Школьная энциклопедия. Значение обсерватория: современные наземные обсерватории в словаре кольера Сообщение на тему современные обсерватории

Звездное небо завораживает. Хотя сегодня удовольствие увидеть Млечный путь весьма затруднено - запыленность атмосферы, особенно в городах, значительно снижает возможность рассмотреть звезды в ночном небе. Именно поэтому поход в астрономическую обсерваторию становится откровением для обывателя. И звезды снова начинают вселять в человека надежды и мечты. В России обсерваторий порядка 60, о самых главных пойдет речь в данной статье.

Немного общих знаний

Современные наземные обсерватории - это научно-исследовательские центры. Их задачи намного шире, чем просто наблюдение за небесными светилами, явлениями и искусственными космическими объектами.

Оснащены современные наземные обсерватории мощными телескопами (оптическими и радио), современным инструментарием для обработки полученной информации. Для них характерно наличие зданий с открывающимися люками или вообще зданий, которые вращаются вместе с оптическими телескопами. Радиотелескопы устанавливают под открытым небом.

Большинство обсерваторий расположены на возвышенностях или с хорошим круговым обзором, и обычно их расположение привязано к определенным координатам, важным в астрономии.

История отечественных обсерваторий

В России первый такой объект в отдельном помещении появился по инициативе архиепископа Афанасия в 1692 году. Оптический телескоп был установлен на колокольне в Холмогорах в Архангельской области.

В 1701 году соратник и сподвижник Петра I дипломат и ученый Яков Вилимович Брюс (Джеймс Дэниэль Брюс, 1670-1735) инициировал открытие обсерватории при Навигацкой школе на Сухаревой башне в Москве. Она имела большое практическое значение, тут имелись секстанты и квадранты. И именно тут впервые наблюдалось солнечное затмение 1706 года.

Первая официальная обсерватория появилась на Васильевском острове. Основана она была Петром I, но открылась уже при Екатерине I в 1725 году. Она сохранилась и сегодня, но уже как памятник архитектуры, под библиотекой Академии наук. И в свое время эта восьмиугольная башенка имела множество недостатков, в числе которых и расположение в черте города.

Все ее оборудование было перевезено в Пулковскую обсерваторию, закладка которой состоялась в 1835 году, а открылась она в 1839-м. Долгое время именно эта астрономическая обсерватория была ведущей в России, и сегодня она сохранила свои позиции.

Сегодня в России около 60 обсерваторий и исследовательских центров, порядка 10 высших учебных заведений с факультетами астрономии, более тысячи астрономов и несколько десятков тысяч увлеченных любителей звездного неба.

Самая важная

Пулковская астрономическая обсерватория - главная в Она расположена на Пулковских высотах, что в 19 километрах южнее Санкт-Петербурга. Она находится на Пулковском меридиане и имеет координаты 59°46"18" северной широты и 30°19"33" восточной долготы.

В штате этой главной обсерватории России 119 научных сотрудников, 49 кандидатов наук и 31 доктор наук. Все они ведут работу в следующих направлениях: астрометрия (параметры Вселенной), небесная механика, звездная динамика, эволюция звезд и внегалактическая астрономия.

Все это возможно благодаря наличию сложнейшей аппаратуры, главным среди которой является один из крупнейших солнечных телескопов в Европе - горизонтальный телескоп АЦУ-5.

Тут проводят вечерние и ночные экскурсии, когда можно увидеть особенно звездные «черные» ночи. А еще при этой обсерватории имеется музей, где собраны экспонаты, иллюстрирующие всю историю астрономии. Тут можно увидеть уникальные астрономические и геодезические старинные приборы.

Номер второй

Одна из крупнейших в России - Пущинская радиоастрономическая обсерватория АКЦ ФИАН. Она основана в 1956 году и сегодня является одной из наиболее хорошо оснащенных: радиотелескоп РТ-22, радиотелескопы меридианного типа с двумя антеннами ДКР-100 и БСА.

Располагается в г. Пущино Московской области, ее координаты 54°49" северной широты и 37°38" восточной долготы.

Интересный факт - в ветреную погоду можно услышать «пение» телескопов. Говорят, что в фильме «Война и мир» Сергей Бондарчук использовал запись именно этой надрывной песни.

Астрономическая обсерватория Казанского университета

В центре Казани в студенческом городке находится старинная обсерватория, основанная при кафедре астрономии в 1833 году. Это удивительное здание в стиле классицизма пользуется неизменной популярностью у гостей города. Сегодня это региональный центр по обучению и использованию спутниковых систем навигации.

Главные инструменты этой обсерватории: рефрактор Мерц, гелиометр Репсольда, труба Джорджа Доллона, экваториал и часы точного времени.

Одна из самых молодых

Байкальская астрофизическая обсерватория открыта в 1980 году. Она расположена в месте уникального микроастроклимата - локальные антициклоны и малые восходящие потоки воздуха с озера Байкал создают тут уникальные условия для наблюдений. Она принадлежит Институту Солнечно-Земной физики Российской академии наук и оснащена уникальной аппаратурой: большим солнечным вакуумным телескопом (самым большим на территории Евразии), телескопом полного диска Солнца, хромосферным телескопом, фотогелиографом.

