Механизм возникновения потенциала действия. Что называется потенциалом действия? Внутренняя поверхность поляризованной клетки заряжена

Потенциалы действия могут различаться по своим параметрам в зависимости от типа клетки и даже на различных участках мембраны одной и той же клетки. Наиболее характерный пример различий: потенциал действия сердечной мышцыи потенциал действия большинства нейронов. Тем не менее, в основе любого потенциала действия лежат следующие явления:

  1. Мембрана живой клетки поляризована - её внутренняя поверхность заряжена отрицательно по отношению к внешней благодаря тому, что в растворе возле её внешней поверхности находится бо́льшее количество положительно заряженных частиц (катионов), а возле внутренней поверхности - бо́льшее количество отрицательно заряженных частиц (анионов).
  2. Мембрана обладает избирательной проницаемостью - её проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.
  3. Мембрана возбудимой клетки способна быстро менять свою проницаемостъ для определённого вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю (Рис.1 ).

Первые два свойства характерны для всех живых клеток. Третье же является особенностью клеток возбудимых тканей и причиной, по которой их мембраны способны генерировать и проводить потенциалы действия.

Фазы потенциала действия

  1. Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).
  2. Пиковый потенциал, или спайк, состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).
  3. Отрицательный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).
  4. Положительный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).

Общие положения

Поляризация мембраны живой клетки обусловлена отличием ионного состава с её внутренней и наружной стороны. Когда клетка находится в спокойном (невозбуждённом) состоянии, ионы по разные стороны мембраны создают относительно стабильную разность потенциалов, называемую потенциалом покоя. Если ввести внутрь живой клетки электрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (порядка −70 - −90 мВ). Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся и катионы, и анионы. Снаружи - на порядок больше ионов натрия, кальция и хлора, внутри - ионов калия и отрицательно заряженных белковыхмолекул, аминокислот, органических кислот, фосфатов, сульфатов. Надо понимать, что речь идёт именно о заряде поверхности мембраны - в целом среда и внутри, и снаружи клетки заряжена нейтрально.

Потенциал мембраны может изменяться под действием различных стимулов. Искусственным может служить электрический ток, подаваемый на внешнюю или внутреннюю сторону мембраны через электрод. В естественных условиях стимулом часто служит химический сигнал от соседних клеток, поступающий черезсинапс или путём диффузной передачи через межклеточную среду. Смещение мембранного потенциала может происходить в отрицательную (гиперполяризация ) или положительную (деполяризация ) сторону.

В нервной ткани потенциал действия, как правило, возникает при деполяризации - если деполяризация мембраны нейрона достигает некоторого порогового уровня или превышает его, клетка возбуждается, и от её тела к и распространяется волна электрического сигнала. (В реальных условиях на теле нейрона обычно возникают постсинаптические потенциалы, которые сильно отличаются от потенциала действия по своей природе - например, они не подчиняются принципу «всё или ничего». Эти потенциалы преобразуются в потенциал действия на особом участке мембраны - аксонном холмике, так что потенциал действия не распространяется на дендриты).

Это обусловлено тем, что на мембране клетки находятся ионные каналы - белковые молекулы, образующие в мембране поры, через которые ионы могут проходить с внутренней стороны мембраны на наружную и наоборот. Большинство каналов ионоспецифичны - натриевый канал пропускает практически только ионы натрия и не пропускает другие (это явление называют селективностью). Мембрана клеток возбудимых тканей (нервной и мышечной) содержит большое количество потенциал-зависимых ионных каналов, способных быстро на смещение мембранного потенциала. Деполяризация мембраны в первую очередь вызывает открытие потенциал-зависимых натриевых каналов. Когда одновременно открывается достаточно много натриевых каналов, положительно заряженные ионы натрия устремляются через них на внутреннюю сторону мембраны. Движущая сила в данном случае обеспечивается градиентом концентрации (с внешней стороны мембраны находится намного больше положительно заряженных ионов натрия, чем внутри клетки) и отрицательным зарядом внутренней стороны мембраны (см. Рис. 2). Поток ионов натрия вызывает ещё бо́льшее и очень быстрое изменение мембранного потенциала, которое и называют потенциалом действия (в специальной литературе обозначается ПД).

