Презентация на тему клеточная теория. Презентация "клеточная теория". Современная клеточная теория

Из истории клеточной теории Изучение клеточного строения организмов было начато микроскопистами 17 в. (Р. Гук, М. Мальпиги, А. Левенгук); в 19 в. была создана единая для всего органического мира клеточная теория (Т. Шванн, 1839). В 20 в. быстрому прогрессу цитологии способствовали новые методы (электронная микроскопия, изотопные индикаторы, культивирование клеток и др.).


Проверим наши знания. 1. Современной клеточной теории соответствует следующее положение: а) «клеткам присуще мембранное строение»; б) «клетки всех живых существ имеют ядра»; в) «клетки бактерий и вирусов сходны по строению и функциям»; г) «клетки всех живых существ деляться».






ОСНОВНЫЕ ПОЛОЖЕНИЯ КЛЕТОЧНОЙ ТЕОРИИ клетка - основная единица строения, функционирования и развития всех живых организмов; клетка - основная единица строения, функционирования и развития всех живых организмов; клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ; клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ; размножение клеток происходит путем их деления, каждая новая клетка образуется в результате деления исходной (материнской) клетки; размножение клеток происходит путем их деления, каждая новая клетка образуется в результате деления исходной (материнской) клетки; в сложных многоклеточных организмах клетки специализированы по выполняемым ими функциям и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервной и гуморальной регуляциям. в сложных многоклеточных организмах клетки специализированы по выполняемым ими функциям и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервной и гуморальной регуляциям.






Клеточная мембрана – ультрамикроскопическая плёнка, состоящая из двух мономолекулярных слоев белка и расположенного между ними бимолекулярного слоя липидов. Клеточная мембрана – ультрамикроскопическая плёнка, состоящая из двух мономолекулярных слоев белка и расположенного между ними бимолекулярного слоя липидов. ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА КЛЕТКИ Функции плазматической мембраны клетки: Барьерная. Связь с окружающей средой (транспорт веществ). Связь между клетками тканей в многоклеточных организмах. Защитная. СТРОЕНИЕ


Цитоплазма – это полужидкая среда клетки, в которой располагаются органоиды клетки. Цитоплазма – это полужидкая среда клетки, в которой располагаются органоиды клетки. Цитоплазма состоит из воды и белков. Цитоплазма состоит из воды и белков. Цитоплазма способна двигаться со скоростью до 7 см/час Цитоплазма способна двигаться со скоростью до 7 см/час ЦИТОПЛАЗМА Органоиды – это постоянные клеточные структуры, каждая из которых выполняет свои функции Циклоз – это движение цитоплазмы внутри клетки СЕТЧАТЫЙ ЦИКЛОЗ КРУГОВОЙ ЦИКЛОЗ Эндоплазматическая сеть Цитоплазматический матрикс РибосомыКлеточный центр МитохондрииАппарат ГольджиПластидыЛизосомы


Цитоплазматический матрикс представляет собой основную и наиболее важную часть клетки, её истинную внутреннюю среду. Цитоплазматический матрикс представляет собой основную и наиболее важную часть клетки, её истинную внутреннюю среду. Компоненты цитоплазматического матрикса осуществляют процессы биосинтеза в клетке и содержат ферменты, необходимые для продуцирования энергии. Компоненты цитоплазматического матрикса осуществляют процессы биосинтеза в клетке и содержат ферменты, необходимые для продуцирования энергии. ЦИТОПЛАЗМАТИЧЕСКИЙ МАТРИКС 1. Обеспечивает изменение вязкости цитоплазмы, которая возникает под действием внешних и внутренних факторов. 2. Ответственен за циклоз и деление клетки. 3. Определяет полярность расположения внутриклеточных компонентов. 4. Обеспечивает механические свойства клеток, такие как эластичность, способность к слиянию. ФУНКЦИИ


Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети. ЭС неоднородна по своему строению. Известны два ее типа - гранулярная и гладкая. ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ (ЭС) Рибосомы Мембрана Гладкая ЭС Гранулярная ЭС Функции ЭС Синтез белков, жиров и углеводов Накопление белков, жиров и углеводов Усиление связи между органоидами


Клеточное ядро- это важнейшая часть клетки. Оно есть почти во всех клетках многоклеточных организмов. Клетки организмов, которые содержат ядро называют эукариотами. Клеточное ядро содержит ДНК- вещество наследственности, в котором зашифрованы все свойства клетки. Клеточное ядро- это важнейшая часть клетки. Оно есть почти во всех клетках многоклеточных организмов. Клетки организмов, которые содержат ядро называют эукариотами. Клеточное ядро содержит ДНК- вещество наследственности, в котором зашифрованы все свойства клетки. КЛЕТОЧНОЕ ЯДРО Структура ядра Строение и состав структуры Функции структуры Ядерная оболочка Наружная и внутренняя мембрана Обмен веществ между ядром и цитоплазмой Нуклеоплазма Жидкое вещество, в его составе – белки, ферменты, нуклеиновые кислоты Это внутренняя среда ядра – накопление веществ Ядрышко Содержит молекулы ДНК и белок Синтез рибосомной РНК Хроматин Содержит хромосомы (см. цепь хранения наследственной информации, след.слайд) и белок Содержит наследственную информацию, хранящуюся в молекулах ДНК (см. след.слайд)


Схема строения наследственной информации Схема строения наследственной информации КЛЕТОЧНОЕ ЯДРО (продолжение) Ядрохроматин хромосома (см след.слайд) молекула ДНК ген (участок ДНК) ФУНКЦИИ ЯДРА Хранение наследственно й информации Регуляция обмена веществ в клетке


Хромосома состоит из двух хроматид и после деления ядра становится однохроматидной. К началу следующего деления у каждой хромосомы достраивается вторая хроматида. Хромосомы имеют первичную перетяжку, на которой расположена центромера; перетяжка делит хромосому на два плеча одинаковой или разной длины. В зависимости от расположения перетяжки выделяют три основных вида хромосом: 1) равноплечие с плечами равной длины; 2) неравноплечие с плечами неравной длины; 3) одноплечие (палочковидные) с одним длинным и другим очень коротким, едва заметным плечом ХРОМОСОМЫ Хроматиновые структуры носители ДНК - ДНК состоит из участков генов, несущих наследственную информацию и передающихся от предков к потомкам через половые клетки. В хромосомах синтезируются ДНК, РНК, что служит необходимым фактором передачи наследственной информации при делении клеток и построении молекул белка.


Клеточный центр состоит из двух центриолей (дочерняя, материнская). Каждая имеет цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество. Центриоли расположены перпендикулярно друг к другу. Клеточный центр состоит из двух центриолей (дочерняя, материнская). Каждая имеет цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество. Центриоли расположены перпендикулярно друг к другу. КЛЕТОЧНЫЙ ЦЕНТР ФУНКЦИЯ Участие в делении клеток животных и низших растений В начале деления (в профазе) центроили расходятся к разным полюсам клетки. От центриолей к центромерам хромосом отходят нити веретена деления. В анафазе эти нити притягивают хроматиды к полюсам. После окончания деления центриоли остаются в дочерних клетках, удваиваются и образуют клеточный центр.


РИБОСОМЫ – ультрамикроскопические органеллы округлой или грибовидной формы, состоящие из двух частей субчастиц. Они не имеют мембранного строения и состоят из белка и РНК. Субчастицы образуются в ядрышке. РИБОСОМЫ – ультрамикроскопические органеллы округлой или грибовидной формы, состоящие из двух частей субчастиц. Они не имеют мембранного строения и состоят из белка и РНК. Субчастицы образуются в ядрышке. РИБОСОМЫ Рибосомы - универсальные органеллы всех клеток животных и растений. Находятся в цитоплазме в свободном состоянии или на мембранах эндоплазматической сети; кроме того, содержатся в митохондриях и хлоропластах. МАЛАЯ СУБЧАСТИЦА БОЛЬШАЯ СУБЧАСТИЦА ФУНКЦИОНАЛЬНЫЙ ЦЕНТР Синтез белка в функциональном центре ФУНКЦИЯ


