е. «очага».

В античности Пифагор был известен более всего как проповедник оп ределенного образа жизни. Центральным в его учении было представле ние о реинкарнации (переселении душ), что, разумеется, предполагает способность души переживать смерть тела, а значит ее бессмертие. Поскольку в новом воплощении душа может переселиться в тело животного, Пифагор был противником умерщвления животных, употребления в пищу их мяса и даже заявлял, что не следует иметь дело с теми, кто забивает животных или разделывает их туши. Насколько можно судить по сочинениям Эмпедокла, разделявшего религиозные воззрения Пифагора, пролитие крови рассматривалось здесь в качестве первородного греха, за который душа изгоняется в бренный мир, где она блуждает, будучи заключена то в одно, то в другое тело. Душа страстно желает освобождения, но по невежеству неизменно повторяет греховное деяние.

Избавить душу от нескончаемой череды перевоплощений может очищение. Простейшее очищение заключается в соблюдении некоторых запретов (например, воздержание от опьянения или от употребления в пищу бобов) и правил поведения (например, почитание старших, законопослушание и негневливость).

Пифагорейцы высоко ценили дружбу, и по их понятиям все имущество друзей должно быть общим. Немногим избранным предлагалась высшая форма очищения - философия, т. е. любовь к мудрости, а значит стремление к ней (слово это, как утверждает Цицерон, было впервые употреблено Пифагором, который назвал себя именно не мудрецом, а любителем мудрости). С помощью этих средств душа приходит в соприкосновение с принципами космического порядка и становится им созвучной, она освобождается от своей привязанности к телу, его беззаконных и не упорядоченных желаний. Математика - одна из составных частей религии пифагорейцев, которые учили, что Бог положил число в основу мирового порядка.

Влияние пифагорейского братства в первой половине V в. до н. э. не прерывно возрастало. Но его стремление отдать власть «наилучшим» пришло в конфликт с подъемом демократических настроений в греческих городах южной Италии, и вскоре после 450 г. до н. э. в Кротоне вспыхнуло восстание против пифагорейцев, которое привело к убийству и изгнанию многих, если не всех, членов братства. Впрочем, еще в IV в. до н. э. пифаго рейцы пользовались влиянием в южной Италии, а в Таренте, где жил друг Платона Архит, оно сохранялось еще дольше. Однако куда важнее для истории философии было создание пифагорейских центров в самой Греции, например в Фивах, во второй половине V в. до н. э. Отсюда пифагорейские идеи проникли в Афины, где, если верить платоновскому диалогу Федон, они были усвоены Сократом и превратились в широкое идейное движение, начатое Платоном и его учеником Аристотелем.

В последующие столетия фигура самого Пифагора была окружена
множеством легенд: его считали перевоплощенным богом Аполлоном,
полагали, что у него было золотое бедро, и он был способен преподавать в
одно и то же время в двух местах. Отцы раннехристианской церкви ответ
ли Пифагору почетное место между Моисеем и Платоном. Еще в XVI в[
были нередки ссылки на авторитет Пифагора в вопросах не только науки |.:
но и магии.
(Электронная энциклопедия: Star World .).

За легендой - истина

Открытие теоремы Пифагора окружено ореолом красивых легенда Прокл, комментируя последнее предложение I книги «Начал» Евклида, пишет: «Если послушать тех, кто любит повторять древние легенды, то придется сказать, что эта теорема восходит к Пифагору; рассказывают, что он в честь этого принес в жертву быка». Легенда эта прочно срослась с теоремой Пифагора и через 2000 лет продолжала вызывать горячие от клики. Так, оптимист Михайло Ломоносов писал: «Пифагор за изобретение одного геометриче ского правила Зевесу принес на жертву сто волов. Но ежели бы за найденные в нынешние времена от остроумных математиков правила по суеверной его ревности поступать, то едва бы в целом свете столько рогатого скота сыскалось».

А вот ироничный Ген рих Гейне видел развитие той же ситуации не сколько иначе : « Кто знает ! Кто знает ! Возможно , душа Пифа гора переселилась в беднягу кандидата , который не смог доказать теорему Пифагора и провалился из - за этого на экзаменах , тогда как в его экзаменаторах обитают души тех быков , которых Пифагор , обрадованный открытием своей теоремы , принес в жертву бессмертным богам ».

История открытия теоремы

Обычно открытие теоремы Пифагора приписывают древнегреческому философу и математику Пифагору (VI в. до н. э.). Но изучение вавилонских клинописных таблиц и древнекитайских рукописей (копий еще более древних манускриптов) показало, что это утверждение было известно задолго до Пифагора, возможно, за тысячелетия до него. Заслуга же Пифагора состояла в том, что он открыл доказательство этой теоремы.

Исторический обзор начнем с древнего Китая. Здесь особое вни мание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: «Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4».

В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

Также теорема Пифагора была обнаружена и в древнекитайском трактате «Чжоу - би суань цзинь» («Математический трактат о гномоне»), время создания которого точно неизвестно, но где утверждается, что в XV в. до н. э. китайцы знали свойства египетского треугольника, а в XVI в. до н. э. - и общий вид теоремы.