Согласно закону «всё-или-ничего» мембрана клетки возбудимой ткани либо не отвечает на стимул совсем, либо отвечает с максимально возможной для неё на данный момент силой. То есть, если стимул слишком слаб и порог не достигнут, потенциал действия не возникает совсем; в то же время, пороговый стимул вызовет потенциал действия такой же амплитуды, как и стимул, превышающий пороговый. Это отнюдь не означает, что амплитуда потенциала действия всегда одинакова - один и тот же участок мембраны, находясь в разных состояниях, может генерировать потенциалы действия разной амплитуды.

Чтобы представить, насколько эффективно может быть увеличена скорость проведения за счёт миелиновой оболочки, достаточно сравнить скорость распространения импульса по немиелинизированным и миелинизированным участкам человека. При диаметре волокна около 2 µм и отсутствии миелиновой оболочки скорость проведения будет составлять ~1 м/с, а при наличии даже слабой миелинизации при том же диаметре волокна - 15-20 м/с. В волокнах большего диаметра, обладающих толстой миелинововой оболочкой, скорость проведения может достигать 120 м/с.

Скорость распространения потенциала действия по мембране отдельно взятого нервного волокна отнюдь не является постоянной величиной - в зависимости от различных условий, эта скорость может очень значительно уменьшаться и, соответственно, увеличиваться, возвращаясь к некоему исходному уровню.

Активные свойства мембраны

Активные свойства мембраны, обеспечивающие возникновение потенциала действия, основываются главным образом на потенциалзависимых натриевых (Na +) и калиевых (K +) каналов. Начальная фаза ПД формируется входящим натриевым током, позже открываются калиевые каналы и выходящий K + -ток возвращает потенциал мембраны к исходному уровню. Исходную концентрацию ионов затем восстанавливает натрий-калиевый насос.

По ходу ПД каналы переходят из состояния в состояние: у Na + каналов основных состояний три - закрытое, открытое и инактивированное (в реальности дело сложнее, но этих трёх достаточно для описания), у K + каналов два - закрытое и открытое.

Потенциал действия - электрический импульс, возникающий между внутренней и наружной сторонами мембраны и обусловленный изменениями ионной проницаемости мембраны.

Фазы ПД:

Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации.

Спайк (пиковый потенциал) - состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризациия)

Отрицательный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны.

Положительный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине.

Первый период - локальный ответ представляет собой активную местную деполяризацию, возникающую вследствие увеличения натриевой проницаемости клеточной мембраны. Однако при подпороговом стимуле начальное повышение натриевой проницаемости недостаточно велико, чтобы вызвать быструю деполяризацию мембраны. Локальный ответ возникает не только при подпороговом, но и при надпороговом раздражении и является составным компонентом потенциала действия. Таким образом, локальный ответ является первоначальной и универсальной формой реагирования ткани на различные по силе раздражения. Биологический смысл локального ответа состоит в том, что если раздражение мало, то ткань реагирует на него с минимальной тратой энергии, не включая механизмы специфической деятельности. В том же случае, когда раздражение надпороговое, локальный ответ переходит в потенциал действия. Период от начала раздражения до начала фазы деполяризации, когда локальный ответ, нарастая, снижает мембранный потенциал до критического уровня, называется латентным периодом или скрытым периодом. Продолжительность латентного периода зависит от характера раздражения (рис. 3.5.).

Второй период - фаза деполяризации. Эта часть потенциала действия характеризуется быстрым уменьшением мембранного потенциала и даже перезарядкой мембраны: внутренняя ее часть на некоторое время становится заряженной положительно, а внешняя отрицательно. В отличие от локального ответа скорость и величина деполяризации не зависит от силы раздражителя. Продолжительность фазы деполяризации в нервном волокне лягушки составляет около 0.2 - 0.5 мс.