Главные направления деятельности этой обсерватории России - наблюдение за тонкой структурой солнечных образований и регистрация вспышек на Солнце. Недаром ее и называют Солнечная обсерватория.

Самый большой телескоп

Самый крупный астрономический центр России - Специальная астрофизическая обсерватория. Она расположена у горы Пастуховая на Северном Кавказе (поселок Нижний Архыз, Карачаево-Черкесская Республика). Она была основана в 1966 году для работы самого большого в России телескопа - Большого Азимутального. Работа по его сборке велась 15 лет и сегодня это телескоп с максимальным шестиметровым оптическим зеркалом. Высота его купола - 50 метров, а диаметр - 45 метров.

Кроме него тут установлены и еще 2 телескопа чуть меньших размеров.

Здесь проводятся экскурсии для туристов, и в летнее время этот телескоп посещает до 700 человек в день. Туристы едут в этот отдаленный район еще и посмотреть икону Лик Христа. Это уникальная наскальная икона, которая расположена в километре от обсерватории.

Здесь, в Архызе, прошлое как будто соприкасается с будущим и стремлением человечества к звездам.

Нам собственного неба мало

В 2017 году стартовал российско-кубинский проект по оборудованию двух обсерваторий на Кубе. Идет активное обсуждение выбора наиболее оптимальных астроклиматических и метеорологических условий для размещения этих автономных и полностью автоматизированных телескопов.

Цель проекта подразумевает сбор и анализ информации о спектральных, позиционных и фотометрических характеристиках различных космических объектов.

Значительная часть южного неба не видна из большинства обсерваторий Европы и США, хотя именно южное небо считают особо ценным для астрономии, поскольку оно содержит центр Млечного Пути и много важных галактик, включая Магеллановы Облака – две небольшие соседние с нами галактики.

Первые карты южного неба составили английский астроном Э.Галлей, работавший с 1676 по 1678 на острове Св. Елены, и французский астроном Н.Лакайль, работавший с 1751 по 1753 на юге Африки. В 1820 Британское бюро долгот основало на мысе Доброй Надежды Королевскую обсерваторию, вначале оснастив ее лишь телескопом для астрометрических измерений, а затем – полным набором инструментов для разнообразных программ. В 1869 в Мельбурне (Австралия) был установлен 122-см рефлектор; позже его перевезли в Маунт-Стромло, где после 1905 стала расти астрофизическая обсерватория. В конце 20 в., когда условия для наблюдений на старых обсерваториях Северного полушария стали ухудшаться из-за сильной урбанизации, европейские страны начали активно строить обсерватории с крупными телескопами в Чили, Австралии, Центральной Азии, на Канарских и Гавайских островах.

Обсерватории над Землей . Астрономы приступили к использованию высотных аэростатов в качестве наблюдательных платформ еще в 1930-е годы и продолжают такие исследования до сих пор. В 1950-х годах приборы устанавливались на высотных самолетах, ставших летающими обсерваториями. Внеатмосферные наблюдения начались в 1946, когда ученые США на трофейных немецких ракетах «Фау-2» подняли в стратосферу детекторы для наблюдения ультрафиолетового излучения Солнца. Первый искусственный спутник был запущен в СССР 4 октября 1957, а уже в 1958 советская станция «Луна-3» сфотографировала обратную сторону Луны. Затем стали осуществляться полеты к планетам и появились специализированные астрономические спутники для наблюдения Солнца и звезд. В последние годы на околоземных и других орбитах постоянно работает несколько астрономических спутников, изучающих небо во всех диапазонах спектра. Работа на обсерватории . В прежние времена жизнь и деятельность астронома всецело зависели от возможностей его обсерватории, поскольку связь и переезды были медленными и сложными. В начале 20 в. Хейл создавал обсерваторию Маунт-Вилсон как центр солнечной и звездной астрофизики, способный вести не только телескопические и спектральные наблюдения, но и необходимые лабораторные исследования. Он стремился, чтобы на горе Вилсон было все, что необходимо для жизни и работы, точно так, как Тихо делал это на острове Вен. До сих пор некоторые крупные обсерватории на горных вершинах представляют собой замкнутые сообщества ученых и инженеров, живущих в общежитии и работающих по ночам по своим программам.

Но постепенно этот стиль меняется. В поисках наиболее благоприятных мест для наблюдения обсерватории располагают в удаленных районах, где трудно жить постоянно. Приезжающие ученые остаются на обсерватории от нескольких дней до нескольких месяцев, чтобы провести конкретные наблюдения. Возможности современно электроники позволяют вести дистанционные наблюдения, вообще не посещая обсерваторию, или строить в труднодоступных местах полностью автоматические телескопы, самостоятельно работающие по намеченной программе.