Кантор (крупнейший немецкий историк математики) считает, что равенство 3 2 + 4 2 = 5 2 было известно уже египтянам еще около 2300 г. до н. э. во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея).

По мнению Кантора, гарпедонапты, или «натягиватели веревок», строили прямые углы при

помощи прямоугольных треугольников со сторонами 3, 4 и 5.

Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м и привяжем к ней по цветной полоске на расстоянии 3 м от одного конца и 4 м от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 м. Гарпедонаптам можно было бы возразить, что их способ построения становится излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, например рисунки, изображающие столярную мастерскую. Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко вре мени Хаммурапи, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямо угольного треугольника. Отсюда можно сделать вывод, что в Двуре чье умели производить вычисления с прямоугольными треугольника ми, по крайней мере, в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой - на крити ческом изучении греческих источников, Ван-дер-Варден (голланд ский математик) сделал следующий вывод:

«Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецеп ты, основанные на смутных представлениях, превратились в точ ную науку».

Геометрия у индусов, как и у египтян и вавилонян, была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипо тенузы была известна в Индии уже около XVIII века до и. э., также о ней было известно и в древнеиндийском геометрическо- теологическом трактате VII - V вв. до н. э. «Сульва сутра» («Правила верёвки»).

Но несмотря на все эти доказательства, имя Пифагора столь прочно сплавилось с теоремой Пифагора, что сейчас просто невоз можно представить, что это словосочетание распадётся. То же от носится и к легенде о заклинании быков Пифагора. Да и вряд ли нужно препарировать историко-математическим скальпелем кра сивые древние предания.

Способы доказательства теоремы

Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons asinorum - ослиный мост, или elefuga - бегство «убогих», так как некоторые «убогие» ученики, не имевшие серьезной математической подготовки, бежа ли от геометрии. Слабые ученики, заучившие теоремы наизусть, без понимания и прозванные поэтому «ослами», были не в состоя нии преодолеть теорему Пифагора, служившую для них вроде не преодолимого моста. Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также «ветряной мельницей», со ставляли стихотворения вроде «Пифагоровы штаны на все стороны равны», рисовали карикатуры.

а). Простейшее доказательство

Вероятно, факт, изложенный в теореме Пифагора, был сна чала установлен для равнобедренных прямоугольников. Достаточно взглянуть на мозаику из чёрных и светлых треугольников, чтобы убедиться в справедливости теоремы для треугольни ка ABC : квадрат, построенный на гипотенузе, содержит четыре треугольника, а на каждом катете построен квадрат, содержащий два треугольника (рис. 1, 2).

Доказательства, основанные на использовании понятия равновеликости фигур.

При этом можно рассмотреть доказательства, в которых квад рат, построенный на гипотенузе данного прямоугольного тре угольника, «складывается» из таких же фигур, что и квадраты, построенные на катетах. Можно рассматривать и такие доказательст ва, в которых применяется перестановка слагаемых фигур и учитывается ряд новых идей.

На рис. 3 изображено два равных квадрата. Длина сторон каж дого квадрата равна а + Ь. Каждый из квадратов разбит на части, состоящие из квадратов и прямоугольных треугольников. Ясно, что если от площади квадрата отнять учетверенную площадь прямоугольного треугольника с катетами а, Ъ, то останутся равные пло щади, т. е. с 2 = а 2 + Ь 2 . Впрочем, древние индусы, которым принад лежит это рассуждение, обычно не записывали его, а сопровождали чертеж лишь одним словом: «Смотри!». Вполне возможно, что та кое же доказательство предложил и Пифагор.


б). Доказательства методом достроения.

Сущность этого метода состоит в том, что к квадратам, постро енным на катетах, и к квадрату, построенному на гипотенузе, при соединяют равные фигуры таким образом, чтобы получились рав новеликие фигуры.

На рис. 4 изображена обычная Пифаго рова фигура прямоугольный треугольник ABC с построенными на его сторонах квадратами. К этой фигуре присоединены тре угольники 1 и 2, равные исходному прямо угольному треугольнику.

Справедливость теоремы Пифагора вытекает из равновеликости шестиугольников AEDFPB и ACBNMQ . Здесь прямая ЕР де лит шестиугольник AEDFPB на два равновеликих четырехугольника, прямая СМ делит шестиугольник ACBNMQ на два равновеликих четырехугольника; поворот плоскости на 90° вокруг центра А отображает четырехугольник АЕРВ на четырехугольник ACMQ .

(Это доказательство впервые дал Леонар до да Винчи.)

Пифагорова фигура достроена до прямоугольника, стороны которого парал лельны соответствующим сторонам квадра тов, построенных на катетах. Разобьем этот прямоугольник на треугольники и прямо угольники. Из полученного прямоугольника вначале отнимем все многоугольники 1, 2, 3, 4, 5, 6, 7, 8, 9, остался квадрат, построенный на гипотенузе. Затем из того же прямоугольника отнимем прямоугольники 5, 6, 7 и заштрихованные прямо угольники, получим квадраты, построенные на катетах.

Теперь докажем, что фигуры, вычитаемые в первом случае, равновелики фигурам, вычитаемым во втором случае.

