Архив рубрики: Маятники. Тайны маятника Закон Ньютона для малых колебаний маятника

Математический маятник – это модель обычного маятника. Под математическим маятником – понимается материальная точка, которая подвешена на длинной невесомой и нерастяжимой нити.

Выведем шарик из положения равновесия и отпустим. На шарик будут действовать две силы: сила тяжести и сила натяжения нити. При движении маятника, на него еще будет действовать сила трения воздуха. Но мы будем считать её очень маленькой.

Разложим силу тяжести на две составляющих: силу, направленную вдоль нити, и силу направленную перпендикулярно касательной к траектории движения шарика.

Эти две силы составят в сумме силу тяжести. Силы упругости нити и составляющая силы тяжести Fn сообщают шарику центростремительное ускорение. Работа этих сил будет равняться нулю, и следовательно они будут лишь менять направление вектора скорости. В любой момент времени, он будет направлен по касательной к дуге окружности.

Под действием составляющей силы тяжести Fτ шарик будет двигаться по дуге окружности с нарастающей по модулю скоростью. Значение этой сила всегда изменяется по модулю, при прохождении положения равновесия она равняется нулю.

Динамика колебательного движения

Уравнение движения тела, колеблющегося под действием силы упругости.

Общее уравнение движения:

Колебания в системе происходят под действием силы упругости, которая согласно закону Гука прямо пропорциональна смещению груза

Тогда уравнение движения шарика примет следующий вид:

Разделим это уравнение на m, получим следующую формулу:

И так как масса и коэффициент упругости величины постоянные, то и отношение (-k/m) тоже будет постоянное. Мы получили уравнение, которые описывают колебания тела под действием силы упругости.

Проекция ускорения тела будет прямо пропорциональна его координате, взятой с противоположным знаком.

Уравнение движения математического маятника

Уравнение движения математического маятника описывается следующей формулой:

Это уравнение имеет такой же вид, что и уравнение движения груза на пружине. Следовательно, колебания маятника и движения шарика на пружине происходят одинаковым образом.

Смещение шарика на пружине и смещение тела маятника от положения равновесия изменяются со временем по одинаковым законам.

Маятники, изображенные на рис. 2, представляют собой протяженные тела различной формы и размеров, совершающие колебания около точки подвеса или опоры. Такие системы называются физическими маятниками. В состоянии равновесия, когда центр тяжести находится на вертикали под точкой подвеса (или опоры), сила тяжести уравновешивается (через упругие силы деформированного маятника) реакцией опоры. При отклонении из положения равновесия сила тяжести и упругие силы определяют в каждый момент времени угловое ускорение маятника, т. е. определяют характер его движения (колебания). Мы рассмотрим теперь динамику колебаний подробнее на простейшем примере так называемого математического маятника, который представляет собой грузик малого размера, подвешенный на длинной тонкой нити.

В математическом маятнике мы можем пренебречь массой нити и деформацией грузика, т. е. можем считать, что масса маятника сосредоточена в грузике, а упругие силы сосредоточены в нити, которую считают нерастяжимой. Посмотрим теперь, под действием каких сил происходит колебание нашего маятника после того, как он каким-либо способом (толчком, отклонением) выведен из положения равновесия.

Когда маятник покоится в положении равновесия, то сила тяжести, действующая на его грузик и направленная вертикально вниз, уравновешивается силой натяжения нити. В отклоненном положении (рис. 15) сила тяжести действует под углом к силе натяжения , направленной вдоль нити. Разложим силу тяжести на две составляющие: по направлению нити () и перпендикулярно к нему (). При колебаниях маятника сила натяжения нити несколько превышает составляющую - на величину центростремительной силы, которая заставляет груз двигаться по дуге. Составляющая же всегда направлена в сторону положения равновесия; она как бы стремится восстановить это положение. Поэтому ее часто называют возвращающей силой. По модулю тем больше, чем больше отклонен маятник.