Определенную специфику имеют наблюдения с помощью космических телескопов. Вначале многие астрономы, привыкшие самостоятельно работать с инструментом, чувствовали себя неуютно в рамках космической астрономии, отделенные от телескопа не только пространством, но и множеством инженеров и сложных инструкций. Однако в 1980-х годах на многих наземных обсерваториях управление телескопом перенесли с простых пультов, расположенных непосредственно у телескопа, в специальное помещение, начиненное компьютерами и порой находящееся в отдельном здании. Вместо того чтобы наводить на объект главный телескоп, глядя в укрепленный на нем небольшой телескоп-искатель и нажимая кнопки на небольшом ручном пульте, астроном теперь сидит перед экраном телегида и манипулирует джойстиком. Часто астроном просто отправляет через Интернет в обсерваторию подробную программу наблюдений и, когда они проведены, получает результаты прямо в свой компьютер. Поэтому стиль работы с наземными и космическими телескопами становится все более схожим.

Оптические обсерватории. Место для строительства оптической обсерватории обычно выбирают вдали от городов с их ярким ночным освещением и смогом. Обычно это вершина горы , где тоньше слой атмосферы, сквозь который приходится вести наблюдения. Желательно, чтобы воздух был сухим и чистым, а ветер не особенно сильным. В идеале обсерватории должны быть равномерно распределены по поверхности Земли, чтобы в любой момент можно было наблюдать объекты северного и южного неба. Однако исторически сложилось так, что большинство обсерваторий расположено в Европе и Северной Америке, поэтому небо Северного полушария изучено лучше. В последние десятилетия начали сооружать крупные обсерватории в Южном полушарии и вблизи экватора, откуда можно наблюдать как северное, так и южное небо. Древний вулкан Мауна-Кеа на о. Гавайи высотой более 4 км считается лучшим местом в мире для астрономических наблюдений. В 1990-х годах там обосновались десятки телескопов разных стран. Башня. Телескопы - очень чувствительные приборы. Для защиты от непогоды и перепадов температуры их помещают в специальные здания - астрономические башни. Небольшие башни имеют прямоугольную форму с плоской раздвигающейся крышей. Башни крупных телескопов обычно делают круглыми с полусферическим вращающимся куполом, в котором для наблюдений открывается узкая щель. Такой купол хорошо защищает телескоп от ветра во время работы. Это важно, поскольку ветер раскачивает телескоп и вызывает дрожание изображения. Вибрация почвы и здания башни также отрицательно влияет на качество изображений. Поэтому телескоп монтируют на отдельном фундаменте, не связанном с фундаментом башни. Внутри башни или вблизи нее монтируют систему вентиляции подкупольного пространства и установку для вакуумного напыления на зеркало телескопа отражающего алюминиевого слоя, тускнеющего со временем. Монтировка. Для наведения на светило телескоп должен вращаться вокруг одной или двух осей. К первому типу относятся меридианный круг и пассажный инструмент - небольшие телескопы, поворачивающиеся вокруг горизонтальной оси в плоскости небесного меридиана. Двигаясь с востока на запад, каждое светило дважды в сутки пересекает эту плоскость. С помощью пассажного инструмента определяют моменты прохождения звезд через меридиан и таким образом уточняют скорость вращения Земли; это необходимо для службы точного времени. Меридианный круг позволяет измерять не только моменты, но и место пересечения звездой меридиана; это нужно для создания точных карт звездного неба. В современных телескопах непосредственное визуальное наблюдение практически не применяется. В основном их используют для фотографирования небесных объектов или для регистрации их света электронными детекторами; при этом экспозиция иногда достигает нескольких часов. Все это время телескоп должен быть точно нацелен на объект. Поэтому с помощью часового механизма он с постоянной скоростью поворачивается вокруг часовой оси (параллельной оси вращения Земли) с востока на запад вслед за светилом, компенсируя этим вращение Земли с запада на восток. Вторая ось, перпендикулярная часовой, называется осью склонений; она служит для наведения телескопа в направлении север-юг. Такую конструкцию называют экваториальной монтировкой и используют почти для всех телескопов, за исключением самых крупных, для которых более компактной и дешевой оказалась альт-азимутальная монтировка. На ней телескоп следит за светилом, поворачиваясь одновременно с переменной скоростью вокруг двух осей - вертикальной и горизонтальной. Это значительно усложняет работу часового механизма, требуя компьютерного контроля. Телескоп-рефрактор имеет линзовый объектив. Поскольку лучи разного цвета преломляются в стекле по разному, линзовый объектив рассчитывают так, чтобы он давал в фокусе четкое изображение в лучах какого-то одного цвета. Старые рефракторы создавались для визуальных наблюдений и поэтому давали четкое изображение в желтых лучах. С появлением фотографии стали строить фотографические телескопы - астрографы, дающие четкое изображение в голубых лучах, к кото

Обсерватория - это научное учреждение, в котором сотрудники - учёные разных специальностей - наблюдают за природными явлениями, анализируют наблюдения, на их основе продолжают изучать то, что происходит в природе.


Особенно распространены астрономические обсерватории: их мы и представляем обычно, когда слышим это слово. В них исследуют звёзды, планеты, крупные звёздные скопления, прочие космические объекты.