Это иллюстрирует доказательство, приведенное Нассир-эд-Дином (1594 г.). Здесь: PL - прямая;

KLOA = ACPF = ACED = a 2 ;

LGBO = СВМР = CBNQ = b 2 ;

AKGB = AKLO + LGBO = с 2 ;

отсюда с 2 = a 2 + b 2 .

Рис. 7 иллюстрирует доказательство, приведенное Гофманом (1821 г.). Здесь Пифагорова фигура построена так, что квадраты лежат по одну сторону от прямой AB . Здесь:

OCLP = ACLF = ACED = b 2 ;

CBML = CBNQ = а 2 ;

ОВМР = ABMF = с 2 ;

ОВМР = OCLP + CBML ;

Отсюда с 2 = а 2 + b.

Это иллюстрирует еще одно более ори гинальное доказательство, предложенное Гофманом. Здесь: треугольник ABC с пря мым углом С; отрезок BF перпендикулярен СВ и равен ему, отрезок BE перпендикулярен АВ и равен ему, отрезок AD перпендикуля рен АС и равен ему; точки F , С, D принадле жат одной прямой; четырехугольники ADFB и АСВЕ равновелики, так как ABF = ЕСВ; треугольники ADF и АСЕ равновелики;

отнимем от обоих равновеликих четырехуголь ников общий для них треугольник ABC , получим ½ a * a + ½ b * b – ½ c * c

в). Алгебраический метод доказательства.


Рисунок иллюстрирует доказательство великого индийского математика Бхаскари (знаменитого автора Ли-лавати, XII в.). Рисунок сопровождало лишь одно слово: СМОТРИ! Среди доказательств теоремы Пифагора алгебраическим методом первое место (возможно, самое древнее) за нимает доказательство, использующее подо бие.

Историки считают, что Бхаскара выра жал площадь с 2 квадрата, построенного на гипотенузе, как сумму площадей четырёх треугольников 4(ав/2) и площади квадрата со стороной, равной разности катетов.

Приведем в современном изложении одно из таких доказа тельств, принадлежащих Пифагору.

I "

На рис. 10 АВС - прямоугольный, С - прямой угол, (CM L АВ) b - проекция катета b на гипотенузу, а - проекция катета а на гипо тенузу, h - высота треугольника, проведенная к гипотенузе. Из того что АВС подобен АСМ, следует b 2 = cb ; (1) из того что АВС подобен ВСМ, следует а 2 = СА (2) Складывая почленно равенства (1) и (2), получим а 2 + b 2 = cb + ca = = c (b + a ) = c 2 .

Если Пифагор действительно предложил такое доказательство, то он был знаком и с целым рядом важных геометрических теорем, которые современные историки математики обычно приписывают Евклиду.

Доказательство Мёль- манна . Площадь дан ного прямоугольного треуголь ника, с одной стороны, равна 0,5 a * b , с другой 0,5* p *г, где p - полупериметр треугольника, r - радиус вписанной в него ок ружности (г = 0,5-(а + в - с)). Имеем: 0,5*а*в - 0,5*р*г - 0,5 (а + в + с) * 0,5-(а + в - с), откуда следует, что с 2 = а 2 + b 2 .

г) Доказательство Гарфилда.

На рисунке 12 три пря моугольных треугольника составляют трапецию. Поэтому .площадь этой фигуры можно. \ находить по формуле площа ди прямоугольной трапеции, либо как сумму площадей трех треугольников. В пер вом случае эта площадь рав на 0,5 (а + в) (а + в), во вто ром - 0,5* a * b + 0,5*а* b + 0,5*с 2

Приравнивая эти выражения, получаем теорему Пифагора.

Существует много доказательств теоремы Пифагора, проведен ных как каждым из описанных методов, так и с помощью сочета ния различных методов. Завершая обзор примеров различных дока зательств, приведем еще рисунки, иллюстрирующие восемь спосо бов, на которые имеются ссылки в «Началах» Евклида (рис. 13 - 20). На этих рисунках Пифагорова фигура изображена сплошной лини ей, а дополнительные построения - пунктирной.




Как уже было сказано выше, древние египтяне более 2000 лет тому назад практически пользовались свойствами треугольника со сторонами 3, 4, 5 для построения прямого угла, т. е. фактически применяли теорему, обратную теореме Пифагора. Приведем доказательство этой теоремы, основанное на признаке равенства треугольников (т. е. такое, которое можно очень рано ввести в школь ную практику). Итак, пусть стороны треугольника ABC (рис. 21) связаны соотношением с 2 = а 2 + b 2 . (3)

Докажем, что этот треугольник прямоугольный.

Построим прямоугольный треугольник A В С по двум катетам, длины которых равны длинам а и b катетов данного треугольника. Пусть длина гипотенузы построенного треугольника рав на c . Так как построенный треугольник прямоугольный, то по тео реме Пифагора имеем с = a + b (4)

Сравнивая соотношения (3) и (4), получаем, что с = с или с = с Таким образом, треугольники - данный и построенный - равны, так как имеют по три соответственно равные стороны. Угол С прямой, поэтому и угол С данного треугольника тоже прямой.