Рис. 15. Возвращающая сила при отклонении маятника от положения равновесия

Итак, как только маятник при своих колебаниях начинает отклоняться от положения равновесия, скажем, вправо, появляется сила , замедляющая его движение тем сильнее, чем дальше он отклонен. В конечном счете эта сила его остановит и повлечет обратно к положению равновесия. Однако по мере приближения к этому положению сила будет становиться все меньше и в самом положении равновесия обратится в нуль. Таким образом, через положение равновесия маятник проходит по инерции. Как только он начнет отклоняться влево, опять появится растущая с увеличением отклонения сила , но теперь уже направленная вправо. Движение влево опять будет замедляться, затем маятник на мгновение остановится, после чего начнется ускоренное движение вправо и т. д.

Что происходит с энергией маятника при его колебаниях?

Два раза в течение периода - при наибольших отклонениях влево и вправо- маятник останавливается, т. е. в эти моменты скорость равна нулю, а значит, равна нулю и кинетическая энергия. Зато именно в эти моменты центр тяжести маятника поднят на наибольшую высоту и, следовательно, потенциальная энергия наибольшая. Наоборот, в моменты прохождения через положение равновесия потенциальная энергия наименьшая, а скорость и кинетическая энергия достигают наибольшего значения.

Мы предположим, что силами трения маятника о воздух и трением в точке подвеса можно пренебречь. Тогда по закону сохранения энергии эта наибольшая кинетическая энергия как раз равна избытку потенциальной энергии в положении наибольшего отклонения над потенциальной энергией в положении равновесия.

Итак, при колебаниях маятника происходит периодический переход кинетической энергии в потенциальную и обратно, причем период этого процесса вдвое короче периода колебаний самого маятника. Однако полная энергия маятника (сумма потенциальной и кинетической энергий) все время постоянна. Она равна той энергии, которая была сообщена маятнику при пуске, безразлично - в виде ли потенциальной энергии (начальное отклонение) или в виде кинетической (начальный толчок).

Так обстоит дело при всяких колебаниях в отсутствие трения или каких-либо иных процессов, отнимающих энергию у колеблющейся системы или сообщающих ей энергию. Именно поэтому амплитуда сохраняется неизменной и определяется начальным отклонением или силой толчка.

Те же самые изменения возвращающей силы и такой же переход энергии мы получим, если вместо подвешивания шарика на нити заставим его кататься в вертикальной плоскости в сферической чашке или в изогнутом по окружности желобе. В этом случае роль натяжения нити возьмет на себя давление стенок чашки или желоба (трением шарика о стенки и воздух мы опять-таки пренебрегаем).

Математическим маятником называют материальную точку, подвешенную на невесомой и нерастяжимой нити, прикрепленной к подвесу и находящейся в поле силы тяжести (или иной силы).

Исследуем колебания математического маятника в инерциальной системе отсчета, относительно которой точка его подвеса находится в покое или движется равномерно прямолинейно. Силой сопротивления воздуха будем пренебрегать (идеальный математический маятник). Первоначально маятник покоится в положении равновесия С. При этом действующие на него сила тяжести \(\vec F\) и сила упругости \(\vec F_{ynp}\) нити взаимно компенсируются.

Выведем маятник из положения равновесия (отклонив его, например, в положение А) и отпустим без начальной скорости (рис. 13.11). В этом случае силы \(\vec F\) и \(\vec F_{ynp}\) не уравновешивают друг друга. Тангенциальная составляющая силы тяжести \(\vec F_\tau\), действуя на маятник, сообщает ему тангенциальное ускорение \(\vec a_\tau\) (составляющая полного ускорения, направленная вдоль касательной к траектории движения математического маятника), и маятник начинает двигаться к положению равновесия с возрастающей по модулю скоростью. Тангенциальная составляющая силы тяжести \(\vec F_\tau\) является, таким образом, возвращающей силой. Нормальная составляющая \(\vec F_n\) силы тяжести направлена вдоль нити против силы упругости \(\vec F_{ynp}\). Равнодействующая сил \(\vec F_n\) и \(\vec F_{ynp}\) сообщает маятнику нормальное ускорение \(~a_n\), которое изменяет при этом направление вектора скорости, и маятник движется по дуге ABCD.