Но есть и другие виды этих учреждений:

— геофизические - для исследования атмосферы, полярного сияния, магнитосферы Земли, свойств горных пород, состояния земной коры в сейсмоактивных регионах и других подобных вопросов и объектов;

— авроральные - для изучения полярного сияния;

— сейсмические - для постоянной и детальной регистрации всех колебаний земной коры и их изучения;

— метеорологические - для изучения погодных условий и выявления погодных закономерностей;

— обсерватории космических лучей и ряд других.

Где строят обсерватории?

Обсерватории строят в тех местностях, которые дают учёным максимум материала для исследований.


Метеорологические - по всем уголкам Земли; астрономические - в горах (там воздух чистый, сухой, не «ослеплён» городским освещением), радиообсерватории - на дне глубоких долин, недоступных искусственным радиопомехам.

Астрономические обсерватории

Астрономические - самый древний вид обсерваторий. Астрономами в древности были жрецы, они вели календарь, изучали перемещение и Солнца по небосводу, занимались предсказаниями событий, судеб людей в зависимости от соположения небесных тел. Это были астрологи - люди, которых боялись даже самые свирепые правители.

Древние обсерватории располагались обычно в верхних комнатах башен. Инструментами служили прямая планка, оснащённая скользящим визиром.

Великим астрономом древности стал Птолемей, который собрал в Александрийской библиотеке огромное число астрономических свидетельств, записей, сформировал каталог положений и силы блеска для 1022 звёзд; изобрёл математическую теорию перемещения планет и составил таблицы движения - этими таблицами учёные пользовались более 1 000 лет!

В Средневековье обсерватории особенно активно строят на Востоке. Известна гигантская самаркандская обсерватория, где Улугбек - потомок легендарного Тимура-Тамерлана - вёл наблюдения за перемещением Солнца, описывая его с небывалой до того точностью. Обсерватория радиусом 40 м имела вид секстанта-траншеи с ориентацией на юг и отделкой мрамором.

Величайшим астрономом европейского средневековья, перевернувшим мир почти буквально, стали Николай Коперник, который Солнце «переместил» в центр мироздания вместо Земли и предложил считать Землю ещё одной планетой.

А одной из самых продвинутых обсерваторий был Ураниборг, или Небесный замок, - владение Тихо Браге, датского придворного астронома. Обсерватория была оснащена лучшим, самым точным на то время инструментом, имела собственные мастерские по изготовлению инструмента, химическую лабораторию, хранилище книг и документов и даже печатный станок для собственных нужд и бумажную мельницу для производства бумаги - роскошь по тем временам королевская!

В 1609 году появился первый телескоп - главный инструмент любой астрономической обсерватории. Создателем его стал Галилей. Это был телескоп-рефлектор: лучи в нём преломлялись, проходя сквозь ряд стеклянных линз.

Усовершенствовал телескоп Кеплер: в его приборе изображение было перевёрнутым, но более качественным. Эта особенность стала в итоге стандартной для телескопических приборов.

В XVII веке, с развитием мореплавания, начали появляться государственные обсерватории - парижская Королевская, Королевская Гринвичская, обсерватории в Польше, Дании, Швеции. Революционным последствием их строительства и деятельности стало введение стандарта времени: его теперь регламентировали световыми сигналами, а потом - с помощью телеграфа, радио.

В 1839 году была открыта Пулковская обсерватория (Санкт-Петербург), ставшая одной из самых известных в мире. Сегодня в России действует более 60 обсерваторий. Одна из самых больших в международном масштабе - Пущинская радиоастрономическая обсерватория, созданная в 1956 году.

В Звенигородской обсерватории (в 12 км от Звенигорода) работает единственная в мире камера ВАУ, способная осуществлять массовые наблюдения за геостанционными спутниками. В 2014 году МГУ открыл обсерваторию на горе Шаджатмаз (Карачаево-Черкессия), где установили самый большой для России современный телескоп, диаметр которого равен 2,5 м.

Лучшие современные зарубежные обсерватории

Мауна-кеа - находится на Большом гавайском острове, имеет самый большой на Земле арсенал высокоточного оборудования.

Комплекс VLT («огромный телескоп») - расположен в Чили, в «пустыне телескопов» Атакама.


Йеркская обсерватория в Соединённых Штатах - «место зарождения астрофизики».

Обсерватория ORM (Канарские острова) - имеет оптический телескоп с наибольшей апертурой (способностью собирать свет).

Аресибо - находится в Пуэрто-Рико и владеет радиотелескопом (305 м) с одной из самых больших в мире апертур.

Обсерватория университета Токио (Атакама) - самая высокая на Земле, находится у вершины горы Серро-Чайнантор.