Аддитивные доказательства.

Эти доказательства основаны на разложении квадратов, построенных на катетах, на фигуры, из которых можно сложить квад рат, построенный на гипотенузе.

Доказательство Эйнштейна (рис. 23) основано на разложении квадрата, построенного на гипотенузе, на 8 треугольников.

Здесь: ABC - прямоугольный треугольник с прямым углом С; CO MN ; СК MN ; PO || MN ; EF || MN .

Самостоятельно докажите попар ное равенство треугольников, полу ченных при разбиении квадратов, по строенных на катетах и гипотенузе.

б) На основе доказательства ан-Найризия выполнено и другое разложение квадратов на попарно равные фигуры (здесь ABC - прямоугольный треугольник с прямым углом С).

Также это доказательство называется «шарнирным», потому что здесь меняют своё положение только две части, равные исходному треугольнику, причём они как бы прикреплены к остальной фигуре на шарнирах, вокруг которых поворачиваются (рис. 25).

в) Еще одно доказательство методом разложения квадратов на равные части, называемое «колесом с лопастями», приведено на рис. 26. Здесь: ABC - прямоугольный треугольник с прямым уг лом С, О - центр квадрата, построенного на большом катете; пунктирные прямые, проходящие через точку О, перпендикулярны или параллельны гипотенузе.

Это разложение квадратов интересно тем, что его попарно равные четырёхугольники могут быть отображены друг на друга параллельным переносом.

«Пифагоровы штаны» (доказательство Евклида).

В течение двух тысячелетий при меняли доказательство, придуманное Евклидом, которое помещено в его знаменитых «Началах». Евклид опус кал высоту ВН из вершины прямоугольного треугольника на гипотенузу и доказывал, что её продолжение делит построенный на гипотенузе квадрат на два прямоугольника, площади которых равны

площадям соответствующих квадратов, построенных на катетах. Доказательство Евклида в сравнении с древнекитайским или древнеиндийским выглядит чрезмерно сложным. По этой причине его нередко называли «ходульным» и «надуманным». Но такое мнение по верхностно. Чертёж, применяемый при доказательстве теоремы, в шутку называют «пифагоровы штаны». В течение долгого времени он считался одним из символов математической науки.

Древнекитайское доказательство.

Математические трактаты Древнего Китая дошли до нас в редакции II в. до н. э. Дело в том, что в 213 г. до н. э. китайский император

Ши Хуан-ди, стремясь ликвидировать прежние традиции, приказал сжечь все древние книги. Во II в. до н. э. в Китае была изобретена бумага и одновременно начинается восстановление древних книг. Так возникла «Математика в девяти книгах» - главное из сохранившихся математико-астрономических сочине ний.

В 9-й книге «Математики» помещён чер тёж, доказывающий теорему Пифагора. Ключ к этому доказательству подобрать нетрудно (рис. 27).

В самом деле, на древнекитайском чер теже четыре равных прямоугольных тре угольника с катетами а, в и гипотенузой с уложены так, что их внешний контур образу ет квадрат со стороной а + в, а внутренний - квадрат со стороной с, построенный на гипотенузе (рис. 28).

Если квадрат со стороной с вырезать и оставшиеся 4 затушёванных треугольника уложить в два прямоугольника, то ясно, что образовавшаяся пустота, с одной стороны,

равна с, а с другой

а + Ь 2 , т. е. с 2 = а 2 + b

Теорема доказана.

Заметим, что при таком доказательстве

Построения внутри квадрата на гипотену зе, которые мы ви-
дим на древнекитайском чертеже, не используются (рис. 30). По-видимому, древнекитайские математики имели другое до казательство, а именно: если в квадрате со
стороной с два заштрихованных треуголь ника отрезать и приложить гипотенузами к двум другим гипотенузам, то легко обна ружить, что полученная фигура, которую иногда называют «креслом невесты», со стоит из двух квадратов со сторонами а и Ь, т. е. с 2 = а 2 + Ь 2 .

На рисунке воспроизведён чер тёж из трактата «Чжоу-би...». Здесь теорема Пифагора рассмотрена для египетского треугольника с катетами 3, 4 и гипотенузой 5 единиц измерения. Квадрат на гипотенузе содержит 25 клеток, а вписанный в него квадрат на большем катете - 16. Ясно, что оставшаяся часть содержит 9 клеток. Это и будет квадрат на меньшем катете.


Теорема Пифагора гласит:

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы:

a 2 + b 2 = c 2 ,

  • a и b – катеты, образующие прямой угол.
  • с – гипотенуза треугольника.

Формулы теоремы Пифагора

  • a = \sqrt{c^{2} - b^{2}}
  • b = \sqrt {c^{2} - a^{2}}
  • c = \sqrt {a^{2} + b^{2}}

Доказательство теоремы Пифагора

Площадь прямоугольного треугольника вычисляется по формуле:

S = \frac{1}{2} ab

Для вычисления площади произвольного треугольника формула площади:

  • p – полупериметр. p=\frac{1}{2}(a+b+c) ,
  • r – радиус вписанной окружности. Для прямоугольникаr=\frac{1}{2}(a+b-c).