Чем ближе подходит маятник к положению равновесия С, тем меньше становится значение тангенциальной составляющей \(~F_\tau = F \sin \alpha\). В положении равновесия она равна нулю, а скорость достигает максимального значения, и маятник движется по инерции дальше, поднимаясь по дуге вверх. При этом составляющая \(\vec F_\tau\) направлена против скорости. С увеличением угла отклонения а модуль силы \(\vec F_\tau\) увеличивается, а модуль скорости уменьшается, и в точке D скорость маятника становится равной нулю. Маятник на мгновение останавливается, а затем начинает двигаться в обратном направлении к положению равновесия. Вновь пройдя его по инерции, маятник, замедляя движение, дойдет до точки А (трение отсутствует), т.е. совершит полное колебание. После этого движение маятника будет повторяться в уже описанной последовательности.

Получим уравнение, описывающее свободные колебания математического маятника.

Пусть маятник в данный момент времени находится в точке В. Его смещение S от положения равновесия в этот момент равно длине дуги СВ (т.е. S = |СВ|). Обозначим длину нити подвеса l , а массу маятника - m .

Из рисунка 13.11 видно, что \(~F_\tau = F \sin \alpha\), где \(\alpha =\frac{S}{l}.\) При малых углах \(~(\alpha <10^\circ)\) отклонения маятника \(\sin \alpha \approx \alpha,\) поэтому

\(F_\tau = -F\frac{S}{l} = -mg\frac{S}{l}.\)

Знак минус в этой формуле ставят потому, что тангенциальная составляющая силы тяжести направлена к положению равновесия, а смещение отсчитывают от положения равновесия.

Согласно второму закону Ньютона \(m \vec a = m \vec g + F_{ynp}.\) Спроецируем векторные величины этого уравнения на направление касательной к траектории движения математического маятника

\(~F_\tau = ma_\tau .\)

Из этих уравнений получим

\(a_\tau = -\frac{g}{l}S\) - динамическое уравнение движения математического маятника. Тангенциальное ускорение математического маятника пропорционально его смещению и направлено к положению равновесия. Это уравнение можно записать в виде\. Сравнивая его с уравнением гармонических колебаний \(~a_x + \omega^2x = 0\) (см. § 13.3), можно сделать вывод, что математический маятник совершает гармонические колебания. А так как рассмотренные колебания маятника происходили под действием только внутренних сил, то это были свободные колебания маятника. Следовательно, свободные колебания математического маятника при малых отклонениях являются гармоническими.

Обозначим \(\frac{g}{l} = \omega^2.\) Откуда \(\omega = \sqrt \frac{g}{l}\) - циклическая частота колебаний маятника.

Период колебаний маятника \(T = \frac{2 \pi}{\omega}.\) Следовательно,

\(T = 2 \pi \sqrt{ \frac{l}{g} }\)

Это выражение называют формулой Гюйгенса. Оно определяет период свободных колебаний математического маятника. Из формулы следует, что при малых углах отклонения от положения равновесия период колебаний математического маятника: 1) не зависит от его массы и амплитуды колебаний; 2) пропорционален корню квадратному из длины маятника и обратно пропорционален корню квадратному из ускорения свободного падения. Это согласуется с экспериментальными законами малых колебаний математического маятника, которые были открыты Г. Галилеем.

Подчеркнем, что эту формулу можно использовать для расчета периода при одновременном выполнении двух условий: 1) колебания маятника должны быть малыми; 2) точка подвеса маятника должна покоиться или двигаться равномерно прямолинейно относительно инерциальной системы отсчета, в которой он находится.