Наше место в этом мире
Способы изучения космического пространства
Телескопы из прошлого и до наших дней

Стремление проникнуть как можно дальше в глубь Вселенной и увидеть как можно больше новых объектов, послужило стимулом для создания более мощных наблюдательных приборов. С появлением телескопов возникли и первые серьезные проблемы. Дело в том, что реальная оптическая система способна «строить» изображение точки только в виде размытого кpyжка или пятна неправильной формы, иногда окрашенного по краям, происходит это из-за ошибок оптической системы - аберраций. Для однолинзовых телескопов наиболее характерна хроматическая аберрация, которая связана с тем, что показатель преломления стекла находится в зависимости от длины волны. А потому астрономы стали искать способы ее устранения. Оказалось, что хроматическую аберрацию можно уменьшить, используя объективы с очень большим фокусным расстоянием. Так на свет появились довольно громоздкие и крайне неудобные в эксплуатации телескопы. Шло время, и на смену им пришли «воздушные». В них объектив и окуляр крепились почти независимо друг от друга на собственных штативах. Такие телескопы использовались вплоть до середины XVIII века, хотя при наблюдениях на открытом воздухе, особенно при ветре, подобная конструкция вела себя не лучшим образом.

После того, как Иоганн Кеплер применил в окуляре не отрицательную - двояковогнутую - линзу, а положительную - двояковыпуклую, стало возможным использовать окуляры с крестом нитей и микрометром. Теперь телескопы стали применять не только для обзора неба, но и в качестве измерительных приборов. И все же недостатки однолинзовых телескопов-рефракторов заставляли ученых искать новые пути. Исаак Ньютон одним из первых изготовил зеркало, получив «зеркальный» сплав из меди, олова и мьшьяка. Новый телескоп с зеркалом диаметром 30 мм, помещенном в трубу длиной 1б0 мм, давал очень четкое изображение. Это был первый рефлектор. И хотя у него не наблюдалось хроматической аберрации, но и он не был лишен недостатков. Главный же заключался в том, что всех других типов аберраций было больше, чем в рефракторе.
Оригинальную конструкцию двухзеркальной системы, состоящей из первичного и вторичного параболического зеркала, предложил французский скульптор и художник Кассегрен. Эта конфигурация очень удобна и широко применяется в настоящее время, но в те далекие времена идея не была реализована из-за невозможности получить зеркала нужной формы. В России большего успеха в изготовлении металлических зеркал достиг Я.В. Брюс, а М.В. Ломоносов разработал новую конструкцию телескопа с наклоненным главным зеркалом без вторичного, что существенно уменьшало потери света. Такую же схему, независимо от него, использовал п У. Гершель. В своем доме, превращенном в мастерскую, он вместе с братьями получал особый сплав из меди и олова, а затем изготавливал зеркала и сам их шлифовал. Вершиной его трудов стал гигантский по тому времени телескоп с диаметром главного зеркала в 122 см. К середине XVIII века компактные, удобные в обращении высококачественные рефлекторы с металлическими зеркалами практически вытеснили громоздкие рефракторы. Однако и они были далеки от совершенства. Во-первых, металлические зеркала имели низкий коэффициент отражения, а их поверхность со временем тускнела. Во-вторых, их изготовление было трудоемким и дорогостоящим. В-третьих, большие металлические зеркала деформировались под собственным весом. И тут очень помогли успехи в деле стекловарения. В 1758 году были получены два сорта стекла: легкий - крон и более тяжелый - флинт, а следовательно, появилась возможность создания двухлинзовых объективов. Англичанин Дж. Доллонд, изготовил объектив из положительной кроновой и отрицательной флинтовой линз и получил патент на изобретение объектива-ахромата, то есть свободного от хроматической аберрации. Такие объективы, названные доллондовыми трубами, быстро получили распространение.
Немецкий оптик Й. Фраунгофер ввел в широкую практику научный метод изготовления линзовых объективов и контроль за их качеством. Он конструировал и изготавливал первоклассные ахроматические объективы. Венцом его оптического искусства стал 25-сантиметровый рефрактор, купленный у него Россией и установленный в Тартуской обсерватории. К середине ХIХ века фраунгоферовские рефракторы стали основными инструментами наблюдательной астрономии. Казалось, что у них безоблачное будущее. Но по мере расширения спектрального диапазона наблюдений вновь стал проявляться главный недостаток линзовых объективов - хроматизм. Большие проблемы вызвало и дальнейшее увеличение диаметра объектива рефрактора. Было невозможно получить однородные большие блоки стекла для линз, а толстые линзовые объективы поглощали слишком много света. Самый большой рефрактор с диаметром объектива 1,02 м был построен н 1897 году, но на этом их дальнейшее развитие остановилось.
И тут создатели телескопов снова вспомнили о рефлекторах. В середине XIX века получил известность химический метод серебрения стеклянных поверхностей. Это позволило изготавливать зеркала из стекла. Серебряная пленка - фильм наносилась на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра. Такие зеркала со свежим серебряным фильтром отражали уже не 60% упавшего света, как бронзовые, а от 90 до 95%, а значит, были более светосильными при том же размере зеркала. Вскоре Л. Фуко разработал метод определения формы и качества поверхности зеркал. Благодаря его исследованиям появились рефлекторы с параболическими зеркалами.