Потом приравниваем правые части обеих формул для площади треугольника:

\frac{1}{2} ab = \frac{1}{2}(a+b+c) \frac{1}{2}(a+b-c)

2 ab = (a+b+c) (a+b-c)

2 ab = \left((a+b)^{2} -c^{2} \right)

2 ab = a^{2}+2ab+b^{2}-c^{2}

0=a^{2}+b^{2}-c^{2}

c^{2} = a^{2}+b^{2}

Обратная теорема Пифагора:

Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный. То есть для всякой тройки положительных чисел a, b и c , такой, что

a 2 + b 2 = c 2 ,

существует прямоугольный треугольник с катетами a и b и гипотенузой c .

Теорема Пифагора - одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Доказана она ученым математиком и философом Пифагором.

Значение теоремы в том, что с ее помощью можно доказать другие теоремы и решать задачи.

Дополнительный материал:

В одном можно быть уверенным на все сто процентов, что на вопрос, чему равен квадрат гипотенузы, любой взрослый человек смело ответит: «Сумме квадратов катетов». Эта теорема прочно засела в сознании каждого образованного человека, но достаточно лишь попросить кого-либо ее доказать, и тут могут возникнуть сложности. Поэтому давайте вспомним и рассмотрим разные способы доказательства теоремы Пифагора.

Краткий обзор биографии

Теорема Пифагора знакома практически каждому, но почему-то биография человека, который произвел ее на свет, не так популярна. Это поправимо. Поэтому прежде чем изучить разные способы доказательства теоремы Пифагора, нужно кратко познакомиться с его личностью.

Пифагор - философ, математик, мыслитель родом из Сегодня очень сложно отличить его биографию от легенд, которые сложились в память об этом великом человеке. Но как следует из трудов его последователей, Пифагор Самосский родился на острове Самос. Его отец был обычный камнерез, а вот мать происходила из знатного рода.

Судя по легенде, появление на свет Пифагора предсказала женщина по имени Пифия, в чью честь и назвали мальчика. По ее предсказанию рожденный мальчик должен был принести много пользы и добра человечеству. Что вообще-то он и сделал.

Рождение теоремы

В юности Пифагор переехал с в Египет, чтобы встретиться там с известными египетскими мудрецами. После встречи с ними он был допущен к обучению, где и познал все великие достижения египетской философии, математики и медицины.

Вероятно, именно в Египте Пифагор вдохновился величеством и красотой пирамид и создал свою великую теорию. Это может шокировать читателей, но современные историки считают, что Пифагор не доказывал свою теорию. А лишь передал свое знание последователям, которые позже и завершили все необходимые математические вычисления.

Как бы там ни было, сегодня известна не одна методика доказательства данной теоремы, а сразу несколько. Сегодня остается лишь гадать, как именно древние греки производили свои вычисления, поэтому здесь рассмотрим разные способы доказательства теоремы Пифагора.

Теорема Пифагора

Прежде чем начинать какие-либо вычисления, нужно выяснить, какую теорию предстоит доказать. Теорема Пифагора звучит так: «В треугольнике, у которого один из углов равен 90 о, сумма квадратов катетов равна квадрату гипотенузы».

Всего существует 15 разных способов доказательства теоремы Пифагора. Это достаточно большая цифра, поэтому уделим внимание самым популярным из них.

Способ первый

Сначала обозначим, что нам дано. Эти данные будут распространяться и на другие способы доказательств теоремы Пифагора, поэтому стоит сразу запомнить все имеющееся обозначения.

Допустим, дан прямоугольный треугольник, с катетами а, в и гипотенузой, равной с. Первый способ доказательства основывается на том, что из прямоугольного треугольника нужно дорисовать квадрат.

Чтобы это сделать, нужно к катету длиной а дорисовать отрезок равный катету в, и наоборот. Так должно получиться две равные стороны квадрата. Остается только нарисовать две параллельные прямые, и квадрат готов.

Внутри получившейся фигуры нужно начертить еще один квадрат со стороной равной гипотенузе исходного треугольника. Для этого от вершин ас и св нужно нарисовать два параллельных отрезка равных с. Таким образом, получиться три стороны квадрата, одна из которых и есть гипотенуза исходного прямоугольного треугольники. Остается лишь дочертить четвертый отрезок.

На основании получившегося рисунка можно сделать вывод, что площадь внешнего квадрата равна (а+в) 2 . Если заглянуть внутрь фигуры, можно увидеть, что помимо внутреннего квадрата в ней имеется четыре прямоугольных треугольника. Площадь каждого равна 0,5ав.

Поэтому площадь равна: 4*0,5ав+с 2 =2ав+с 2

Отсюда (а+в) 2 =2ав+с 2

И, следовательно, с 2 =а 2 +в 2

Теорема доказана.

Способ два: подобные треугольники

Данная формула доказательства теоремы Пифагора была выведена на основании утверждения из раздела геометрии о подобных треугольниках. Оно гласит, что катет прямоугольного треугольника - среднее пропорциональное для его гипотенузы и отрезка гипотенузы, исходящего из вершины угла 90 о.

