Кванторы общности и существования. Вопрос30. Предикат. Множество истинности предиката. Кванторы общности существования. Виды формулировок теорем (прямая и обратная теоремы, теорема о необходимых и достаточных условиях) Кванторы общности и существования

Рассматриваемые вопросы
1. Кванторы.
2. Квантор всеобщности.
3. Квантор существования.
4. Понятие формулы логики предикатов. Значение формулы
логики предикатов.
5. Равносильные формулы логики предикатов.

Понятие квантора

Квантор - (от лат. quantum - сколько), логическая
операция, дающая количественную характеристику
области предметов, к которой относится выражение,
получаемое в результате её применения.
В обычном языке носителями таких характеристик
служат слова типа "все", "каждый", "некоторый",
"существует",
"имеется",
"любой",
"всякий",
"единственный", "несколько", "бесконечно много",
"конечное число", а также все количественные
числительные.

Операции для предиката

Для предикатов вводятся две новые по
сравнению с логикой высказываний операции:
квантор общности
квантор существования

Квантор общности

Пусть Р(x) – одноместный предикат, определенный на
предметном множестве М.
Универсальным высказыванием, соответствующим
предикату Р(x), называется высказывание:
«каждый элемент множества М удовлетворяет
предикату Р(x)»
или
«для всякого х выполняется предикат»
Это высказывание обозначается - (x)P(x)
Высказывание (x)P(x) считается истинным, если
предикат P(x) тождественно истинный, а ложным –
в противном случае.

Квантор общности

Символ x называется квантором
переменной х, его читают так:
«для всех х»
«для каждого х»
«для любого х»
общности по
Выражение (x)P(x) читается: «для всех х, Р(х)», или
«для каждого х, Р(х)».
Например, x(х=х) – это истинное универсальное
высказывание, а x(х>2) – ложное универсальное
высказывание.

конечном множестве {a1,a2,…am}, то:
P(x) P(a1) P(a2) ... P(am)

Квантор общности

Таким образом, квантор общности
можно понимать как оператор
конъюнкции по квантифицируемой
переменной.

Квантор существования

Экзистенциональным
высказыванием,
соответствующим
предикату
Р(x),
называется
высказывание «существует элемент множества М,
удовлетворяющий
предикату
Р(x)»,
которое
обозначается x P(x) и считается истинным, если
предикат Р(х) выполнимый, а ложным – в противном
случае.
Символ x называют квантором существования, а
выражение x, в котором этот квантор предшествует
переменной х, читают так:
«существует х такой, что…»
«для некоторого х, …»

Квантор существования

НАПРИМЕР
x(х>2) –истинное экзистенциональное высказывание
x(х=х+1) – ложное экзистенциональное высказывание.
Если Р(х)- одноместный предикат, определенный на
конечном множестве {a1,a2,…am}, то
P(x) P(a1) P(a2) ... P(am)

Квантор существования

Таким образом, квантор
существования можно понимать как
оператор дизъюнкции по
квантифицируемой переменной.

10. Примеры

Примеры записей формул и их словесные выражения:
x(x 2 1 (x 1)(x 1)) Для всех х выполняется предикат…
x(x 0)

неравенство...
x(x 0)
Для всех х, справедливо…..
y (5 y 5)
Существует y такой, что 5+y=5
y(y 2 y 1 0)
Для всех y выполняется предикат
y(y 2 y 1 0)
Существует y, что ….
x(x x)
Для некоторого х, справедливо
3
2

11. Формулы логики предикатов

В логике предикатов имеется следующая символика:
Символы p, q, r, …- переменные высказывания, принимающие
два значения: 1- истина, 0 – ложь.
Предметные переменные – x, y, z, …, которые пробегают
значения из некоторого множества М;
x0, y0, z0 – предметные константы, т. е. значения предметных
переменных.
P(·), Q(·), F(·), … - одноместные предикатные переменные;
Q(·,·,…,·), R(·,·, …,·) – n-местные предикатные переменные.
P0(·), Q0(·,·, …,·) – символы постоянных предикатов.
Символы логических операций: , .
Символы кванторных операций: х, х.
Вспомогательные символы: скобки, запятые.

12. Формулы логики предикатов

Предметная переменная называется свободной, если она
не следует непосредственно за квантором и не входит в
область действия квантора по этой переменной, все другие
переменные,
входящие
в
формулу,
называются
связанными.
y z (P(x,y) P(y,z))
Формулой логики предикатов являются:
Каждая предикатная буква и предикатная буква со
следующими за ней в скобках предметными переменными.
Выражения вида F G, F G, G, F G, F G, (y)F,
(y)G, где F и G – формулы логики предикатов, переменная
у М.