Новым толчком в дальнейшем развитии телескопостроения стало использование алюминированных зеркал. Они, в отличие от серебренных, медленнее старились и лучше отражали ультрафиолетовые лучи. В конце XIX века начало первому поколению новых рефлекторов положил состоятельный человек, любитель астрономии Кросслей, который приобрел вогнутое стеклянное параболическое зеркало диаметром 91 см и изготовил телескоп. Следующий телескоп такого же типа с диаметром зеркала 1,5 м был установлен на обсерватории Маунт Вилсон. В 1918 году здесь же был построен 2,5-метровый рефрактор, а в 1947-м в Паломарской обсерватории был введен в строй телескоп с 5-метровым зеркалом. И все же проблемы, возникшие при создании этого телескопа, заставили специалистов в дальнейшем продвигаться в сторону увеличения диаметров более осторожными шагами. Особенно с учетом того, что работа на крупных телескопах показала, что 3-метровый диаметр с применением высококачественной оптики в пункте со спокойной атмосферой может оказаться гораздо эффективнее 5-метрового. А потому в 50 - 80-е годы в основном строились 3-4-метровые телескопы. Единственный 6-метровый был построен в СССР и установлен в Специальной астрономической обсерватории на Кавказе.
Параллельно с развитием оптической части совершенствуются и механические конструкции, управление телескопом доверяется компьютерам. Сейчас уже все готово к созданию больших телескопов, но из-за отсутствия достаточных средств обсерватории, институты и даже страны объединяются для совместного строительства. Весь имеющийся арсенал телескопов ученые используют для решения важных астрономических вопросов, таких как происхождение планет, звезд, Солнечной системы, квазаров и активных галактик. Судя по всему, будущие разработки в телескопостроении обещают быть поистине грандиозными. Уже сейчас предлагаются проекты 50- и 100-метровых телескопов, оснащенных самой современной приемно-регистрирующей аппаратурой, способной обеспечить качество наблюдений, о котором сейчас можно только мечтать.
Зачем их строят

Необходимость построения таких телескопов определяют задачи, требующие предельной чувствительности инструментов для регистрации излучения от самых слабых космических объектов. К таким задачам относятся:

  • происхождение Вселенной;
  • механизмы образования и эволюции звезд, галактик и планетных систем;
  • физические свойства материи в экстремальных астрофизических условиях;
  • астрофизические аспекты зарождения и существования жизни во Вселенной.
Чтобы получить максимум информации об астрономическом объекте, современный телескоп должен иметь большую поверхность собирающей оптики и высокую эффективность приемников излучения. Кроме того, помехи при наблюдениях должны быть минимальны.
В настоящее время эффективность приемников в оптическом диапазоне, понимаемая как доля регистрируемых квантов от общего числа пришедших на чувствительную поверхность, приближается к теоретическому пределу (100%), и дальнейшие пути совершенствования связаны с увеличением формата приемников, ускорением обработки сигнала и т.д.
Помехи при наблюдениях - весьма серьезная проблема. Помимо помех природного характера (например, облачность, пылевые образования в атмосфере) угрозу существованию оптической астрономии как наблюдательной науки представляет нарастающая засветка от населенных пунктов, промышленных центров, коммуникаций, техногенное загрязнение атмосферы. Современные обсерватории строят, естественно, в местах с благоприятным астроклиматом. Таких мест на земном шаре очень мало, не более десятка. К сожалению, на территории России мест с очень хорошим астроклиматом нет.
Единственным перспективным направлением развития высокоэффективной астрономической техники остается увеличение размеров собирающих поверхностей инструментов.

Крупные наземные оптические телескопы - обсерватории

ТЕЛЕСКОП

Диаметр зеркала, м

Параметры главного зеркала

Место установки телескопа

Участники проекта

Стоимость проекта, млн. $ USD

Первый свет

параболическое
многосегментное активное

Mauna Kea, Гавайи, США

тонкое активное

Paranal, Чили

ESO, кооперация девяти стран Европы

тонкое активное

Mauna Kea, Гавайи, США
Cerro Pachon, Чили

США (25%), Англия (25%), Канада (15%), Чили (5%), Аргентина (2,5%), Бразилия (2,5%)

тонкое активное

Mauna Kea, Гавайи, США

сотовое толстое

Mt. Graham, Аризона, США

США, Италия

11 (реально 9.5)

сферическое много-сегментное

Mt. Fowlkes, Texac, США

США, Германия

сотовое толстое

Mt. Hopkins, Аризона, США

сотовое толстое

Las Cаmpanas, Чили

Гора Пастухова, Карачаево-Черкесия

аналог KECK II

La Palma, Канарские острова, Испания

Испания 51%

аналог НЕТ

Sutherland, Южная Африка

Южно-Африканская Республика

35 (реально 28)

аналог НЕТ

150-200 аванпроект

сферическое
многосегментное

Германия, Швеция, Дания и др.

Около 1000 аванпроект

Синим цветом обозначены проекты сверх огромных телескопов, строительство которых скоро начнется.