Исходные данные остаются те же, поэтому начнем сразу с доказательства. Проведем перпендикулярный стороне АВ отрезок СД. Основываясь на вышеописанном утверждении катеты треугольников равны:

АС=√АВ*АД, СВ=√АВ*ДВ.

Чтобы ответить на вопрос, как доказать теорему Пифагора, доказательство нужно проложить возведением в квадрат обоих неравенств.

АС 2 =АВ*АД и СВ 2 =АВ*ДВ

Теперь нужно сложить получившиеся неравенства.

АС 2 + СВ 2 =АВ*(АД*ДВ), где АД+ДВ=АВ

Получается, что:

АС 2 + СВ 2 =АВ*АВ

И, следовательно:

АС 2 + СВ 2 =АВ 2

Доказательство теоремы Пифагора и различные способы ее решения нуждаются в разностороннем подходе к данной задаче. Однако этот вариант является одним из простейших.

Еще одна методика расчетов

Описание разных способов доказательства теоремы Пифагора могут ни о чем не сказать, до тех самых пор пока самостоятельно не приступишь к практике. Многие методики предусматривают не только математические расчеты, но и построение из исходного треугольника новых фигур.

В данном случае необходимо от катета ВС достроить еще один прямоугольный треугольник ВСД. Таким образом, теперь имеется два треугольника с общим катетом ВС.

Зная, что площади подобных фигур имеют соотношение как квадраты их сходных линейных размеров, то:

S авс * с 2 - S авд *в 2 =S авд *а 2 - S всд *а 2

S авс *(с 2 -в 2)=а 2 *(S авд -S всд)

с 2 -в 2 =а 2

с 2 =а 2 +в 2

Поскольку из разных способов доказательств теоремы Пифагора для 8 класса этот вариант едва ли подойдет, можно воспользоваться следующей методикой.

Самый простой способ доказать теорему Пифагора. Отзывы

Как полагают историки, этот способ был впервые использован для доказательства теоремы еще в древней Греции. Он является самым простым, так как не требует абсолютно никаких расчетов. Если правильно начертить рисунок, то доказательство утверждения, что а 2 +в 2 =с 2 , будет видно наглядно.

Условия для данного способа будет немного отличаться от предыдущего. Чтобы доказать теорему, предположим, что прямоугольный треугольник АВС - равнобедренный.

Гипотенузу АС принимаем за сторону квадрата и дочерчиваем три его стороны. Кроме этого необходимо провести две диагональные прямые в получившемся квадрате. Таким образом, чтобы внутри него получилось четыре равнобедренных треугольника.

К катетам АВ и СВ так же нужно дочертить по квадрату и провести по одной диагональной прямой в каждом из них. Первую прямую чертим из вершины А, вторую - из С.

Теперь нужно внимательно всмотреться в получившийся рисунок. Поскольку на гипотенузе АС лежит четыре треугольника, равные исходному, а на катетах по два, это говорит о правдивости данной теоремы.

Кстати, благодаря данной методике доказательства теоремы Пифагора и появилась на свет знаменитая фраза: «Пифагоровы штаны во все стороны равны».

Доказательство Дж. Гарфилда

Джеймс Гарфилд - двадцатый президент Соединенных Штатов Америки. Кроме того, что он оставил свой след в истории как правитель США, он был еще и одаренным самоучкой.

В начале своей карьеры он был обычным преподавателем в народной школе, но вскоре стал директором одного из высших учебных заведений. Стремление к саморазвитию и позволило ему предложить новую теорию доказательства теоремы Пифагора. Теорема и пример ее решения выглядит следующим образом.

Сначала нужно начертить на листе бумаги два прямоугольных треугольника таким образом, чтобы катет одного из них был продолжением второго. Вершины этих треугольников нужно соединить, чтобы в конечном итоге получилась трапеция.

Как известно, площадь трапеции равна произведению полусуммы ее оснований на высоту.

S=а+в/2 * (а+в)

Если рассмотреть получившуюся трапецию, как фигуру, состоящую из трех треугольников, то ее площадь можно найти так:

S=ав/2 *2 + с 2 /2

Теперь необходимо уравнять два исходных выражения

2ав/2 + с/2=(а+в) 2 /2

с 2 =а 2 +в 2

О теореме Пифагора и способах ее доказательства можно написать не один том учебного пособия. Но есть ли в нем смысл, когда эти знания нельзя применить на практике?

Практическое применение теоремы Пифагора

К сожалению, в современных школьных программах предусмотрено использование данной теоремы только в геометрических задачах. Выпускники скоро покинут школьные стены, так и не узнав, а как они могут применить свои знания и умения на практике.

На самом же деле использовать теорему Пифагора в своей повседневной жизни может каждый. Причем не только в профессиональной деятельности, но и в обычных домашних делах. Рассмотрим несколько случаев, когда теорема Пифагора и способы ее доказательства могут оказаться крайне необходимыми.

Связь теоремы и астрономии

Казалось бы, как могут быть связаны звезды и треугольники на бумаге. На самом же деле астрономия - это научная сфера, в которой широко используется теорема Пифагора.