13. Формулы логики предикатов

Каждое высказывание как переменное, так
постоянное, является формулой (элементарной).
и
Если F(·,·, …,·) – n-местная предикатная переменная
или постоянный предикат, а x1, x2,…, xn– предметные
переменные или предметные постоянные (не
обязательно все различные), то F(x1, x2,…, xn) есть
формула. Такая формула называется элементарной, в
ней предметные переменные являются свободными, не
связанными кванторами.

14. Формулы логики предикатов

Если А и В – формулы, причем, такие, что одна и та же
предметная переменная не является в одной из них
связанной, а в другой – свободной, то слова A B,
A B, A B есть формулы. В этих формулах те
переменные, которые в исходных формулах были
свободны, являются свободными, а те, которые были
связанными, являются связанными.
Если А – формула, то A– формула, и характер
предметных переменных при переходе от формулы А к
формуле A не меняется.

15. Формулы логики предикатов

Если А(х) – формула, в которую предметная
переменная х входит свободно, то слова xA(x) и
xA(x) являются формулами, причем, предметная
переменная входит в них связанно.
Всякое слово, отличное от тех, которые названы
формулами в предыдущих пунктах, не является
формулой.

16. Формулы логики предикатов

Например, если Р(х) и Q(x,y) – одноместный и
двухместный предикаты, а q, r – переменные
высказывания, то формулами будут, выражения:
q, P(x), P(x) Q(x , y), xP(x) xQ(x, y), (Q(x, y) q) r
0
Не является формулой, например, слово: xQ(x, y) P(x)
Здесь нарушено условие п.3, так как формулу
xQ(x,y) переменная х входит связанно, а в формулу
Р(х) переменная х входит свободно.
Из определения формулы логики предикатов ясно, что
всякая формула алгебры высказываний является
формулой логики предикатов.

17. Интерпретация формулы предикатов

Интерпретацией формулы исчисления предикатов
называется конкретизация множеств, из которых
принимают значения предметные переменные и
конкретизация
отношений
и
соответствующих
множеств истинности для каждой предикатной буквы.

18. Формулы исчисления предикатов

тождественно
истинные при
любой
интерпретации,
т.е.
общезначимые
тождественно
ложные
при
любой
интерпретации,
т.е.
противоречивые
выполнимые
(формулы,
истинность
которых зависит
от
интерпретации)

19. Значение формулы логики предикатов

В качестве примера рассмотрим формулу
y z (P(x, y) P(y, z))
В формуле двухместный предикат Р(x, y) определен на
множестве MхM, где M={0,1,2,…,n,…}, т.е. MхM=NхN.
В формулу входит переменный предикат P(x,y), предметные
переменные x,y,z, две из которых y и z – связанные кванторами,
а x – свободная.
Возьмем
за
конкретное
значение
предиката
P(x,y)
фиксированный предикат P0(x,y): «x переменной х придадим значение x0=5 M.
Тогда при значениях y, меньших x0=5, предикат P0(x0,y)
принимает значение “ложь”, а импликация P(x,y) P(y,z) при
всех z M принимает значение “истина”, т.е. высказывание
имеет значение “истина”.

20. Равносильные формулы логики предикатов

Определение 1.

равносильными на области М, если они принимают
одинаковые логические значения при всех значениях входящих в
них переменных, отнесенных к области М.
Определение 2.
Две формулы логики предикатов А и В называются
равносильными, если они равносильны на всякой области.

21. Равносильные формулы логики предикатов

Пусть А(х) и В(х) – переменные предикаты, а С – переменное
высказывание (или формула, не содержащая х). Тогда имеют
место следующие равносильности:

22. Равносильные формулы логики предикатов

Пример
Предикат Мать(x,y) означает, что x является матерью для y.
Тогда y xМать(x,y) означает, что у каждого человека есть
мать, - истинное утверждение.
x yМать(x,y) означает, что существует мать всех людей, что
является другим утверждением, истинность которого зависит от
множества значений, которые могут принимать y: если это
множество братьев и сестер, то оно истинно, а в противном
случае оно ложно.
Таким образом, перестановка кванторов всеобщности и
существования может изменить смысл и значение выражения.

23. Законы логических операций (общезначимые формулы логики предикатов)

24. Упражнение

Найти отрицание следующих формул

25. Упражнение

и
Упражнение
Доказать равносильность
x(A(x) B(x)) xA(x) xB(x)
Пусть предикаты А(х) и В(х) тождественно ложны. Тогда будет
ложным и предикат A(x) B(x)
x(A(x) B(x))
При этом будут ложными высказывания
xA(x) xB(x)
Пусть хотя бы один из предикатов (например, А(х)) не
тождественно ложный. Тогда будет не тождественно ложным и
предикат A(x) B(x)
При этом будут истинными высказывания xA(x) x(A(x) B(x))
Значит, будут истинными и исходные формулы
Следовательно: x(A(x) B(x)) xA(x) xB(x)

26.

Самостоятельно
Для более подробного изучения материала
самостоятельно читаем:
УЧЕБНИК: «Математическая логика и теория
алгоритмов»,
автор Игошин В.И.
Страницы 157-164
Страницы 165-178
Страницы 178-183

27.