Большие оптические телескопы

VLT - совместный проект восьми европейских стран, названный Очень большой телескоп. Его основной идеей стало создание четырех однотипных телескопов с диаметром главного зеркала 8,2 м и установка их в одном месте с максимально благоприятным астроклиматом. Каждый из них может работать как в автономном режиме, так и в комбинации с другими телескопами, обеспечивая в этом случае собирательную способность 16-метрового телескопа. Эти телескопы имеют цельные зеркала из особого сорта стекла, их толщина всего 175 мм, поэтому специально для них была разработана сложная система разгрузки. В перспективе эти телескопы будут работать н режиме интерферометра для получения высокого разрешения.
KECK I и KECK II - первыми «ласточками» нового поколения больших телескопов стали два 10-метровых близнеца для оптических инфракрасных наблюдений, получивших имя «Кек». Они появились на свет благодаря помощи фонда У. Кека, предоставившего 140 000 долларов на их строительство. Размером с восьмиэтажный дом и весом 300 тонн, они работают с высокой точностью. В «сердце» каждого из них - главное зеркало диаметром 10 и, состоящее из 36 шестиугольных сегментов, работающих как одно отражательное зеркало. Они установлены в одном из лучших на Земле мест для астрономических наблюдений - на Гаваях, на склоне потухшего вулкана Мануа Кеа высотой 4 200 м. К 2002 году эти два телескопа, расположенных на расстоянии 85 м друг от друга, начали работать в режиме интерферометра, давая такое же угловое разрешение, как 85-метровый телескоп. Дело в том, что зеркало телескопа имеет две характеристики. Первая из них - светособирающая способность, пропорциональная площади зеркала, в вторая - способность зеркала разделять или разрешать малые объекты, называемая угловым разрешением и пропорциональная диаметру зеркала. Если убрать из зеркала некоторую часть, то его собирательная способность резко упадет, а угловое разрешение останется тем же, что и при целом зеркале. Это и позволяет использовать два телескопа «Кек», как два кусочка большого 85-метрового зеркала. Для улучшения качества изображения эта система будет дополнена еще четырьмя телескопами с диаметром зеркала 1,8 метра.

LBT - в отличие от обычного рефлектора бинокулярный телескоп имеет два первичных зеркала. Вращение вторичных зеркал дает возможность быстро переключать телескоп с одного типа наблюдений на другой. Короткое фокусное расстояние первичных зеркал позволяет создать компактную, но достаточно жесткую структуру. Механическая система телескопа была смонтирована в Италии, а затем перевезена и установлена в Аризоне. 3еркала для телескопа сделаны в лаборатории зеркал Университета Аризоны в Таксоне из специального стекла, произведенного в Японии. После установки зеркал и окончательной настройки телескоп станет частью международной обсерватории Грэхема.
БТА - около 30 лет назад в СССР построен и введен в эксплуатацию 6-м телескоп БТА (Большой Телескоп Азимутальный). Долгие годы он оставался крупнейшим в мире и, естественно, был гордостью отечественной науки. БТА продемонстрировал ряд оригинальных технических решений (например, альт-азимутальную установку с компьютерным ведением), ставших впоследствии мировым техническим эталоном. БТА по-прежнему мощный инструмент (особенно для спектроскопических исследований), но в начале XXI в. он уже оказался лишь во втором десятке крупных телескопов мира. Кроме того, постепенная деградация зеркала (сейчас его качество ухудшилось на 30% по сравнению с первоначальным) выводит его из числа эффективных инструментов. С распадом СССР БТА остался практически единственным крупным инструментом, доступным для российских исследователей. Все наблюдательные базы с телескопами умеренного размера на Кавказе и в Средней Азии существенно потеряли свою значимость как регулярные обсерватории в силу ряда геополитических и экономических причин. Сейчас начаты работы по восстановлению связей и структур, но исторические перспективы этого процесса туманны, и в любом случае потребуется много лет только для частичного восстановления утраченного.
Разумеется, развитие парка крупных телескопов в мире предоставляет возможность российским наблюдателям для работы в так называемом гостевом режиме. Выбор такого пассивного пути неизменно означал бы, что российская астрономия будет всегда играть только второстепенные (зависимые) роли, а отсутствие базы для отечественных технологических разработок приведет к углублению отставания, и не только в астрономии. Выход очевиден - коренная модернизация БТА, а также полноценное участие в международных проектах.
GEMINI North и GEMINI South - большой международный проект "Джемини" - два идентичных телескопа с диаметром главного зеркала 8,1 м. Они установлены в Северном и Южном полушариях Земли (соответственно в Мануа Кеа, Гавайи, и Церро Пачон, Чили), чтобы охватить наблюдениями всю небесную сферу. Главное зеркало каждого из них изготовлено из 42 шестиугольных блоков, выполненных из стекла с очень низким коэффициентом теплового расширения и сваренных в один тонкий диск, кoторый затем был отпoлирован. Эти телескoпы могут работать как в видимой, так и в инфракрасной областях спектра. Инфракрасные изображения будут сравнимы с оптическими, а возможно, и лучше, чем полученные с космического телескопа "Хаббл".
Большие радиотелескопы