Митохондрии - микроскопические органеллы, имеющие двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты кристы. В матриксе митохондрии (полужидком веществе) находятся ферменты, рибосомы, ДНК, РНК. Число митохондрий в одной клетке от единиц до нескольких тысяч. Митохондрии - микроскопические органеллы, имеющие двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты кристы. В матриксе митохондрии (полужидком веществе) находятся ферменты, рибосомы, ДНК, РНК. Число митохондрий в одной клетке от единиц до нескольких тысяч. МИТОХОНДРИИ 1. Митохондрия - универсальная органелла, являющаяся дыхательным и энергетическим центром. 2. В процессе кислородного (окислительного) этапа диссимиляции в матриксе с помощью ферментов происходит расщепление органических веществ с освобождением энергии, которая идет на синтез АТФ (на кристах). Функции митохондрий


В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. В состав аппарата Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5-10), а также крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс. В состав аппарата Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5-10), а также крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс. АППАРАТ ГОЛЬДЖИ ФУНКЦИИ: 1.Накопление и транспорт веществ, химическая модернизация. 2. Образование лизосом. 3. Синтез липидов и углеводов на стенках мембран


Пластиды - это энергетические станции растительной клетки. Пластиды - это энергетические станции растительной клетки. Пластиды могут превращаться из одного вида в другой. Пластиды могут превращаться из одного вида в другой. ПЛАСТИДЫВидХлоропластыХромопластыЛейкопластыЦветЗелёный Жёлтый, оранжевый или красный Бесцветный Пегмент Пегмент хлорофил Пегмент есть Пегмента нет Функция Создание органических веществ Придают окраску Место отложения питательных веществ Характеристика видов пластидов


Лизосомы - микроскопические одномембранные органеллы округлой формы Их число зависит от жизнедеятельности клетки и ее физиологического состояния. Лизосома - это пищеварительная вакуоль, внутри которой находятся растворяющие ферменты. В случае голодания клетки перевариваются некоторые органоиды. В случае разрушения мембраны лизосомы, клетка переваривает сама себя. ЛИЗОСОМЫ МЕМБРАНА ФЕРМЕНТЫ ФУНКЦИИ Защитная. Гетерофагическая: участие в обработке чужеродных веществ, поступающих в клетку при пиноцитозе и фагоцитозе. Участие во внутриклеточном переваривании. Эндогенное питание: в условиях голодания лизосомы способны переваривать часть цитоплазматических структур.


Сравнительная характеристика фагоцитоза и пиноцитоза ФАГОЦИТОЗ И ПИНОЦИТОЗ Крупные молекулы белков и полисахаридов проникают в клетку путем фагоцитоза (от греч. фагос - пожирающий и китос - сосуд, клетка), а капли жидкости - путем пиноцитоза (от греч. пино - пью и китос). Это способ питания животных клеток, при котором в клетку попадают питательные вещества Это универсальный способ питания (и для животных, и для растительных клеток), при котором в клетку попадают питательные вещества в растворённом виде ФАГО- ЦИТОЗ ПИНО- ЦИТОЗ Линии сравнения ФагоцитозПиноцитоз Что поглощается Твердые частицы Жидкость Результат Частички погружаются внутрь клетки Органические вещества погружаются внутрь клетки Для каких клеток характерен Клетки простейших, животных и человека Клетки всех животных и растений