Если точка подвеса математического маятника движется с ускорением \(\vec a\) то при этом изменяется сила натяжения нити, что приводит к изменению и возвращающей силы, а следовательно, частоты и периода колебаний. Как показывают расчеты, период колебаний маятника в этом случае можно рассчитать по формуле

\(T = 2 \pi \sqrt{ \frac{l}{g"} }\)

где \(~g"\) - "эффективное" ускорение маятника в неинерциальной системе отсчета. Оно равно геометрической сумме ускорения свободного падения \(\vec g\) и вектора, противоположного вектору \(\vec a\), т.е. его можно рассчитать по формуле

\(\vec g" = \vec g + (- \vec a).\)

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 374-376.

Механическая система, которая состоит из материальной точки (тела), висящей на нерастяжимой невесомой нити (ее масса ничтожно мала по сравнению с весом тела) в однородном поле тяжести, называется математическим маятником (другое название - осциллятор). Бывают и другие виды этого устройства. Вместо нити может быть использован невесомый стержень. Математический маятник может наглядно раскрыть суть многих интересных явлений. При малой амплитуде колебания его движение называется гармоническим.

Общие сведения о механической системе

Формула периода колебания этого маятника была выведена голландским ученым Гюйгенсом (1629-1695 гг.). Этот современник И. Ньютона очень увлекался данной механической системой. В 1656 г. он создал первые часы с маятниковым механизмом. Они измеряли время с исключительной для тех времен точностью. Это изобретение стало важнейшим этапом в развитии физических экспериментов и практической деятельности.

Если маятник находится в положении равновесия (висит отвесно), то будет уравновешиваться силой натяжения нити. Плоский маятник на нерастяжимой нити является системой с двумя степенями свободы со связью. При смене всего одного компонента меняются характеристики всех ее частей. Так, если нитку заменить на стержень, то у данной механической системы будет всего 1 степень свободы. Какими же свойствами обладает математический маятник? В этой простейшей системе под воздействием периодического возмущения возникает хаос. В том случае, когда точка подвеса не двигается, а совершает колебания, у маятника появляется новое положение равновесия. При быстрых колебаниях вверх-вниз эта механическая система приобретает устойчивое положение «вверх тормашками». У нее есть и свое название. Ее называют маятником Капицы.

Свойства маятника

Математический маятник имеет очень интересные свойства. Все они подтверждаются известными физическими законами. Период колебаний любого другого маятника зависит от разных обстоятельств, таких как размер и форма тела, расстояние между точкой подвеса и центром тяжести, распределение массы относительно данной точки. Именно поэтому определение периода висящего тела является довольно сложной задачей. Намного легче вычисляется период математического маятника, формула которого будет приведена ниже. В результате наблюдений над подобными механическими системами можно установить такие закономерности:

Если, сохраняя одинаковую длину маятника, подвешивать различные грузы, то период их колебаний получится одинаковым, хотя их массы будут сильно различаться. Следовательно, период такого маятника не зависит от массы груза.

Если при запуске системы отклонять маятник на не слишком большие, но разные углы, то он станет колебаться с одинаковым периодом, но по разным амплитудам. Пока отклонения от центра равновесия не слишком велики, колебания по своей форме будут достаточно близки гармоническим. Период такого маятника никак не зависит от колебательной амплитуды. Это свойство данной механической системы называется изохронизмом (в переводе с греческого «хронос» - время, «изос» - равный).

Период математического маятника

Этот показатель представляет собой период Несмотря на сложную формулировку, сам процесс очень прост. Если длина нити математического маятника L, а ускорение свободного падения g, то эта величина равна:

Период малых собственных колебаний ни в какой мере не зависит от массы маятника и амплитуды колебаний. В этом случае маятник двигается как математический с приведенной длиной.

Колебания математического маятника

Математический маятник совершает колебания, которые можно описать простым дифференциальным уравнением:

x + ω2 sin x = 0,

где х (t) - неизвестная функция (это угол отклонения от нижнего положения равновесия в момент t, выраженный в радианах); ω - положительная константа, которая определяется из параметров маятника (ω = √g/L, где g - это ускорение свободного падения, а L - длина математического маятника (подвес).