Радиотелескопы обычно представляют собой конструкции очень больших размеров. Наиболее распространенный тип радиотелескопа - это сооружение, основным элементом которого служит сплошное металлическое зеркало параболической формы. Зеркало отражает падающие на него радиоволны так, что они собираются вблизи фокуса и улавливаются специальным устройством - облучателем. Затем сигнал усиливается и преобразуется в форму, удобную для регистрации и анализа. Хранение и обработка данных осуществляются с помощью компьютерной техники. Чувствительность радиотелескопа тем выше, чем больше отражающая поверхность.
Обычный радиоприемник имеет приспособление для настройки на волну нужной радиостанции. Оно представляет собой перестраеваемый фильтр, который усиливает радиоизлучение только на волне выбранной станции и не пропускает (подавляет) сигналы станций, работающих на близких волнах. В отличие от земных радиостанций космические радиоисточники, как правило, излучают в широком диапазоне радиоволн. Поэтому и радиоастрономический приемник должен иметь чувствительность по возможности в более широком диапазоне. Такой приемник называется радиометром.
Расширению полосы приема препятствует в основном помехи от наземных радиостанций. Поэтому для радиоастрономии международными соглашениями выделены специальные интервалы длин волн, которые запрещается использовать любым наземным радиосредствам.
Аресибо - крупнейший в мире 300-метровый радиотелескоп с параболической антеной сооружен в 1963 г. в Аресибо, на острове Пуэрто-Рико. Он сконструирован, построен и эксплуатируется Национальным центром астрономических и ионосферных исследований США. Телескоп расположен в огромном естественном котловане в горах. На высоте 150 м над поверхностью гигантского неподвижного зеркала укреплена на стальных тросах 600-тонная платформа, на которую можно подняться по полукилометровому подвесному мосту или по канатной дороге. Подвижная часть платформы поворачивается вокруг собственной оси. По рельсам вдоль платформы перемещается управляемая компьютером кабина с облучателями и приемниками - так радиотелескоп наводится на исследуемый источник. Из-за неподвижности антенны наблюдения любого источника не могут продолжаться более двух часов. Но этот недостаток компенсируется огромной площадью зеркала, обеспечивающей высокую чувствительность. Радиотелескоп в Аресибо отличается от многих других также тем, что он может служить и передающей антеной. В таком режиме выполнены уникальные эксперименты по радиолокации Солнца, Луны и планет Солнечной системы.

Эффельсберг - В 1972 г. в Германии построен 100-метровый полноповоротный радиотелескоп. Он сооружен в ущелье невысоких гор в 50 км от Бонна, вблизи небольшого городка Эффельсберг. Радиотелескоп имеет достаточно высокую точность поверхности, что позволяет использовать его даже на волне 4 мм. Угловое разрешение телескопа на такой короткой волне составляет около 10". Этот радиотелескоп до сих пор считается крупнейшим в мире полноповоротным радиотелескопом.
Радиотелескопов с диаметром зеркала больше 50 м единицы. Вторым в Европе по размеру после Эффельсбергского является 76-метровый радиотелескоп на обсерватории Джодрелл-Бэнк. Он эффективно используется только в дециметровом диапазоне волн, так как точность поверхности зеркала не очень высокая.
РАТАН-600 - в 1994 г. в России начал работать 64-метровый радиотелескоп, третий по величине в Европе. Он расположен недалеко от города Калязина на Волге, в 180 км к северу от Москвы. Крупным отечественным радиотелескопом является РАТАН-600 (Радителескоп Академии наук диаметром 600 м), сооруженный в 1976 г. на Северном Кавказе, близ станицы Зеленчукской. Зеркало этого телескопа не покрывает всю площадь круга, а представляет собой кольцо диаметром 600 м, собранное из 895 алюминиевых щитов высотой 7м. Угловое разрешение такой системы определяется диаметром кольца и составляет на волне 3 см около 10". В реальных наблюдениях все кольцо сразу используется редко. Телескоп разбит на секторы: северный, южный, восточный и западный. Щиты каждого сектора ориентируются на выбранный источник, а в фокусе каждого сектора установлен облучатель, который может перемещаться, обеспечивая наблюдения данного источника в течение нескольких минут.
До сих пор были рассмотрены радиотелескопы, на которых вся энергия радиоволн фокусируется с помощью зеркала или системы зеркал на общий облучатель и усиливается затем одним приемником. Есть другой тип радиотелескопа: излучение принимается независимыми антеннами, усиливается на каждой антенне и передается по кабелям или волноводам для общего суммирования сигнала. Длинну кабелей подбирают так, чтобы сигналы ото всех антенн поступали на суммирующее устройство в одной фазе. Тем самым осуществляется электрическая фокусировка всей антенной системы. Подобные радиотелескопы называются синфазными антеннами. На радиоастрономической станции ФИАН в городе Пушкино Московской области работает Большая синфазная антенна (БСА), представляющая собой поле взаимосвязанных дипольных антенн длиной 300 м и шириной 400 м. Эффективная собирающая площадь БСА почти такая же, как у радиотелескопа в Аресибо. БСА работает на волне 3 м. На этом радиотелескопе исследуется прежде всего пульсары и ядра галактик.

mob_info