Домашнее задание
Доказать равносильность
C xA(x) x(C A(x))
Доказать что формула является общезначимой
A V (P(x) Q(x)) xP(x) xQ(x)
Доказать что формула является противоречивой
A x((F (x) F (x)) (F (x) F (x)))
Логика и аргументация: Учебн. пособие для вузов. Рузавин Георгий Иванович

4.2. Кванторы

4.2. Кванторы

Существенное отличие логики предикатов от логики высказываний заключается также в том, что первая вводит количественную характеристику высказываний или, как говорят в логике, квантифицирует их. Уже в традиционной логике суждения классифицировались не только по качеству, но и по количеству, т.е. общие суждения отличались от частных и единичных. Но никакой теории о связи между ними не было. Современная логика рассматривает количественные характеристики высказываний в специальной теории квантификации, которая составляет неотъемлемую часть исчисления предикатов.

Для квантификации (количественной характеристики) высказываний эта теория вводит два основных квантора: квантор общности, который мы будем обозначать символом (х), и квантор существования, обозначаемый символом (Ех). Они ставятся непосредственно перед высказываниями или формулами, к которым относятся. В том случае, когда кванторы имеют более широкую область действия, перед соответствующей формулой ставятся скобки.

Квантор общности показывает, что предикат, обозначенный определенным символом, принадлежит всем объектам данного класса или универсума рассуждения.

Так, суждение: "Все материальные тела обладают массой" можно перевести на символический язык так:

где х - обозначает материальное тело:

М - массу;

(х) - квантор общности.

Аналогично этому утверждение о существовании экстрасенсорных явлений можно выразить через квантор существования:

где через х обозначены явления:

Э - присущее таким явлениям свойство экстрасенсорности;

(Ex) - квантор существования.

С помощью квантора общности можно выражать эмпирические и теоретические законы, обобщения о связи между явлениями, универсальные гипотезы и другие общие высказывания. Например, закон теплового расширения тел символически можно представить в виде формулы:

(х) (Т(х) ? P(х)),

где (х) - квантор общности;

Т(х) - температура тела;

Р(х) - его расширение;

Знак импликации.

Квантор существования относится только к определенной части объектов из данного универсума рассуждений. Поэтому, например, он используется для символической записи статистических законов, которые утверждают, что свойство или отношение относится только для характеристики определенной части изучаемых объектов.

Введение кванторов дает возможность прежде всего превращать предикаты в определенные высказывания. Предикаты сами по себе не являются ни истинными, ни ложными. Они становятся таковыми, если вместо переменных либо подставляются конкретные высказывания, либо, если они связываются кванторами, квантифицируются. На этом основании вводится разделение переменных на связанные и свободные.

Связанными называются переменные, подпадающие под действие знаков кванторов общности или существования. Например, формулы (х) А (х) и (х) (Р (х) ? Q(x)) содержат переменную х. В первой формуле квантор общности стоит непосредственно перед предикатом А(х), вовторой - квантор распространяет свое действие на переменные, входящие в предыдущий и последующий члены импликации. Аналогично этому квантор существования может относиться как к отдельному предикату, так и к их комбинации, образованной с помощью логических операций отрицания, конъюнкции, дизъюнкции и др.

Свободная переменная не подпадает под действие знаков кванторов, поэтому она характеризует предикат или пропозициональную функцию, а не высказывание.

С помощью комбинации кванторов можно выразить на символическом языке логики достаточно сложные предложения естественного языка. При этом высказывания, где речь идет о существовании объектов, удовлетворяющих определенному условию, вводятся с помощью квантора существования. Например, утверждение о существовании радиоактивных элементов записывается с помощью формулы:

где R обозначает свойство радиоактивности.

Утверждение, что существует опасность для курящего заболеть раком, можно выразить так: (Ех) (К(х) ? P(x)), где К обозначает свойство "быть курящим", а Р - "заболеть раком". С известными оговорками то же самое можно было выразить» посредством квантора общности: (х) (К(х) ? Р(х)). Но утверждение, что всякий курящий может заболеть раком, было бы некорректным, и поэтому его лучше всего записать с помощью квантора существования, а не общности.

Квантор общности используется для высказываний, в которых утверждается, что определенному предикату А удовлетворяет любой объект из области его значений. В науке, как уже говорилось, квантор общности используется для выражения утверждений универсального характера, которые словесно представляются с помощью таких фраз, как "для всякого", "каждый", "всякий", "любой" и т.п. Путем отрицания квантора общности можно выразить общеотрицательные высказывания, которые в естественном языке вводятся словами "никакой", "ни один", "никто" и т.п.