Например, рассмотрим движение светового луча в космосе. Известно, что свет движется в обе стороны с одинаковой скоростью. Траекторию АВ, которой движется луч света назовем l . А половину времени, которое необходимо свету, чтобы попасть из точки А в точку Б, назовем t . И скорость луча - c . Получается, что: c*t=l

Если посмотреть на этот самый луч из другой плоскости, например, из космического лайнера, который движется со скоростью v, то при таком наблюдении тел их скорость изменится. При этом даже неподвижные элементы станут двигаться со скоростью v в обратном направлении.

Допустим, комический лайнер плывет вправо. Тогда точки А и В, между которыми мечется луч, станут двигаться влево. Причем, когда луч движется от точки А в точку В, точка А успевает переместиться и, соответственно, свет уже прибудет в новую точку С. Чтобы найти половину расстояния, на которое сместилась точка А, нужно скорость лайнера умножить на половину времени путешествия луча (t").

А чтобы найти, какое расстояние за это время смог пройти луч света, нужно обозначить половину пути новой буковой s и получить следующее выражение:

Если представить, что точки света С и В, а также космический лайнер - это вершины равнобедренного треугольника, то отрезок от точки А до лайнера разделит его на два прямоугольных треугольника. Поэтому благодаря теореме Пифагора можно найти расстояние, которое смог пройти луч света.

Этот пример, конечно, не самый удачный, так как только единицам может посчастливиться опробовать его на практике. Поэтому рассмотрим более приземленные варианты применения этой теоремы.

Радиус передачи мобильного сигнала

Современную жизнь уже невозможно представить без существования смартфонов. Но много ли было бы от них прока, если бы они не могли соединять абонентов посредством мобильной связи?!

Качество мобильной связи напрямую зависит от того, на какой высоте находиться антенна мобильного оператора. Для того чтобы вычислить, каком расстоянии от мобильной вышки телефон может принимать сигнал, можно применить теорему Пифагора.

Допустим, нужно найти приблизительную высоту стационарной вышки, чтобы она могла распространять сигнал в радиусе 200 километров.

АВ (высота вышки) = х;

ВС (радиус передачи сигнала) = 200 км;

ОС (радиус земного шара) = 6380 км;

ОВ=ОА+АВОВ=r+х

Применив теорему Пифагора, выясним, что минимальная высота вышки должна составить 2,3 километра.

Теорема Пифагора в быту

Как ни странно, теорема Пифагора может оказаться полезной даже в бытовых делах, таких как определение высоты шкафа-купе, например. На первый взгляд, нет необходимости использовать такие сложные вычисления, ведь можно просто снять мерки с помощью рулетки. Но многие удивляются, почему в процессе сборки возникают определенные проблемы, если все мерки были сняты более чем точно.

Дело в том, что шкаф-купе собирается в горизонтальном положении и только потом поднимается и устанавливается к стене. Поэтому боковина шкафа в процессе подъема конструкции должна свободно проходить и по высоте, и по диагонали помещения.

Предположим, имеется шкаф-купе глубиной 800 мм. Расстояние от пола до потолка - 2600 мм. Опытный мебельщик скажет, что высота шкафа должна быть на 126 мм меньше, чем высота помещения. Но почему именно на 126 мм? Рассмотрим на примере.

При идеальных габаритах шкафа проверим действие теоремы Пифагора:

АС=√АВ 2 +√ВС 2

АС=√2474 2 +800 2 =2600 мм - все сходится.

Допустим, высота шкафа равна не 2474 мм, а 2505 мм. Тогда:

АС=√2505 2 +√800 2 =2629 мм.

Следовательно, этот шкаф не подойдет для установки в данном помещении. Так как при поднятии его в вертикальное положение можно нанести ущерб его корпусу.

Пожалуй, рассмотрев разные способы доказательства теоремы Пифагора разными учеными, можно сделать вывод, что она более чем правдива. Теперь можно использовать полученную информацию в своей повседневной жизни и быть полностью уверенным, что все расчеты будут не только полезны, но и верны.

Не ассоциировалось бы с теоремой Пифагора. Даже те, кто в своей жизни далек от математики, продолжают сохранять воспоминания о "пифагоровых штанах" - квадрате на гипотенузе, равновеликом двум квадратам на катетах. Причина такой популярности теоремы Пифагора ясна: это простота - красота - значимость. В самом деле, теорема Пифагора проста, но не очевидна. Противоречие двух начал и придает ей особую притягательную силу, делает ее красивой. Но, кроме того, теорема Пифагора имеет огромное значение. Она применяется в геометрии буквально на каждом шагу. Существует около пятисот различных доказательств этой теоремы, что свидетельствует о гигантском числе ее конкретных реализаций.

Исторические исследования датируют появление на свет Пифагора приблизительно 580 годом до нашей эры. Счастливый отец Мнесарх окружает мальчика заботами. Возможности дать сыну хорошее воспитание и образование у него были.

