Уравнение динамики вращательного движения тела. Савельев И.В. Курс общей физики, том I. Недоказанная и неопровергнутая гипотеза называется открытой проблемой

Твердого тела вокруг неподвижной оси.

Момент импульса твердого тела при вращательном движении вокруг оси z вычисляется как

Тогда уравнение динамики вращательного движения примет вид:

Если тело твердое, то , поэтому, с учетом того, что (угловое ускорение), получаем выражение

Это уравнение динамики вращательного движения твердого тела вокруг неподвижной оси :

угловое ускорение вращательного движения твердого тела вокруг неподвижной оси прямо пропорционально величине момента внешних сил относительно этой оси .

Замечание . По аналогии со вторым законом Ньютона, в котором ускорение определяется силой, уравнение динамики вращательного движения твёрдого тела дает связь между угловым ускорением и моментом силы. В этом смысле момент инерции тела играет роль меры инертности при вращательном движении .

Примеры вычисления моментов инерции.

1) Момент инерции тонкого кольца (прямого тонкостенного цилиндра) массы m и радиуса R относительно оси z, перпендикулярной плоскости кольца, проходящей через центр кольца

2) Момент инерции диска (сплошного цилиндра) массы m и радиуса R относительно оси z, перпендикулярной к плоскости диска, проходящей через центр диска (сплошного цилиндра).

Выделим тонкий цилиндр радиусом r и толщиной dr .

Масса этого цилиндра , .

3) Момент инерции тонкого стержня относительно оси z, являющейся срединным перпендикуляром. Масса стержня m, длина L.

Выделим на расстоянии x от оси маленькую часть стержня длиной dx.

Масса этой части и . Поэтому

.

4) Момент инерции тонкостенного шара относительно любой оси симметрии z. Масса шара m, радиус R.

Выделим на поверхности сферы кольцевой сегмент, для которого ось z является осью симметрии. Сегмент опирается на малый центральный угол dj, положение сегмента определяется углом j, отсчитываемым от плоскости экватора, перпендикулярной оси z.

Тогда радиус кольца ,

его масса , поэтому

или

5) Момент инерции сплошного шара относительно любой оси симметрии z. Масса шара m, радиус шара R.

Представим шар как набор вложенных друг в друга тонкостенных сфер переменного радиуса r и толщиной dr . Масса одной такой сферы .

Момент инерции такой сферы .

.

Теорема Гюйгенса-Штейнера

Как связаны между моменты инерции твердого тела относительно двух параллельных осей?

Рассмотрим две параллельные оси z 1 и z 2 . Введем две системы координат так, чтобы их оси х и у были параллельны друг другу, причем вторая система координат была получена параллельным переносом из первой на вектор, перпендикулярный осям z 1 и z 2 . Тогда расстояние между осями будет равно .

В этом случае координаты любой i- й малой частицы тела связаны соотношениями

Квадрат расстояния от этой точки до первой оси z 1:

и до второй оси z 2 .

Вычисляем момент инерции относительно второй оси:

В этом равенстве

Момент инерции тела относительно оси z 1 ,

Учтём, что и (где x 1С и y 1С – координаты центра масс тела в 1й системе координат) и получим

Если предположить, что ось z 1 проходит через центр масс тела , то x 1С =0 и y 1С =0, поэтому в этом случае выражение упрощается:

Это выражение носит название теоремы Гюйгенса-Штейнера : момент инерции твердого тела относительно произвольной оси равен сумме момента инерции тела относительно параллельной оси, проходящей через центр масс тела и квадрата расстояния между осями, умноженного на массу тела .

Пример . Момент инерции стрежня относительно оси, проходящей через край стержня, перпендикулярно ему, равен сумме момента инерции относительно срединной оси и массе, умноженный на квадрат половины длины стержня:

.

Пример . Рассмотрим движение грузов на невесомой нерастяжимой нити, перекинутой через блок (диск). Массы грузов m 1 и m 2 (m 1 < m 2), масса блока m. Трения в оси блока нет. Нить не скользит по блоку. Силами сопротивления в воздухе пренебрегаем. Найти ускорение грузов. Радиус блока R.