Разумеется, при переводе на символический язык утверждений естественного языка встречаются определенные трудности, но при этом достигается необходимая точность и однозначность выражения мысли. Нельзя, однако, думать, что формальный язык богаче естественного языка, на котором выражаются не просто смысл, но и разные его оттенки. Речь поэтому может идти только о более точном представлении выражений естественного языка как универсального средства выражения мыслей и обмена ими в процессе общения.

Чаще всего кванторы общности и существования встречаются вместе. Например, чтобы выразить символически утверждение: "Для каждого действительного числа х существует такое число у, что х будет меньше у", обозначим предикат "быть меньше" символом <, известным из математики, и тогда утверждение можно представить формулой: (х) (Еу) < (х, у). Или в более привычной форме: (х) (Еу) (х < у). Это утверждение является истинным высказыванием, поскольку для любого действительного числа х всегда существует другое действительное число, которое будет больше него. Но если мы переставим в нем кванторы, т.е. запишем его в форме: (Еу) (х) (х < у), тогда высказывание станет ложным, ибо в переводе на обычный язык оно означает, что существует число у, которое будет больше любого действительного числа, т.е. существует наибольшее действительное число.

Из самого определения кванторов общности и существования непосредственно следует, что между ними существует определенная связь, которую обычно выражают с помощью следующих законов.

1. Законы перестановки кванторов:

(х) (у) А ~ (у) (х) А;

(Ех) (Еу) А ~ (Еу) (Ех) А;

(Ех) (у) А ~ (у) (Ех) А;

2. Законы отрицания кванторов:

¬ (х) А ~ (Ех) ¬ А;

¬ (Ех) А ~ (х) ¬ А;

3. Законы взаимовыразимости кванторов:

(х) А ~ ¬ (Ех) ¬ А;

(Ех) А ~ ¬ (х) ¬ А.

Здесь всюду А обозначает любую формулу объектного (предметного) языка. Смысл отрицания кванторов очевиден: если неверно, что для любого х имеет место А, тогда существуют такие х, для которых А не имеет места. Отсюда также следует, что если: любому х присуще А, тогда не существует такого х, которому было бы присуще не-А, что символически представлено в первом законе взаимовыразимости.

В логике предикатов рассматриваются две операции, которыё превращают одноместный предикат в высказывание, для этого используются специальные слова, которые ставят перед предикатами. В логике их называют кванторами.

Различают два вида кванторов:

1. Квантор общности;

2. Квантор существования.

1. Квантор общности.

Пусть имеется предикат Р(х) определенный на множестве М

Символ называют квантором всеобщности (общности). Это перевернутая первая буква английского слова All- все. Читают «все», «каждый», «любой», «всякий». Переменную х в предикате Р(х) называют свободной (ей можно придавать различные значения из М), в высказывании же х называют связанной квантором всеобщности.

Пример №1: Р(х) – «Простое число х нечетно»

Добавим квантор общности – «Всякое простое число х нечетно» - ложное высказывание.

Под выражением понимают высказывание истинное, когда Р(х) истинно для каждого элемента х из множества М и ложное в противном случае. Это высказывание уже не зависит от х.

2. Квантор существования.

Пусть P(x) -предикат определенный на множестве М. Под выражением понимают высказывание , которое является истинным, если существует элемент , для которого P(x) истинно, и ложным – в противном случае. Это высказывание уже не зависит от x. Соответствующее ему словесное выражение звучит так: “Существует x, при котором P(x) истинно.” Символ называют квантором существования. В высказывании переменная x связана этим квантором (на нее навешен квантор).

(Читают: «Существует такое х из М, при котором Р от х истинно»)

Под выражением понимают высказывание, которое является истинным, если существует элемент х€М (хотя бы один), для которого Р(х) истинно, и ложным в противном случае.

Пример №2: Р(х) «Число х кратно 5»

Любое натуральное число кратно 5»

Каждое натуральное число кратно 5» ложные высказывания

Все натуральные числа кратны 5»

Существует натуральное число кратно 5

Найдется натуральное число кратно 5 истинные высказывания

Хотя бы одно натуральное число кратно 5

Кванторные операции применяются и к многоместным предикатам. Пусть, например, на множестве М задан двухместный предикат P(x,y). Применение кванторной операции к предикату P(x,y) по переменной x ставит в соответствие двухместному предикату P(x,y) одноместный предикат (или одноместный предикат ), зависящий от переменной y и не зависящий от переменной x. К ним можно применить кванторные операции по переменной y, которые приведут уже к высказываниям следующих видов:

Для построения отрицаний с кванторами надо:

1) квантор общности заменить на квантор существования, а квантор существования – на квантор общности;

2) предикат заменить его отрицанием.

Таким образом, справедливы формулы:

Отрицание предложения записывать как , а отрицание предложения – как . Очевидно, что предложение имеет тот же смысл, а следовательно, то же значение истинности, что и предложение , а предложение – тот же смысл, что . Иначе говоря, равносильно ; равносильно .