Третий период потенциала действия - фаза реполяризации, ее продолжительность составляет 0.5-0.8 мс. В течение этого времени мембранный потенциал постепенно восстанавливается и достигает 75 - 85% потенциала покоя. В литературе второй и третий периоды часто называют пиком потенциала действия.

Колебания мембранного потенциала, следующие за пиком потенциала действия, называют следовыми потенциалами. Различают два вида следовых потенциалов -следовую деполяризацию и следовую гиперполяризацию, которые соответствуют четвертой и пятой фазе потенциала действия. Следовая деполяризация является продолжением фазы реполяризации и характеризуется более медленным (по сравнению с фазой реполяризации) восстановлением потенциала покоя. Следовая деполяризация переходит в следовую гиперполяризацию, представляющую собой временное увеличение мембранного потенциала выше исходного уровня. В миелинизированных нервных волокнах следовые потенциалы имеют более сложный характер. Следовая деполяризация может переходить в следовую гиперполяризацию, затем иногда возникает новая деполяризация, лишь после этого происходит полное восстановление потенциала покоя.

Ионный механизм возникновения потенциала действия

В основе потенциала действия лежат последовательно развивающиеся во времени изменения ионной проницаемости клеточной мембраны. При действии на клетку раздражителя проницаемость мембраны для ионов Na + резко повышается за счет активации (открывания) натриевых каналов (рис. 3.6.). При этом ионы Na + по концентрационному.

При этом ионы Na + по концентрационному градиенту интенсивно перемещаются из вне - во внутриклеточное пространство. Вхождению ионов Na + в клетку способствует и электростатическое взаимодействие. В итоге проницаемость мембраны для Na + становится в 20 раз больше проницаемости для ионов К + .

Поскольку поток Na + в клетку начинает превышать калиевый ток из клетки, то происходит постепенное снижение потенциала покоя,приводящее к реверсии - изменению знака мембранного потенциала. При этом внутренняя поверхность мембраны становится положительной по отношению к ее внешней поверхности. Указанные изменения мембранного потенциала соответствуют восходящей фазе потенциала действия (фазе деполяризации)

Мембрана характеризуется повышенной проницаемостью для ионов Na + лишь очень короткое время 0.2 - 0.5 мс. После этого проницаемость мембраны для ионов Na + вновь понижается, а для К + возрастает. В результате поток Na + внутрь клетки резко ослабляется, а ток К + из клетки усиливается (рис. 3.7.).


В течение потенциала действия в клетку поступает значительное количество Na + , а ионы К + покидают клетку. Восстановление клеточного ионного баланса осуществляется благодаря работе Na + ,К + - АТФазного насоса, активность которого возрастает при повышении внутренней концентрации ионов Na + и увеличении внешней концентрации ионов К + . Благодаря работе ионного насоса и изменению проницаемости мембраны для Na + и К + первоначальная их концентрация во внутри - и внеклеточном пространстве постепенно восстанавливается.

Итогом этих процессов и является реполяризация мембраны: внутреннее содержимое клетки вновь приобретает отрицательный заряд по отношению к внешней поверхности мембраны.