Решение . Фиксируем систему отсчета, в которой ось блока неподвижная. Предполагаем, что эта система отсчета инерциальная. Ось z системы координат в этой системе отсчёта направим вдоль оси вращения блока («от нас»).

«Мысленно» разбиваем систему на части и находим силы между частями системы в соответствие со вторым и третьим законами Ньютона.

При этом учтём, что нить невесомая (масса любой части нити равна нулю), поэтому, если кусок нити движется под действием (растягивающих) сил, то из второго закона Ньютона

Работа при вращении тела идет на увеличение его кинетической энергии . Поскольку , то или .

Учитывая, что , получим . Следовательно, момент силы,

действующей на тело, равен произведению момента инерции тела на угловое ускорение. Если ось вращения совпадает со свободной осью (см. 7.7), то имеет место векторное равенство

Это равенство представляет собой основное уравнение динамики вращательного движения твердого тела относительно неподвижной оси.

Пример 4.5.1. Тонкий стержень длиной и массой вращается вокруг неподвижной оси с угловым ускорением . Ось вращения перпендикулярна стержню и проходит через его середину. Определить момент силы, действующий на стержень.

Решение:

Согласно основному уравнению динамики вращательного движения вращающий момент связан с угловым ускорением следующим соотношением: ; где момент инерции стержня относительно оси вращения. Т.к. ось вращения проходит через центр масс стержня, то .

Следовательно, момент силы, действующий на стержень, .

Ответ: .

Пример 4.5.2. Вал в виде сплошного цилиндра массой насажен на горизонтальную ось. На цилиндр намотан нерастяжимый шнур, к свободному концу которого подвешена гиря массой . С каким ускорением будет опускаться гиря, если ее предоставить самой себе?

Решение:

Сделаем чертеж (рис. 4.5.1). Груз опускается с ускорением . На него действуют силы тяжести и натяжения шнура . Вал вращается против часовой стрелки с угловым ускорением . На вал действуют силы тяжести , сила реакции со стороны оси, на которую вал опирается, и сила реакции со стороны шнура . Вращающий момент создает только сила , т.к. линия действия сил и проходит через ось вращения (плечо этих сил равно 0).

Основное уравнение динамики поступательного движения груза имеет вид:

. В проекции на ось Oy: .

Основное уравнение динамики вращательного движения вала имеет вид: .

Если сила, действующая на тело, создает момент, способствующий вращению в заданном направлении, то ее момент считаем положительным (направление вектора момента силы совпадает с направлением углового ускорения ), если препятствует – момент считаем отрицательным (направления и противоположны). Следовательно, в скалярной форме (в проекции на направление углового ускорения) основное уравнение динамики вращательного движения будет иметь вид: .

Учитывая, что ось вращения проходит через центр масс цилиндрического вала перпендикулярно плоскости его основания , где радиус основания цилиндра, а вращающий момент (плечо силы равно радиусу основания цилиндра), то.

По третьему закону Ньютона (шнур нерастяжим), поэтому . Тангенциальное ускорение точек, лежащих на ободе вала, связано с его угловым ускорением соотношением: . С таким же ускорением движется любая точка шнура, на котором подвешен груз. Следовательно, , откуда . Подставив в уравнение (1), получим:и .



Ответ: .

Пример 4.5.3. Через блок в виде диска, имеющего массу , перекинута тонкая гибкая нить, к концам которой подвешены грузы массами и . С каким ускорением будут двигаться грузы, если их предоставить самим себе? Трением пренебречь.

Решение:

Сделаем чертеж (рис. 4.5.2). Первый груз будет двигаться поступательно вверх с ускорением , второй – опускаться с таким же ускорением. Уравнения поступательного движения грузов в векторной форме имеют вид .

В проекции на направление оси :

, откуда .

Согласно основному уравнению динамики вращательного движения . При движении грузов диск ускоренно вращается по часовой стрелке, следовательно, сила способствует вращению , а сила тормозит вращение . Поэтому в скалярной форме (в проекции на направление углового ускорения), т.к. плечо сил равно радиусу диска .

Учитывая, что момент инерции диска , а линейное ускорение грузов равно

тангенциальному ускорению точек обода диска, связанного с угловым ускорением соот-

ношением , то , откуда . . В скалярной форме (в проекции на направление углового ускорения)

Ответ: .