П р и м е р №3. Построить отрицание высказывания «некоторые двузначные числа делятся на 12».

Р е ш е н и е. Заменим квантор существования (он выражен словом «некоторые») на квантор общности «все» и построим отрицание предложения, стоящего после слова «некоторые», поставив частицу «не» перед глаголом. Получим высказывание «Все двузначные числа не делятся на 12».

П р и м е р №4. Сформулировать отрицание высказывания «В каждом классе хотя бы один ученик не справился с контрольной работой».

Р е ш е н и е. Данное высказывание содержит квантор общности, выраженный при помощи слова «каждый», и квантор существования, выраженный при помощи слов «хотя бы один». По правилу построения отрицаний высказываний с кванторами надо квантор общности заменить на квантор существования, а квантор существования – на квантор общности и убрать у глагола частицу «не». Получим: «Найдется такой класс, в котором все ученики справились с контрольной работой».

Кроме рассмотренных выше операций, мы будем употреблять еще две новые операции, связанные с особенностями логики предикатов. Операции эти выражают собой утверждения общности и существования.

Квантор - некоторый способ приписать наличие каких-либо свойств целому множеству объектов: (квантор общности) или просто (), (квантор существования).

1. Квантор общности. Пусть R (x) - вполне определенный предикат, принимающий значение И или Л для каждого элемента х некоторого поля М. Тогда под выражением (x)R(x) мы будем подразумевать высказывание истинное, когда R(х) истинно для каждого элемента х поля М, и ложное в противном случае. Это высказывание уже не зависит от х. Соответствующее ему словесное выражение будет: «для всякого х R (х) истинно».

Пусть теперь И(х)-формула логики предикатов, принимающая определенное значение, если входящие в нее переменные предметы и переменные предикаты замещены вполне определенным образом. Формула И(х) может содержать и другие переменные, кроме х. Тогда выражение И(х) при замещении всех переменных как предметов, так и предикатов, кроме х, представляет собой конкретный предикат, зависящий только от х. А формула (х)И(х) становится вполне определенным высказыванием. Следовательно, эта формула вполне определяется заданием значений всех переменных, кроме х, и, значит, от х не зависит. Символ (х) называется квантором общности .

2. Квантор существования. Пусть R(х) - некоторый предикат. Мы свяжем с ним формулу (x)R(x), определив ее значение как истину, если существует элемент поля М, для которого R(х) истинно, и как ложь в противном случае. Тогда если И(х) - определенная формула логики предикатов, то формула (x)И(x) также определена и от значения х не зависит. Знак (x) называется квантором существования .

Кванторы (х) и (х) называются двойственными друг другу.

Мы будем говорить, что в формулах (х)И(х) и (x)И(x) кванторы (х) и (х) относятся к переменному х или что переменное х связано соответствующим квантором.

Предметное переменное, не связанное никаким квантором, мы будем называть свободным переменным . Таким образом, мы описали все формулы логики предикатов.

Если две формулы И и В, отнесенные к некоторому полю М, при всех замещениях переменных предикатов, переменных высказываний и свободных предметных переменных соответственно индивидуальными предикатами, определенными на М, индивидуальными высказываниями и индивидуальными предметами из М, принимают одинаковые значения И или Л, то мы будем говорить, что эти формулы равносильны на поле М. (При замещениях переменных предикатов, высказываний и предметов мы, конечно, те из них, которые в формулах И и В обозначены одинаковым образом, замещаем также одинаковым образом).

Если две формулы равносильны на любых полях М, то мы будем их называть просто равносильными. Равносильные формулы могут быть замещаемы одна другой.

Равносильность формул позволяет приводить их в разных случаях к более удобному виду.

В частности, имеет место: И→ В равносильно И В.

Пользуясь этим, мы можем для любой формулы найти равносильную, в которой из операций алгебры высказываний имеются только &, и -.

Пример: (x)(А(х)→(у)В(у)) равносильна (x)(А(х)(у)В(у)).

Кроме того, для логики предикатов имеются равносильности, связанные с кванторами.

Существует закон, связывающий кванторы со знаком отрицания. Рассмотрим выражение (х)И(х).

Высказывание «(х)И(х) ложно», равносильно высказыванию: «существует элемент у, для которого И(у) ложно» или, что то же, «существует элемент у, для которого И(у) истинно». Следовательно, выражение (х)И(х) равносильно выражению (у)И(у).

Рассмотрим таким же образом выражение (х)И(х).

Это есть высказывание «(х)И(х) ложно». Но такое высказывание равносильно высказыванию: «для всех у И(у) ложно» или «для всех у И(у) истинно». Итак, (х)И(х) равносильно выражению (у)И(у).

Мы получили, таким образом, следующее правило:

Знак отрицания можно ввести под знак квантора, заменив квантор на двойственный.

Мы уже видели, что для каждой формулы существует равносильная ей формула, которая из операций алгебры высказываний содержит только &, и -.