  • 2. 3. Параметры возбудимости ткани: порог, полезное время и хронаксия, критический наклон, лабильность.
  • Лекция 3. Механизмы проведения возбуждения
  • 3.2. Нервно-мышечный синапс: строение, механизм проведения возбуждения, особенности проведения возбуждения в синапсе по сравнению с нервным волокном.
  • Лекция 4. Физиология мышечного сокращения
  • Лекция 5. Общая физиология центральной нервной системы
  • 5.3. Классификация синапсов цнс, медиаторы синапсов цнс и их функциональное значение. Свойства синапсов цнс.
  • Лекция 6. Структура цнс. Свойства нервных центров.
  • 6. 1. Понятие о нервном центре. Свойства нервных центров.
  • 6.2. Методы исследования функций цнс.
  • Лекция 7. Механизмы и способы торможения в цнс. Координационная деятельность цнс.
  • 7.1. Процессы торможения в цнс: механизм постсинаптического и пресинаптического торможений, посттетаническое и пессимальное торможение. Значение торможения.
  • 7.2. Координационная деятельность цнс: понятие о координации, принципы координационной деятельности цнс.
  • Лекция 8. Физиология спинного мозга и мозгового ствола.
  • 8.1. Роль спинного мозга в регуляции функций организма: вегетативные и соматические центры и их значение.
  • 8.2. Продолговатый мозг и мост: центры и соответствующие им рефлексы, их отличия от рефлексов спинного мозга.
  • 8.3 Средний мозг: основные структуры и их функции, статические и статокинетические рефлексы.
  • Лекция 9. Физиология ретикулярной формации, промежуточного и заднего мозга.
  • 9.2. Мозжечок: афферентные и эфферентные связи, роль мозжечка в регуляции тонуса мышц в обеспечении двигательной активности. Симптомы поражения мозжечка.
  • 9.3. Промежуточный мозг: структуры и их функции. Роль таламуса и гипоталамуса в регуляции гомеостаза организма и осуществлении сенсорной функции.
  • Лекция 10. Физиология переднего мозга. Физиология вегетативной нервной системы.
  • 10.1. Мозговые системы произвольных и непроизвольных движений (Пирамидная и экстрапирамидная системы): главные структуры, функции.
  • 10.2. Лимбическая система: структуры и функции.
  • 10.3. Функции новой коры, функциональное значение соматосенсорных и моторных зон коры больших полушарий.
  • Лекция 11. Физиология эндокринной системы и нейроэндокринные отношения.
  • 11. 1. Эндокринная система и гормоны. Функциональное значение гормонов.
  • 11.2. Общие принципы регуляции функций эндокринных желез. Гипоталамо-гипофизарная система. Функции аденогипофиза. Функции нейрогипофиза
  • 11.4. Щитовидная железа: регуляция образования и транспорт иодированных гормонов, роль иодированных гормонов и кальцитонина. Функции паращитовидных желез.
  • Лекция 12. Физиология системы крови. Физико-химические свойства крови.
  • 12. 1. Кровь как составная часть внутренней среды организма. Понятие о системе крови (г.Ф. Ланг). Функции крови. Количество крови в организме и методы его определения.
  • 12. 2. Состав крови. Гематокрит. Состав плазмы. Основные физико-химические константы крови.
  • Лекция 13. Физиология гемостаза.
  • 13.1. Свертывание крови: понятие, ферментативная теория (Шмидт, Моравиц), факторы свертывания, роль тромбоцитов.
  • Лекция 14. Антигенные свойства крови. Основы трансфузиологии
  • 14.2. Группы крови систем Rh: открытие, антигенный состав, значение для клиники. Краткая характеристика других систем антигенов (m, n, s, p и др.)
  • Лекция 15. Клеточные элементы крови
  • 15.2. Гемоглобин: свойства, соединения гемоглобина, количество Нв, методы его определения. Цветовой показатель. Метаболизм гемоглобина.
  • 15.3. Лейкоциты: количество, методы подсчета, лейкоцитарная формула, функции различных видов лейкоцитов. Физиологический лейкоцитоз: понятие, виды. Нервная и гуморальная регуляция лейкопоэза.
  • 15. 4. Роль нервной системы и гуморальных факторов в Регуляции клеточного состава крови.
  • Лекция 16. Физиология сердечной деятельности
  • Лекция 17. Внешние проявления работы сердца, способы их регистрации. Функциональные показатели деятельности ердца.