Напомним, что элементарной работой dA силы F называется скалярное произведение силы F на бесконечно малое перемещение dl :

где  - угол между направлением силы и направлением перемещения.

Отметим, что нормальная составляющая силы F n (в отличие от тангенциальной F τ ) и сила реакции опоры N работы не совершают, так как они перпендикулярны направлению перемещения.

Элемент dl=rd при небольших углах поворота d (r – радиус-вектор элемента тела). Тогда работа этой силы записывается следующим образом:

. (19)

Выражение Fr cos является моментом силы (произведение силы F на плечо p=r cos):

(20)

Тогда работа равна

. (21)

Эта работа затрачивается на изменение кинетической энергии вращения:

. (22)

Если I=const, то после дифференцирования правой части получим:

или, так как

, (23)

где
- угловое ускорение.

Выражение (23) является уравнением динамики вращательного движения твердого тела относительно неподвижной оси, которое лучше с точки зрения причинно-следственных связей представить как:

. (24)

Угловое ускорение тела определяется алгебраической суммой моментов внешних сил относительно оси вращения деленной на момент инерции тела относительно этой оси.

Сопоставим основные величины и уравнения, определяющие вращение тела вокруг неподвижной оси и его поступательное движение (см. таблицу 1):

Таблица 1

Поступательное движение

Вращательное движение

Момент инерции I

Скорость

Угловая скорость

Ускорение

Угловое ускорение

Сила

Момент силы
или

Основное уравнение динамики:

Основное уравнение динамики:

Работа

Работа

Кинетическая энергия

Кинетическая энергия

Динамика поступательного движения твердого тела полностью определяется силой и массой как мерой их инертности. При вращательном движении твердого тела динамика движения определяется не силой как таковой, а ее моментом, инертность не массой, а ее распределением относительно оси вращения. Тело не приобретает углового ускорения, если сила приложена, но ее момент будет равен нулю.

Методика выполнения работы

Принципиальная схема лабораторной установки представлена на рис.6. Она состоит из диска массой m d , закрепленных на нем четырех стержней массами m 2 , и четырех грузов массами m 1 , расположенных симметрично на стержнях. На диск намотана нить, к которой подвешен груз массой m.

Согласно второму закону Ньютона составим уравнение поступательного движения груза m без учета сил трения:


(25)

или в скалярном виде, т.е. в проекциях на направление движения:

. (26)

, (27)

где T – сила натяжения нити. Согласно основному уравнению динамики вращательного движения (24), момент силы T, под действием которой система тел m d , m 1, m 2 совершает вращательное движение, равен произведению момента инерции I этой системы на ее угловое ускорение :

или
, (28)

где R – плечо этой силы равное радиусу диска.

Выразим силу натяжения нити из (28):

(29)

и приравняем правые части (27) и (29):

. (30)

Линейное ускорение связано с угловым следующим соотношением a=R, следовательно:

. (31)

Откуда ускорение груза m без учета сил трения в блоке равно:

. (32)

Рассмотрим динамику движения системы с учетом сил трения, которые действуют в системе. Они возникают между стержнем, на котором закреплен диск и неподвижной частью установки (внутри подшипников), а также между подвижной частью установки и воздухом. Все эти силы трения мы будем учитывать с помощью момента сил трения.

С учетом момента сил трения уравнение динамики вращения записывается следующим образом:

, (33)

где a’ – линейное ускорение при действии сил трения, M тр – момент сил трения.

Вычитая уравнение (33) из уравнения (28), получим:

,

. (34)

Ускорение без учета силы трения (а) можно рассчитать по формуле (32). Ускорение гирьки с учетом сил трения можно рассчитать из формулы для равноускоренного движения, измерив пройденный путь S и время t:

. (35)

Зная значения ускорений (а и а’), по формуле (34) можно определить момент сил трения. Для расчетов необходимо знать величину момента инерции системы вращающихся тел, который будет равен сумме моментов инерции диска, стержней и грузов.

Момент инерции диска согласно (14) равен:

. (36)

Момент инерции каждого из стержней (рис.6) относительно оси О согласно (16) и теореме Штейнера равен:

где a c =l/2+R, R – расстояние от центра масс стержня до оси вращения О; l – длина стержня; I oc – его момент инерции относительно оси, проходящей через центр масс.