Содержание химических элементов в в клетке В микроскопической клетке содержится несколько тысяч веществ, которые участвуют в разнообразных химических реакциях. Химические процессы, протекающие в клетке, - одно из основных условий ее жизни, развития и функционирования. Все клетки животных и растительных организмов, а также микроорганизмов сходны по химическому составу, что свидетельствует о единстве органического мира. ХИМИЧЕСКИЙ СОСТАВ КЛЕТКИ Из 109 элементов периодической системы Менделеева в клетках обнаружено значительное их большинство. По содержанию в клетке можно выделить три группы элементов. В первую группу входят кислород, углерод, водород и азот. На их долю приходится почти 98% всего состава клетки. Во вторую группу входят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента. Элементы этих двух групп относят к макроэлементам. Остальные элементы, представленные в клетке сотыми и тысячными долями процента, входят в третью группу. Это микроэлементы.


Клетка - элементарная единица жизни, основа строения, жизнедеятельности, размножения и индивидуального развития всех организмов. Вне клетки нет жизни (исключение - вирусы). Большинство клеток устроено одинаково: покрыто наружной оболочкой - клеточной мембраной и наполнено жидкостью -цитоплазмой. Цитоплазма содержит многообразные структуры - органелы (ядро, митохондрии, лизосомы и т.д.), которые осуществляют разнообразные процессы. Клетка происходит только от клетки. Каждая клетка выполняет собственную функцию и взаимодействует с другими клетками, обеспечивая жизнедеятельность организма. В клетке нет каких-нибудь особенных элементов, характерных только для живой природы. Это указывает на связь и единство живой и неживой природы. ОСНОВНЫЕ ВЫВОДЫ

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Клеточная теория Сорокина В.Ю.

Развитие микроскопии

Методы изучения клетки микроскопирование центрифугирование рентгеноструктурный анализ цито и гистохимия кино и фотосъемка

Основные этапы развития клеточной теории I этап 1590г - Ян Янсен – первый микроскоп 1609 – 1610г - Галилео Галилей –изготовлен микроскоп 1665г – Роберт Гук – ячейки, соты, клетки 1700г - Антони ван Левенгук – одноклеточные организмы, бактерии 1831г – Роберт Броун – описал ядро

II этап 1839г - Томас Шванн и Маттиас Шлейден Сформулировали клеточную теорию: Клетка – основная единица всех живых организмов; Клетки животных и растений сходны по строению; 3. Клетки образуются из неклеточного вещества.

III этап 1850г – Келликер – открыты митохондрии; 1855г - Рудольф Вирхофф - открыл деление клетки- «Каждая клетка из клетки». 1866г – Эрнст Геккель – хранение и передача наследственной информации происходит через ядро; 1868 г- Ф.Мишер – открыты нуклеиновые кислоты; 1898г – Камилло Гольджи – открыт комплекс Гольджи;

IV этап 1930 г –создание электронного микроскопа

Основные положения современной клеточной теории: Клетка является основной структурной и функциональной единицей жизни. Все организмы состоят из клеток, жизнь организма в целом обусловлена взаимодействием составляющих его клеток. Клетки всех организмов сходны по своему химическому составу, строению и функциям. Все новые клетки образуются при делении исходных клеток.

Вопросы: Предположим, что Т.Шванн и М. Шлейден не смогли сформулировать основные положения клеточной теории. Как это отразилось бы на развитии биологической науки? Дайте аргументированный ответ. О чем может свидетельствовать принципиальное сходство химического состава и строения клеток растительного и животного организма?


По теме: методические разработки, презентации и конспекты

Клеточная теория

Электронная презентация содержит материал по истории становления учени о клетке, позиции клеточной теории, методиках исследования клетки...

Урок-презентация разработан с использованием компьютерных технологий, основной теоретический материал отражен в презентации. Проведение урока в такой нестандартной форме способствует повышению мотивац...

Тема урока: Клетка. Клеточная теория строения организмов. (10 класс хим-био группа)Тип занятия: двухцелевой урок (урок систематизации и обобщения знаний, применение знаний, умений и навыков)Методы обу...