Пользуясь равносильностями для каждой формулы можно найти равносильную, в которой знаки отрицания относятся к элементарным высказываниям и элементарным предикатам.

Для аксиоматического описания логики предикатов предназначено исчисление предикатов.

Исчисление предикатов - некоторая аксиоматическая система, предназначенная для моделирования некоторой среды и проверки каких-либо гипотез относительно свойств этой среды при помощи разработанной модели. Гипотезы при этом утверждают наличие или отсутствие некоторых свойств у некоторых объектов и выражаются в виде логической формулы. Обоснование гипотезы сводится, таким образом, к оценке выводимости и выполнимости логической формулы.

В любом национальном языке употребляемые в обычной речи связки “и”, “или”, “если …, то …”, “тогда и только тогда, когда …” и т.п. позволяют из уже заданных высказываний строить новые сложные высказывания. Истинность или ложность получаемых таким образом высказываний зависит от истинности и ложности исходных высказываний и соответствующей трактовки связок как операций над высказываниями . Логическая операция полностью может быть описана таблицей истинности , указывающей, какие значения принимает сложное высказывание при всех возможных значениях простых высказываний.

Логической операцией называется способ построения сложного высказывания из элементарных высказываний, при котором истинностное значение сложного высказывания полностью определяется истинностными значениями исходных высказываний (см. статью “”).

В алгебре логики логические операции и соответствующие им логические связки имеют специальные названия и обозначаются следующим образом:

Конъюнкция - логическая операция, ставящая в соответствие каждым двум элементарным высказываниям новое высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны 7 . Логическая операция конъюнкция

Рассмотрим два высказывания: p = “Завтра будет мороз ” и q = “Завтра будет идти снег ”. Очевидно, новое высказывание p & q = “Завтра будет мороз, и завтра будет идти снег ” истинно только в том случае, когда одновременно истинны высказывания p и q , а именно, что завтра будет и мороз и снег. Высказывание p & q будет ложно во всех остальных случаях: будет идти снег, но будет оттепель (т.е. не будет мороза); мороз будет, а снег не будет идти; не будет мороза, и снег не будет идти.

Дизъюнкция - логическая операция, ставящая в соответствие каждым двум элементарным высказываниям новое высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны, и истинным, когда хотя бы одно из двух образующих его высказываний истинно 8 . Логическая операция дизъюнкция определяется следующей таблицей истинности:

Рассмотрим два высказывания: p = “Колумб был в Индии ” и q = “Колумб был в Египте p q = “Колумб был в Индии или был в Египте ” истинно как в случае, если Колумб был в Индии, но не был в Египте, так и в случае, если он не был в Индии, но был в Египте, а также в случае, если он был и в Индии, и в Египте. Но это высказывание будет ложно, если Колумб не был ни в Индии, ни в Египте.

Союз “или” может применяться в речи и в другом, “исключающем” смысле. Тогда он соответствует другому высказыванию - разделительной, или строгой, дизъюнкции.

Строгая , или разделительная , дизъюнкция - логическая операция, ставящая в соответствие двум элементарным высказываниям новое высказывание, являющееся истинным только тогда, когда только одно из высказываний является истинным. Логическая операция разделительная дизъюнкция определяется следующей таблицей истинности:

Рассмотрим два высказывания: p = “Кошка охотится за мышами ” и q = “Кошка спит на диване ”. Очевидно, что новое высказывание p q истинно только в двух случаях - когда кошка охотится за мышами либо когда кошка мирно спит. Это высказывание будет ложно, если кошка не делает ни того, ни другого, т.е. когда оба события не происходят. Но это высказывание будет ложным и тогда, когда предполагается, что оба высказывания произойдут одновременно. В силу того, что этого произойти не может, высказывание и является ложным.

В логике связкам “либо” и “или” придается разное значение, однако в русском языке связку “или” иногда употребляют вместо связки “либо”. В этих случаях однозначность определения используемой логической операции связана с анализом содержания высказывания. Например, анализ высказывания “Петя сидит на трибуне А либо на трибуне Б ” заменить на “Петя сидит на трибуне А или Б ”, то анализ последнего высказывания однозначно укажет на логическую операцию разделительная дизъюнкция , т.к. человек не может находиться в двух разных местах одновременно.

Импликация - логическая операция, ставящая в соответствие каждым двум элементарным высказываниям новое высказывание, являющееся ложным тогда и только тогда, когда условие (посылка) - истинно, а следствие (заключение) - ложно. Подавляющее число зависимостей между событиями можно описать с помощью импликации. Например, высказыванием “Если на каникулах мы поедем в Петербург, то посетим Исаакиевский собор” мы утверждаем, что в случае приезда на каникулах в Петербург Исаакиевский собор мы посетим обязательно.