Аналогично рассчитываются моменты инерции грузов:

, (38)

где h – расстояние от центра масс груза до оси вращения О; d – длина груза; I 0 r – момент инерции груза относительно оси, проходящей через его центр масс. Сложив моменты инерции всех тел, получим формулу для вычисления момента инерции всей системы.


Твердое тело можно представить как совокупность материальных точек. При вращении тела все эти точки имеют одинаковые угловые скорости и ускорения. Используя результаты § 7.6, сравнительно несложно получить уравнение движения твердого тела при его вращении вокруг неподвижной оси.
Уравнение движения
Для вывода основного уравнения динамики вращательного движения можно поступить следующим образом. Разделить мысленно тело на отдельные, достаточно малые элементы, которые можно было бы рассматривать как материальные точки (рис. 7.33). Записать для каждого элемента уравнение (7.6.13), и все эти уравнения почленно сложить. При этом внутренние силы, действующие между отдельными элементами, в уравнение движения тела не войдут. Сумма их моментов в результате сложения уравнений окажется равной нулю, так как по третьему закону Ньютона силы взаимодействия равны по модулю и направлены вдоль одной прямой в противоположные стороны. Учитывая далее, что при вращении твердого тела все его точки совершают одинаковые угловые перемещения с одинаковыми скоростями и ускорениями, можно таким образом получить уравнение вращательного движения всего тела.
Однако вывод этого уравнения довольно громоздок, поэтому мы на нем останавливаться не будем. Тем более что это уравнение имеет такую же форму, что и уравнение (7.6.13) для материальной точки, движущейся по окружности:
О"
О"

(7.7.1)
d(J В этом уравнении JI
щих на тело относительно оси вращения.
Читается уравнение (7.7.1) так: производная по времени от момента импульса равна суммарному моменту внешних сил.
Следует иметь в виду, JITO вращение тела вокруг оси могут вызывать лишь силы Ft, лежащие в плоскости, перпендикулярной оси вращения (рис. 7.34). Силы же Fk, направленные параллельно оси вращения, очевидно, способны вызвать лишь перемещение тела вдоль оси. Момент каждой силы Fl равен взятому со знаком плюс или минус произведению модуля этой силы на плечо d, т. е. на длину отрезка перпендикуляра, опу-щенного из точки С оси на линию действия силы Ft:
Mi = ±Ftd. (7.7.2)
Момент силы, вращающий тело вокруг данной оси против часовой стрелки, считается положительным, а по часовой стрелке - отрицательным.
Момент инерции тела
В формулу (7.7.1) входит момент инерции тела J. Момент инерции тела J равен сумме моментов инерции AJ- отдельных малых элементов, на которые можно разбить все тело:
(7.7.3)
і
Так как момент инерции материальной точки
AJ^Amtf, (7.7.4)
где Атпі - масса элемента тела, а г, - его расстояние до оси вращения (см. рис. 7.33), то
J = J A mtrf . (7.7.5)
385
13-Мякишев, 10 кл.
Момент инерции тела зависит не только от массы тела, но и от характера распределения этой массы. Чем больше вытянуто
Рис. 7.35
тело вдоль оси вращения, тем меньше его момент инерции, так как тем ближе к оси вращения расположены отдельные элементы тела. Очевидно также, что, изменив ось вращения тела, мы тем самым изменим и его момент инерции. У твердых тел момент инерции относительно данной оси - постоянная величина. Поэтому изменение момента импульса может происходить лишь за счет изменения угловой скорости. Соответственно уравнение (7.7.1) можно записать в виде:
jft = М. (7.7.6)
Читается это уравнение так: произведение момента инерции тела относительно оси вращения на угловое ускорение тела равно сумме моментов (относительно той же оси) всех внешних сил, приложенных к телу.
Уравнение (7.7.6) показывает, что при вращении тела момент инерции играет роль массы, момент силы - роль силы, а угловое ускорение - роль линейного ускорения при движении материальной точки или центра масс.
В том, что угловое ускорение определяется действительно моментом силы, т. е. силой и плечом, а не просто силой, убедиться нетрудно. Так, раскрутить велосипедное колесо до одной и той же угловой скорости одной и той же силой (напри-мер, усилием пальца) можно гораздо быстрее, если прикладывать силу к ободу колеса (это создает больший момент), а не к спицам вблизи втулки (рис. 7.35).
Для того чтобы убедиться в том, что угловое ускорение определяется именно моментом инерции, а не массой тела, нужно иметь в распоряжении тело, форму которого можно легко изменять, не меняя массы. Велосипедное колесо здесь непригодно. Но можно воспользоваться своим собственным телом. Попробуйте закрутиться на пятке, оттолкнувшись от пола другой ногой. Если вы при этом прижмете руки к груди, то угловая скорость окажется большей, чем если вы раскинете руки в стороны. Эффект будет особенно заметным, если в обе руки взять по толстой книге.
Моменты инерции обруча и цилиндра
Найти момент инерции тела произвольной несимметричной формы довольно сложно. Проще его измерить опытным путем, чем вычислить.
Мы ограничимся вычислением момента инерции тонкого обруча, вращающегося вокруг оси, проходящей через его центр. Если масса колеса сосредоточена главным образом в его ободе (как, например, у велосипедного колеса), то такое колесо приближенно можно рассматривать как обруч, пренебрегая массой спиц и втулки.
Разобьем обруч на N одинаковых элементов. Если т - масса всего обруча, то масса каждого элемента Дmi = ^ . Толщину
обруча будем считать много меньшей ее радиуса (рис. 7.36). Если число элементов выбрать достаточно большим, то каждый элемент можно рассматривать как материальную точку. Поэтому момент инерции произвольного элемента с номером і будет равен:
Д Jt = Дт;Д2. (7.7.7)
Подставляя выражение (7.7.7) в формулу (7.7.5) для полного момента инерции, получим:
N
(7.7.8)
J= Д^Д miR2 = mR2.