1 слайд

2 слайд

Клеточная теория - важнейшее биологическое обобщение, согласно которому все живые организмы состоят из клеток. Изучение клеток стало возможным после изобретения микроскопа. Впервые клеточное строение у растений (срез пробки) обнаружил английский ученый, физик Р. Гук, он же предложил термин «клетка» (1665 г.). Голландский ученый Антони ван Левенгук впервые описал эритроциты позвоночных, сперматозоиды, разнообразные микроструктуры растительных и животных клеток, различные одноклеточные организмы, в том числе бактерии и пр.

3 слайд

Создание клеточной теории В 1831 г. англичанин Р. Броун обнаружил в клетках ядро. В 1838 г. немецкий ботаник М. Шлейден пришел к выводу, что ткани растений состоят из клеток. Немецкий зоолог Т. Шванн показал, что из клеток состоят и ткани животных. В 1839 г. вышла книга Т. Шванна «Микроскопические исследования о соответствии в структуре и росте животных и растений», в которой он доказывает, что клетки, содержащие ядра, представляют собой структурную и функциональную основу всех живых существ.

4 слайд

Создание клеточной теории Основные положения клеточной теории Т. Шванна можно сформулировать следующим образом. Клетка - элементарная структурная единица строения всех живых существ. Клетки растений и животных самостоятельны, гомологичны друг другу по происхождению и структуре.

5 слайд

М. Шдейден и Т. Шванн ошибочно считали, что главная роль в клетке принадлежит оболочке и новые клетки образуются из межклеточного бесструктурного вещества. В дальнейшем в клеточную теорию были внесены уточнения и дополнения, сделанные другими учеными. Еще в 1827 г. академик Российской АН К.М. Бэр, открыв яйцеклетки млекопитающих, установил, что все организмы начинают свое развитие с одной клетки, представляющей собой оплодотворенное яйцо. Это открытие показало, что клетка является не только единицей строения, но и единицей развития всех живых организмов. В 1855 г. немецкий врач Р. Вирхов приходит к выводу, что клетка может возникнуть только из предшествующей клетки путем ее деления.

6 слайд

Основные положения современной клеточной теории Клетка - единица строения, жизнедеятельности, роста и развития живых организмов, вне клетки жизни нет. Клетка - единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование. Ядро − главная составная часть клетки (эукариот). Новые клетки образуются только в результате деления исходных клеток. Клетки многоклеточных организмов образуют ткани, ткани образуют органы. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток.

7 слайд

Дополнительные положения клеточной теории Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу. В основе деления клетки и размножения организмов лежит копирование наследственной информации - молекул нуклеиновых кислот («каждая молекула из молекулы»). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из её более мелких компонентов - к митохондриям, хлоропластам, генам и хромосомам. Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединённых и интегрированных в системе тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция). Клетки многоклеточных тотипотенты, то есть обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию - к дифференцировке.


История создания клеточной теории 1590 год. Янсен изобрел микроскоп, в котором увеличение обеспечивалось соединением двух линз год. Роберт Гук впервые употребил термин клетка годы. Антони ван Левенгук впервые описал бактерии и другие микроорганизмы годы. Опубликовано много новых описаний и рисунков различных тканей, преимущественно растительных году Карл Бэр обнаружил яйцеклетку у млекопитающих годы. Роберт Броун описал ядро в растительных клетках годы. Ботаник Матиас Шлейден и зоолог Теодор Шванн объединили идеи разных ученых и сформулировали клеточную теорию, которая постулировала, что основной единицей структуры и функции в живых организмах является клетка год. Рудольф Вирхов показал, что все клетки образуются в результате клеточных делений.