Логическая операция импликация

Импликация будет ложной только тогда, когда посылка истинна, а заключение ложно, и она заведомо будет истинна, если ее условие p ложно. Причем для математика это вполне естественно. В самом деле, исходя из ложной посылки, можно путем верных рассуждений получить как истинное, так и ложное утверждение.

Допустим, 1 = 2, тогда и 2 = 1. Складывая эти равенства, мы получим 3 = 3, т.е. из ложной посылки путем тождественных преобразований мы получили истинное высказывание.

Импликация, образованная из высказываний А и В , может быть записана при помощи следующих предложений: “Если А , то В ”, “Из А следует В ”, “А влечет В ”, “Для того чтобы А , необходимо, чтобы В ”, “Для того чтобы В , достаточно, чтобы А ”.

Эквивалентность - логическая операция, ставящая в соответствие двум элементарным высказываниям новое, являющееся истинным тогда и только тогда, когда оба исходных высказывания одновременно истинны или одновременно ложны. Логическая операция эквивалентность задается следующей таблицей истинности:

Рассмотрим возможные значения сложного высказывания, являющегося эквивалентностью: “Учитель поставит ученику 5 в четверти тогда и только тогда, когда ученик получит 5 на зачете” .

1) Ученик получил 5 на зачете и 5 в четверти, т.е. учитель выполнил свое обещание, следовательно, высказывание является истинным.

2) Ученик не получил на зачете 5, и учитель не поставил ему 5 в четверти, т.е. учитель свое обещание сдержал, высказывание является истинным.

3) Ученик не получил на зачете 5, но учитель поставил ему 5 в четверти, т.е. учитель свое обещание не сдержал, высказывание является ложным.

4) Ученик получил на зачете 5, но учитель не поставил ему 5 в четверти, т.е. учитель свое обещание не сдержал, высказывание является ложным.

Отметим, что в математических теоремах эквивалентность выражается связкой “необходимо и достаточно”.

Рассмотренные выше операции были двухместными (бинарными), т.е. выполнялись над двумя операндами (высказываниями). В алгебре логики определена и широко применяется и одноместная (унарная) операция отрицание .

Отрицание - логическая операция, которая каждому элементарному высказыванию ставит в соответствие новое высказывание, значение которого противоположно исходному. Логическая операция отрицание задается следующей таблицей истинности:

В русском языке для построения отрицания используется связка “неверно, что …”. Хотя связка “неверно, что …” и не связывает двух каких-либо высказываний в одно, она трактуется логиками как логическая операция, поскольку, поставленная перед произвольным высказыванием, образует из него новое.

Отрицанием высказывания “У меня дома есть компьютер” будет высказывание “Неверно, что у меня дома есть компьютер” или, что в русском языке то же самое, “У меня дома нет компьютера” . Отрицанием высказывания “Я не знаю китайского языка” будет высказывание “Неверно, что я не знаю китайского языка” или, что в русском языке одно и то же, “Я знаю китайский язык” .

Кванторы

В математической логике наряду с логическими операциями используются и кванторы. Квантор (от лат. quantum - сколько) - логическая операция, дающая количественную характеристику области предметов, к которой относится выражение, получаемое в результате ее применения.

В обычном языке носителями таких характеристик служат слова типа все , каждый , некоторый , любой , всякий , бесконечно много , существует , имеется , единственный , несколько , конечное число , а также все количественные числительные. В формализованных языках, составной частью которых является исчисление предикатов, для выражения всех подобных характеристик оказывается достаточным кванторов двух видов: квантора общности и квантора существования .

Кванторы позволяют из конкретной высказывательной формы (см. “Высказывания. Логические значения ”) получить высказывательную форму с меньшим числом параметров, в частности, из одноместной высказывательной формы получить высказывание 9 .

Квантор общности позволяет из данной высказывательной формы с единственной свободной переменной x получить высказывание с помощью связки “Для всех x …”. Результат применения квантора общности к высказывательной форме A(x ) обозначают x A(x ). Высказывание x A(x ) будет истинным тогда и только тогда, когда при подстановке в A(x ) вместо свободной переменной x любого объекта из области возможных значений всегда получается истинное высказывание. Высказывание x A(x ) может читаться следующим образом: “Для любого x имеет место A(x )”, “A(x ) при произвольном x ”, “Для всех x верно A(x )”, “Каждый x обладает свойством A(x )” и т.п.

Квантор существования позволяет из данной высказывательной формы с единственной свободной переменной x получить высказывание с помощью связки “Существует такой x , что …”. Результат применения квантора общности к высказывательной форме A(x ) обозначают x A(x ). Высказывание
x A(x ) истинно тогда и только тогда, когда в области возможных значений переменной x найдется такой объект, что при подстановке его имени вместо вхождения свободной переменной x в A(x ) получается истинной высказывание. Высказывание x A(x ) может читаться следующим образом: “Для некоторого x имеет место A(x )”, “Для подходящего x верно A(x )”, “Существует x , для которого A(x )”, “Хотя бы для одного x верно A(x )” и т.п.