Рис. 7.36
Здесь мы учли, что расстояние R для всех элементов одинаково и что сумма
масс элементов равна массе т об-
I
руча.
13*
387
Получился очень простой результат: момент инерции обруча равен произведению его массы на квадрат радиуса. Момент инерции обруча данной массы тем больше, чем больше его радиус. Формула (7.7.8) определяет также момент инерции
полого тонкостенного цилиндра при его вращении вокруг оси симметрии.
Вычисление момента инерции сплошного однородного цилиндра массой тп и радиусом R относительно его оси симметрии представляет более сложную задачу. Мы приведем лишь результат расчета: (7.7.9)
J =\ mR2. Следовательно, если сравнить моменты инерции двух цилиндров одинакового размера и массы, один из которых полый, а другой сплошной, то у второго цилиндра момент инерции будет в два раза меньше. Это связано с тем, что у сплошного цилиндра масса расположена в среднем ближе к оси вращения.
Мы познакомились с уравнением вращательного движения твердого тела. По форме оно похоже на уравнение для поступательного движения твердого тела. Дано определение новых физических величин, характеризующих твердое тело: момента инерции и момента импульса.

Основное уравнение динамики вращательного движения - раздел Механика, Недоказанная и неопровергнутая гипотеза называется открытой проблемой Согласно Уравнению (5.8) Второй Закон Ньютона Для Вращательного Движения...

Это выражение носит название основного уравнения динамики вращательного движения и формулируется следующим образом: изменение момента количества движения твердого тела , равно импульсу момента всех внешних сил, действующих на это тело.

Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Замечание: момент импульса относительно точки - это псевдовектор, а момент импульса относительно оси - скалярная величина.

Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки оно также обладает моментом импульса. Наибольшую роль момент импульса играет при описании собственно вращательного движения.

Момент импульса замкнутой системы сохраняется.

Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) - векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства.

Где применяется закон сохранения момента импульса? Кто из нас не восхищается красотой движений фигуристов на льду, их стремительными вращениями и столь же стремительными переходами к медленному скольжению, сложнейшими сальто гимнастов пли прыгунов на батуте! В основе этого удивительного мастерства лежит тот же эффект, являющийся следствием закона сохранения момента импульса. Раскинув руки в стороны и заводя свободную ногу, фигурист сообщает себе медленное вращение вокруг вертикальной оси (см.рис.1). Резко «сгруппировавшись», он уменьшает момент инерции и получает приращение угловой скорости.