Будущий великий математик и философ уже в детстве обнаружил большие способности к наукам. У своего первого учителя Гермодамаса Пифагор получает знания основ музыки и живописи. Для упражнения памяти Гермодамас заставлял его учить песни из "Одиссеи" и "Илиады". Первый учитель прививал юному Пифагору любовь к природе и ее тайнам.

Прошло несколько лет, и по совету своего учителя Пифагор решает продолжить образование в Египте. При помощи учителя Пифагору удается покинуть остров Самос. Но пока до Египта далеко. Он живет на острове Лесбос у своего родственника Зоила. Там происходит знакомство Пифагора с философом Ферекидом - другом Фалеса Милетского. У Ферекида Пифагор учится астрологии, предсказанию затмений, тайнам чисел, медицине и другим обязательным для того времени наукам.

Затем в Милете он слушает лекции Фалеса и его более молодого коллеги и ученика Анаксимандра, выдающегося географа и астронома. Много важных знаний приобрел Пифагор за время своего пребывания в Милетской школе.

Перед Египтом он на некоторое время останавливается в Финикии, где, по преданию, учится у знаменитых сидонских жрецов.

Согласно старинным легендам, в плену в Вавилоне Пифагор встречался с персидскими магами, приобщился к восточной астрологии и мистике, познакомился с учением халдейских мудрецов. Халдеи познакомили Пифагора со знаниями, накопленными восточными народами в течение многих веков: астрономией и астрологией, медициной и арифметикой.

Двенадцать лет пробыл в вавилонском плену Пифагор, пока его не освободил персидский царь Дарий Гистасп, прослышавший о знаменитом греке. Пифагору уже шестьдесят, он решает вернуться на родину, чтобы приобщить к накопленным знаниям свой народ.

С тех пор как Пифагор покинул Грецию, там произошли большие изменения. Лучшие умы, спасаясь от персидского ига, перебрались в Южную Италию, которую тогда называли Великой Грецией, и основали там города-колонии Сиракузы, Агригент, Кротон. Здесь и задумывает Пифагор создать собственную философскую школу.

Довольно быстро он завоевывает большую популярность среди жителей. Пифагор умело использует знания, полученные в странствиях по свету. Со временем ученый прекращает выступления в храмах и на улицах. Уже в своем доме Пифагор учил медицине, принципам политической деятельности, астрономии, математике, музыке, этике и многому другому. Из его школы вышли выдающиеся политические и государственные деятели, историки, математики и астрономы. Это был не только учитель, но и исследователь. Исследователями становились и его ученики. Пифагор развил теорию музыки и акустики, создав знаменитую "пифагорейскую гамму" и проведя основополагающие эксперименты по изучению музыкальных тонов: найденные соотношения он выразил на языке математики. В Школе Пифагора впервые высказана догадка о шарообразности Земли. Мысль о том, что движение небесных тел подчиняется определенным математическим соотношениям, идеи "гармонии мира" и "музыки сфер", впоследствии приведшие к революции в астрономии, впервые появились именно в Школе Пифагора.

Многое сделал ученый и в геометрии. Прокл так оценивал вклад греческого ученого в геометрию: "Пифагор преобразовал геометрию, придав ей форму свободной науки, рассматривая ее принципы чисто абстрактным образом и исследуя теоремы с нематериальной, интеллектуальной точки зрения. Именно он нашел теорию иррациональных количеств и конструкцию космических тел".

В школе Пифагора геометрия впервые оформляется в самостоятельную научную дисциплину. Именно Пифагор и его ученики первыми стали изучать геометрию систематически - как теоретическое учение о свойствах абстрактных геометрических фигур, а не как сборник прикладных рецептов по землемерию.

Важнейшей научной заслугой Пифагора считается систематическое введение доказательства в математику, и, прежде всего, в геометрию. Строго говоря, только с этого момента математика и начинает существовать как наука, а не как собрание древнеегипетских и древневавилонских практических рецептов. С рождением же математики зарождается и наука вообще, ибо "ни одно человеческое исследование не может называться истинной наукой, если оно не прошло через математические доказательства" (Леонардо да Винчи).

Так вот, заслуга Пифагора и состояла в том, что он, по-видимому, первым пришел к следующей мысли: в геометрии, во-первых, должны рассматриваться абстрактные идеальные объекты, и, во-вторых, свойства этих идеальных объектов должны устанавливаться не с помощью измерений на конечном числе объектов, а с помощью рассуждений, справедливых для бесконечного числа объектов. Эта цепочка рассуждений, которая с помощью законов логики сводит неочевидные утверждения к известным или очевидным истинам, и есть математическое доказательство.

Открытие теоремы Пифагором окружено ореолом красивых легенд. Прокл, комментируя последнее предложение 1 книги "Начал" , пишет: "Если послушать тех, кто любит повторять древние легенды, то придется сказать, что эта теорема восходит к Пифагору; рассказывают, что он в честь этого открытия принес в жертву быка". Впрочем, более щедрые сказители одного быка превратили в одну гекатомбу, а это уже целая сотня. И хотя еще Цицерон заметил, что всякое пролитие крови было чуждо уставу пифагорейского ордена, легенда эта прочно срослась с теоремой Пифагора и через две тысячи лет продолжала вызывать горячие отклики.

mob_info