Кванторы играют для формализованных языков математической логики ту же роль, которую играют для естественного языка так называемые “количественные” (“кванторные”) слова, - определяют область применимости данного высказывания (или высказывательной формы).

При построении отрицания к высказыванию, содержащему квантор, действует следующее правило: частица “не” добавляется к сказуемому, квантор общности заменяется на квантор единственности и наоборот. Рассмотрим пример. Отрицанием высказывания “Все юноши 11-х классов - отличники” является высказывание “Неверно, что все юноши 11-х классов - отличники” или “Некоторые юноши 11-х классов - не отличники”.

В информатике кванторы применяются в логических языках программирования (см. “Языки программирования ”) и языках запросов к базам данных.

Умение строить сложные высказывания требуется при работе с базами данных, при конструировании запроса поиска в Интернете, при построении алгоритмов и написании программ на любом алгоритмическом языке. Более того, это умение можно отнести к общешкольным умениям, т.к. оно связано с построением сложных умозаключений (рассуждений, получений выводов). В основе этого умения лежат знание основных логических операций и умение определять истинность сложных высказываний.

С логическими операциями дизъюнкция, конъюнкция и отрицание школьники знакомятся в основной школе. Там же вводится и понятие таблицы истинности. Скорее всего знакомство с данными понятиями возникает в языках программирования, но использовать их можно и в электронных таблицах - там логические операции реализованы через соответствующие функции OR, AND, NOT.

Более сложные логические операции могут быть рассмотрены в старшей школе. Задачи, использующие импликацию, встречаются в каждом из опубликованных вариантов ЕГЭ по информатике. Например: для какого числа X истинно высказывание ((X > 3) (X < 3)) –> (X < 1)? (Демоверсия ЕГЭ, 2007 г. )

При изучении операции импликации следует обратить внимание учащихся на тот факт, что большинство математических теорем являются импликациями. Однако те импликации, в которых посылки (условия) и заключения (следствиями) являются предложениями без взаимной (по существу) связи, не могут играть в науке более или менее важной роли. Они являются совершенно бесплодными предложениями, т.к. не ведут к выводам более глубокого содержания. Действительно, в математике ни одна теорема не является импликацией, в которой условие и заключение не были бы связаны по содержанию. Помимо связки “если, … то …”, в математических теоремах импликациями являются формулировки только необходимого или только достаточного условия.

Задания на построение достаточных и необходимых условий для школьников оказываются непростыми. При формировании этого умения необходимо особо отметить три момента:

а) используемая в математических утверждениях форма “необходимо и достаточно” соответствует связке “тогда и только тогда” (эквивалентность);

б) связка “для того чтобы …(A ), необходимо, чтобы …(B )” реализуется прямой импликацией A B . (Для того чтобы квадратное уравнение имело решение, необходимо, чтобы дискриминант был неотрицательным );

в) достаточное условие реализуется обратной импликацией B ® A и может на русском языке выражаться, например, так: “для того чтобы... (А), достаточно, чтобы... (В)”.

В старшей школе (10–11-е классы) у учащихся полезно сформировать умение строить отрицание к высказыванию на русском языке. Это умение необходимо, например, для доказательства теорем методом “от противного”. Строить отрицание даже к простым высказываниям не всегда просто. Например, к высказыванию На стоянке стоят красные Жигули ” следующие предложения отрицаниями являться не будут:

1) На стоянке стоят не красные Жигули ”;

2) На стоянке стоит белый Мерседес ”;

3) Красные Жигули стоят не на стоянке .

Отрицанием к этому высказыванию будет “На стоянке не стоят красные “Жигули”. Объяснить школьникам это можно так: отрицание к предложению должно полностью исключать истинность исходного высказывания. Если же на стоянке стоит белый “Мерседес”, то ничто не мешает красным “Жигулям” стоять тоже.

Об алгоритме построения отрицания к сложному высказыванию можно прочитать в книге Е.Андреевой, Л.Босовой, И.Фалиной “Математические основы информатики”.

Изучение кванторов до настоящего времени не было традиционным для школьного курса информатики. Однако теперь они входят в стандарт профильной школы. Проще всего продемонстрировать роль кванторов при построении все тех же отрицаний к высказываниям на русском языке, причем как к математическим, так и произвольным. Правило замены квантора общности на квантор существования и наоборот легко обосновать с помощью законов де Моргана (см. “Логические выражения” ).

6 От латинских слов idem - тот же самый и potens - сильный; дословно - равносильный.

7 Это определение легко распространяется на случай n высказываний (n > 2, n - натуральное число).

8 Это определение, как и предыдущее, распространяется на случай n высказываний (n > 2, n - натуральное число).

9 Успенский В.А., Верещагин Н.К., Плиско В.Е. Вводный курс математической логики. М.: Физматлит, 2002.

mob_info