Если ось вращения тела является свободной (например, если тело свободно падает), то сохранение момента импульса не означает, что в инерциальнои системе отсчета сохраняется направление угловой скорости. За редким исключением мгновенная ось вращения, как говорят, прецессирует вокруг направления момента импульса тела. Это проявляется в кувыркании тела при падении. Однако у тел существуют так называемые главные оси инерции, совпадающие с осями симметрии этих тел. Вращение вокруг них является устойчивым, векторы угловой скорости и момента импульса совпадают по направлению, и никакого кувыркания пе происходит.

Если внимательно наблюдать за работой жонглера, то можно заметить, что, подбрасывая предметы, он придает им вращение. Только в этом случае булавы, тарелки, шляпы возвращаются ему в руки в том же положении, которое им было придано. Нарезное оружие дает лучшую прицельность и большую дальность, чем гладкоствольное. Выпущенный из орудия артиллерийский снаряд вращается вокруг своей продольной оси, и поэтому его полет является устойчивым.

Рис.2. рис.3.

Так же ведет себя хорошо известный всем волчок, или гироскоп (рис.2). В механике гироскопом называют любое массивное однородное тело, вращающееся вокруг оси симметрии с большой угловой скоростью. Обычно ось вращения выбирают так, чтобы момент инерции относительно этой оси был максимальным. Тогда вращение наиболее устойчиво.

Для создания свободного гироскопа в технике используют карданов подвес (рис.3). Он представляет собой две кольцевые обоймы, которые входят одна в другую и могут вращаться относительно друг друга. Точка пересечения всех трех осей 00, О"О" и О"0" совпадает с положением центра масс гироскопа С. В таком подвесе гироскоп может вращаться вокруг любой из трех взаимно перпендикулярных осей, при этом центр масс относительно подвеса будет покоиться.

Пока гироскоп неподвижен, его без особых усилии можно повернуть вокруг любой оси. Если же гироскоп привести в быстрое вращение относительно оси 00 и после этого пытаться повернуть подвес, то ось гироскопа стремится сохранить свое направление неизменным. Причина такой устойчивости вращения связана с законом сохранения момента импульса. Так как момент внешних сил мал, то он не в состоянии заметно изменить момент импульса гироскопа. Ось вращения гироскопа, с направлением которой вектор момента импульса почти совпадает, не отклоняется далеко от своего положения, а лишь дрожит, оставаясь на месте.

Это свойство гироскопа находит широкое практическое применение. Летчику, например, необходимо всегда знать положение истинной земной вертикали по отношению к положению самолета в данный момент. Обыкновенный отвес для этой цели не годится: при ускоренном движения он отклоняется от вертикали. Применяют быстро вращающиеся гироскопы на кардановом подвесе. Если ось вращения гироскопа установить так, чтобы она совпадала с земной вертикалью, то, как бы самолет ни изменял свое положение в пространстве, ось сохранит направление вертикали. Такое устройство носит название гирогоризонта.

Если гироскоп находится во вращающейся системе, то его ось устанавливается параллельно оси вращения системы. В земных условиях это проявляется в том, что ось гироскопа в конце концов устанавливается параллельно оси вращения Земли, указывая направление север - юг. В морской навигации такой гироскопический компас является совершенно незаменимым прибором.

Подобное, на первый взгляд странное поведение гироскопа тоже находится в полном согласии с уравнением моментов и законом сохранения момента импульса.

Закон сохранения момента импульса является наряду с законами сохранения энергии и импульса одним важнейших фундаментальных законов природы и, вообще говоря, не выводится из законов Ньютона. Лишь в частном случае, когда рассматривается движение но окружностям частиц или материальных точек, совокупность которых образует твердое тело, такой подход является возможным. Как и другие законы сохранения, он, согласно теореме Нётер, связан с определенным видом симметрии.

Конец работы -

Эта тема принадлежит разделу:

Недоказанная и неопровергнутая гипотеза называется открытой проблемой

Физика тесно связана с математикой математика предоставляет аппарат с помощью которого физические законы могут быть точно сформулированы.. тео рия греч рассмотрение.. стандартный метод проверки теорий прямая экспериментальная проверка эксперимент критерий истины однако часто..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

mob_info