1665 год. Рассматривая под микроскопом срез пробки, английский ученый, физик Роберт Гук обнаружил, что она состоит из ячеек, разделенных перегородками. Эти ячейки он назвал "клетками". История создания клеточной теории



В XVII столетии Левенгук сконструировал микроскоп и открыл людям дверь в микромир. Перед глазами изумленных исследователей замелькали разнообразнейшие инфузории, коловратки и прочая мельчайшая живность. Оказалось, что они повсюду – эти мельчайшие организмы: в воде, навозе, в воздухе и пыли, в земле и водосточных желобах, в гниющих отходах животного и растительного происхождения. История создания клеточной теории


Годы. Роберт Броун описал ядро в растительных клетках. В 1838 г. немецкий ботаник М.Шлейден привлек внимание к ядру, считал его образователем клетки. По Шлейдену, из зернистой субстанции конденсируется ядрышко, вокруг которого формируется ядро, а вокруг ядра - клетка, причём ядро в процессе образования клетки может исчезать. История создания клеточной теории


Немецкий зоолог Т.Шванн показал, что из клеток состоят и ткани животных. Он создал теорию, утверждающую, что клетки, содержащие ядра, представляют собой структурную и функциональную основу всех живых существ. Клеточная теория строения была сформулирована и опубликована Т.Шванном в 1839 г. Суть её можно выразить в следующих положениях: 1. Клетка – элементарная структурная единица строения всех живых существ; 2. Клетки растений и животных самостоятельны, гомологичны друг другу по происхождению и структуре. Каждая клетка функционирует независимо от других, но вместе со всеми. 3. Все клетки возникают из бесструктурного межклеточного вещества. (Ошибка!) 4. Жизнедеятельность клетки определяется оболочкой. (Ошибка!) История создания клеточной теории


В 1855 г. немецкий врач Р.Вирхов сделал обобщение: клетка может возникнуть только из предшествующей клетки. Это привело к осознанию того факта, что рост и развитие организмов связаны с делением клеток и их дальнейшей дифференцировкой, приводящей к образованию тканей и органов. История создания клеточной теории


Карл Бэр Еще в 1827 году Карл Бэр обнаружил яйцеклетку у млекопитающих, доказал, что развитие млекопитающих начинается с оплодотворенной яйцеклетки. Значит развитие любого организма начинается с одной оплодотворенной яйцеклетки, клетка является единицей развития. История создания клеточной теории


1865 г. Опубликованы законы наследственности (Г.Мендель) г. Открыты нуклеиновые кислоты (Ф. Мишер) 1873 г. Открыты хромосомы (Ф. Шнейдер) 1874 г. Открыт митоз у растительных клеток (И. Д. Чистяков) 1878 г. Открыто митотическое деление животных клеток (В. Флеминг, П. И. Перемежко) 1879 г. Флеминг – поведение хромосом во время деления г. Открыт мейоз у животных клеток (В. Флеминг) 1883 г. Показано, что в половых клетках число хромосом в два раза меньше, чем в соматических (Э. Ван Бенеден) 1887 г. Открыт мейоз у растительных клеток (Э. Страсбургер) 1898 г. Гольджи открыл сетчатый аппарат клетки, аппарат Гольджи г. Сформулирована хромосомная теория наследственности (Т.Морган) г. Опубликована естественно-научная теория происхождения жизни на Земле (А.И.Опарин) г. Сформулированы представления о структуре ДНК и создана ее модель (Д.Уотсон и Ф.Крик) г. Определены природа и свойства генетического кода (Ф.Крик, Л.Барнет, С.Беннер).


1.Клетка элементарная живая система, единица строения, жизнедеятельности, размножения и индивидуального развития организмов. 2. Клетки всех живых организмов гомологичны, едины по строению и происхождению. 3. Образование клеток. Новые клетки возникают только путем деления ранее существовавших клеток. 4. Клетка и организм. Клетка может быть самостоятельным организмом (прокариоты и одноклеточные эукариоты). Все многоклеточные организмы состоят из клеток. 5. Функции клеток. В клетках осуществляются: обмен веществ, раздражимость и возбудимость, движение, размножение и дифференцировка. 6. Эволюция клетки. Клеточная организация возникла на заре жизни и прошла длительный путь эволюционного развития от безъядерных форм (прокариот) к ядерным (эукариотам). Основные положения современной клеточной теории