Уравнение малых колебаний вблизи положення равновесия (гармоническое уравнение) выглядит так:

x + ω2 sin x = 0

Колебательные движения маятника

Математический маятник, который совершает малые колебания, двигается по синусоиде. Дифференциальное уравнение второго порядка отвечает всем требованиям и параметрам такого движения. Для определения траектории необходимо задать скорость и координату, из которых потом определяются независимые константы:

x = A sin (θ 0 + ωt),

где θ 0 - начальная фаза, A - амплитуда колебания, ω - циклическая частота, определяемая из уравнения движения.

Математический маятник (формулы для больших амплитуд)

Данная механическая система, совершающая свои колебания со значительной амплитудой, подчиняется более сложным законам движения. Для такого маятника они рассчитываются по формуле:

sin x/2 = u * sn(ωt/u),

где sn - синус Якоби, который для u < 1 является периодической функцией, а при малых u он совпадает с простым тригонометрическим синусом. Значение u определяют следующим выражением:

u = (ε + ω2)/2ω2,

где ε = E/mL2 (mL2 - энергия маятника).

Определение периода колебания нелинейного маятника осуществляется по формуле:

где Ω = π/2 * ω/2K(u), K - эллиптический интеграл, π - 3,14.

Движение маятника по сепаратрисе

Сепаратрисой называют траекторию динамической системы, у которой двумерное фазовое пространство. Математический маятник движется по ней непериодически. В бесконечно дальнем моменте времени он падает из крайнего верхнего положения в сторону с нулевой скоростью, затем постепенно набирает ее. В конечном итоге он останавливается, вернувшись в исходное положение.

Если амплитуда колебаний маятника приближается к числу π , это говорит о том, что движение на фазовой плоскости приближается к сепаратрисе. В этом случае под действием малой вынуждающей периодической силы механическая система проявляет хаотическое поведение.

При отклонении математического маятника от положения равновесия с некоторым углом φ возникает касательная силы тяжести Fτ = -mg sin φ. Знак «минус» означает, что эта касательная составляющая направляется в противоположную от отклонения маятника сторону. При обозначении через x смещения маятника по дуге окружности с радиусом L его угловое смещение равняется φ = x/L. Второй закон предназначенный для проекций и силы, даст искомое значение:

mg τ = Fτ = -mg sin x/L

Исходя из этого соотношения, видно, что этот маятник представляет собой нелинейную систему, поскольку сила, которая стремится вернуть его в положение равновесия, всегда пропорциональна не смещению x, а sin x/L.

Только тогда, когда математический маятник осуществляет малые колебания, он является гармоническим осциллятором. Иными словами, он становится механической системой, способной выполнять гармонические колебания. Такое приближение практически справедливо для углов в 15-20°. Колебания маятника с большими амплитудами не является гармоническим.

Закон Ньютона для малых колебаний маятника

Если данная механическая система выполняет малые колебания, 2-й закон Ньютона будет выглядеть таким образом:

mg τ = Fτ = -m* g/L* x.

Исходя из этого, можно заключить, что математического маятника пропорционально его смещению со знаком «минус». Это и является условием, благодаря которому система становится гармоническим осциллятором. Модуль коэффициента пропорциональности между смещением и ускорением равняется квадрату круговой частоты:

ω02 = g/L; ω0 = √ g/L.

Эта формула отражает собственную частоту малых колебаний этого вида маятника. Исходя из этого,

T = 2π/ ω0 = 2π√ g/L.