Первый микроскоп был изобретен: 1590 г. Янсеном. В 1665 году Роберт Гук: Увидел, зарисовал и назвал клетку клеткой. Антоний Ван Левенгук открыл: Мир микроорганизмов. Роберт Броун в растительных клетках впервые описал: Ядро. Матиас Шлейден доказал: Все растения состоят из клеток, обязательной структурой является ядро. В 1838–1839 гг. сформулировали основные положения клеточной теории немецкие ученые: Теодор Шванн и Матиас Шлейден. И Шванн, и Шлейден считали, что новые клетки образуются: Из межклеточного вещества. Подведем итоги:


В 1855 г. Рудольф Вирхов доказал: Новые клетки образуются путем деления материнской. Основной единицей строения и жизнедеятельности всех живых организмов является: Клетка. Все клетки живых организмов имеют: Сходное строение. Клетки гомологичны, потому что: Имеют единое происхождение и сходный план строения. Подведем итоги:

Слайд 1

Слайд 2

Слайд 3

Слайд 4

Слайд 5

Слайд 6

Слайд 7

Презентацию на тему "Клеточная теория" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Биология. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 7 слайд(ов).

Слайды презентации

Слайд 1

Слайд 2

Клеточная теория - важнейшее биологическое обобщение, согласно которому все живые организмы состоят из клеток. Изучение клеток стало возможным после изобретения микроскопа. Впервые клеточное строение у растений (срез пробки) обнаружил английский ученый, физик Р. Гук, он же предложил термин «клетка» (1665 г.). Голландский ученый Антони ван Левенгук впервые описал эритроциты позвоночных, сперматозоиды, разнообразные микроструктуры растительных и животных клеток, различные одноклеточные организмы, в том числе бактерии и пр.

Слайд 3

Создание клеточной теории

В 1831 г. англичанин Р. Броун обнаружил в клетках ядро. В 1838 г. немецкий ботаник М. Шлейден пришел к выводу, что ткани растений состоят из клеток. Немецкий зоолог Т. Шванн показал, что из клеток состоят и ткани животных. В 1839 г. вышла книга Т. Шванна «Микроскопические исследования о соответствии в структуре и росте животных и растений», в которой он доказывает, что клетки, содержащие ядра, представляют собой структурную и функциональную основу всех живых существ.

Слайд 4

Слайд 5

М. Шдейден и Т. Шванн ошибочно считали, что главная роль в клетке принадлежит оболочке и новые клетки образуются из межклеточного бесструктурного вещества. В дальнейшем в клеточную теорию были внесены уточнения и дополнения, сделанные другими учеными. Еще в 1827 г. академик Российской АН К.М. Бэр, открыв яйцеклетки млекопитающих, установил, что все организмы начинают свое развитие с одной клетки, представляющей собой оплодотворенное яйцо. Это открытие показало, что клетка является не только единицей строения, но и единицей развития всех живых организмов. В 1855 г. немецкий врач Р. Вирхов приходит к выводу, что клетка может возникнуть только из предшествующей клетки путем ее деления.

Слайд 6

Основные положения современной клеточной теории

Клетка - единица строения, жизнедеятельности, роста и развития живых организмов, вне клетки жизни нет. Клетка - единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование. Ядро − главная составная часть клетки (эукариот). Новые клетки образуются только в результате деления исходных клеток. Клетки многоклеточных организмов образуют ткани, ткани образуют органы. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток.

Слайд 7

Дополнительные положения клеточной теории

Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу. В основе деления клетки и размножения организмов лежит копирование наследственной информации - молекул нуклеиновых кислот («каждая молекула из молекулы»). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из её более мелких компонентов - к митохондриям, хлоропластам, генам и хромосомам. Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединённых и интегрированных в системе тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция). Клетки многоклеточных тотипотенты, то есть обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию - к дифференцировке.

  • Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  • Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  • Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  • Старайтесь говорить уверенно, плавно и связно.
  • Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.
  • mob_info