Вычисления на основе закона сохранения энергии

Свойства маятника можно описать и при помощи закона сохранения энергии. При этом следует учитывать, что маятника в поле тяжести равняется:

E = mg∆h = mgL(1 - cos α) = mgL2sin2 α/2

Полная равняется кинетической или максимальной потенциальной: Epmax = Ekmsx = E

После того как будет записан закон сохранения энергии, берут производную от правой и левой частей уравнения:

Поскольку производная от постоянных величин равняется 0, то (Ep + Ek)" = 0. Производная суммы равняется сумме производных:

Ep" = (mg/L*x2/2)" = mg/2L*2x*x" = mg/L*v + Ek" = (mv2/2) = m/2(v2)" = m/2*2v*v" = mv* α,

следовательно:

Mg/L*xv + mva = v (mg/L*x + m α) = 0.

Исходя из последней формулы находим: α = - g/L*x.

Практическое применение математического маятника

Ускорение изменяется с географической широтой, поскольку плотность земной коры по всей планете не одинакова. Там, где залегают породы с большей плотностью, оно будет несколько выше. Ускорение математического маятника нередко применяют для геологоразведки. В его помощью ищут различные полезные ископаемые. Просто подсчитав количество колебаний маятника, можно обнаружить в недрах Земли каменный уголь или руду. Это связано с тем, что такие ископаемые имеют плотность и массу больше, чем лежащие под ними рыхлые горные породы.

Математическим маятником пользовались такие выдающиеся ученые, как Сократ, Аристотель, Платон, Плутарх, Архимед. Многие из них верили в то, что эта механическая система может влиять на судьбу и жизнь человека. Архимед использовал математический маятник при своих вычислениях. В наше время многие оккультисты и экстрасенсы пользуются этой механической системой для осуществления своих пророчеств или поиска пропавших людей.

Известный французский астроном и естествоиспытатель К. Фламмарион для своих исследований также использовал математический маятник. Он утверждал, что с его помощью ему удалось предсказать открытие новой планеты, появление Тунгусского метеорита и другие важные события. Во время Второй мировой войны в Германии (г. Берлин) работал специализированный Институт маятника. В наши дни подобными исследованиями занят Мюнхенский институт парапсихологии. Свою работу с маятником сотрудники этого заведения называют «радиэстезией».

Математический маятник.

Математическим маятником называется материальная точка, подвешенная на нерастяжимой невесомой нити, совершающая колебательное движение в одной вертикальной плоскости под действием силы тяжести.

Таким маятником можно считать тяжелый шар массой m, подвешенный на тонкой нити, длина l которой намного больше размеров шара. Если его отклонить на угол α (рис.7.3.) от вертикальной линии, то под влиянием силы F – одной из составляющих веса Р он будет совершать колебания. Другая составляющая , направленная вдоль нити, не учитывается, т.к. уравновешивается силой натяжения нити. При малых углах смещения и, тогда координату х можно отсчитывать по горизонтальному направлению. Из рис.7.3 видно, что составляющая веса, перпендикулярная нити, равна

Момент силы относительно точки О: , и момент инерции:
M = FL .
Момент инерции J в данном случае
Угловое ускорение:

С учетом этих величин имеем:

(7.8)

Его решение
,

где и (7.9)

Как видим, период колебаний математического маятника зависит от его длины и ускорения силы тяжести и не зависит от амплитуды колебаний.

Физический маятник.

Физическим маятником называется твердое тело, закрепленное на неподвижной горизонтальной ocи (оси подвеса), не проходящей через центр тяжести, и совершающее колебания относительно этой оси под действием силы тяжести. В отличие от математического маятника массу такого тела нельзя считать точечной.

При небольших углах отклонения α (рис. 7.4) физический маятник так же совершает гармонические колебания. Будем считать, что вес физического маятника приложен к его центру тяжести в точке С. Силой, которая возвращает маятник в положение равновесия, в данном случае будет составляющая силы тяжести – сила F.

Знак минус в правой части означает то, что сила F направлена в сторону уменьшения угла α. С учетом малости угла α

Для вывода закона движения математического и физического маятников используем основное уравнение динамики вращательного движения

Момент силы: определить в явном виде нельзя. С учетом всех величин, входящих в исходное дифференциальное уравнение колебаний физического маятника имеет вид.

mob_info