  • Лекция 18. Регуляция работы сердца.
  • 18.2. Интракардиальная регуляция деятельности сердца: миогенная регуляция, внутрисердечная нервная система.
  • 18.3. Рефлекторные механизмы регуляции сердечной деятельности. Корковые влияния. Гуморальные механизмы регуляции работы сердца.
  • Лекция 19. Законы движения крови по сосудам. Основные гемодинамические показатели
  • Лекция 20. Особенности движения крови в разных отделах сосудистого русла.
  • 20.3. Давление крови в артериях: виды, показатели, факторы, их определяющие, кривая артериального давления.
  • 21.1. Нервная регуляция сосудистого тонуса.
  • 21.2. Базальный тонус и его компоненты, доля участия его в общем тонусе сосудов. Гуморальная регуляция сосудистого тонуса. Ренин-антиотезиновая система. Локальные регуляторные механизмы
  • 21. 4. Особенности регионального кровообращения: коронарного, легочного, мозгового, печеночного, почечного, кожного.
  • 22.1. Дыхание: этапы дыхательного процесса. Понятие о внешнем дыхании. Функциональное значение легкого, воздухоносных путей и грудной клетки в процессе дыхания. Негазообменные функции легких.
  • 22. 2. Механизм вдоха и выдоха Отрицательное давление в плевральной щели. Понятие об отрицательном давлении, его величина, происхождение, значение.
  • 22. 3. Вентиляция легких: легочные объемы и емкости
  • Лекция 23. Механизмы газообмена
  • 23. 2. Транспорт о2и со2кровью. Газообмен между кровью и тканями.
  • Лекция 24. Регуляция дыхания
  • 24. 1. Структурно-функциональная характеристика дыхательного центра. Роль гуморальных факторов в регуляциИ интенсивности дыхания. Рефлекторная саморегуляция вдоха и выдоха.
  • 24. 2 Особенности дыхания и его регуляция при мышечной работе, при пониженном и повышенном атмосферном давлении. Гипоксия и ее виды. Искусственное дыхание. Гипербарическая оксигенация.
  • 24.3. Характеристика функциональной системы, поддерживающей постоянство газового состава крови и ее схема.
  • Лекция 25. Общая характеристика пищеварительной системы. Пищеварение в полости рта.
  • Лекция 26. Пищеварение в желудке и 12-п. Кишке.
  • 26.3. Печень: ее роль в пищеварении (состав желчи, ее значение, регуляция желчеобразования и желчевыделения), не пищеварительные функции печени.
  • Лекция 27. Пищеварение в тонкой и толстой кишке. Всасывание. Голод и насыщение.
  • 27. 1. Пищеварение в тонкой кишке: количество, состав пищеварительного сока тонкой кишки, регуляция ее секреции, полостное и мембранное пищеварение. Виды сокращений тонкой кишки и их регуляция.
  • 27.3. Всасывание в желудочно-кишечном тракте: интенсивность всасывания в различных отделах, механизмы всасывания и опыты, их доказывающие; регуляция всасывания.
  • 27.4. Физиологические основы голода и насыщения. Периодическая деятельность желудочно-кишечного тракта. Механизмы активного выбора пищи и биологическое значение этого факта.
  • Лекция 28. Метаболические основы физиологических функций.
  • 28. 1. Значение Обмена веществ. Обмен белков, жиров и углеводов. Витамины и их роль в организме.
  • 28. 2. Особенности и регуляция водно-солевого обмена.
  • 28. 4. Принципы исследования прихода и расхода энергии организмом.
  • 28.5. Питание: физиологические нормы питания, основные требования к составлению пищевого рациона и режиму приема пищи,
  • Лекция 29. Терморегуляция
  • 29. 1. Терморегуляция и ее виды, физические и физиологические механизмы теплопродукции и теплоотдачи.
  • 29. 2. Механизмы Терморегуляции. Характеристика функциональной системы, поддерживающей постоянство температуры внутренней среды организма и ее схема. Понятие о гипотермии и гипертермии.
  • Лекция 31. Гомеостатические функции почек.
  • Лекция 32. Сенсорные системы. Физиология анализаторов
  • 32. 1. Рецептор: понятие, функция, классификация рецепторов, свойства и их особенности, механизм возбуждения рецепторов.
  • 32.2. Анализаторы (и.П. Павлов): понятие, классификация анализаторов, три отдела анализаторов и их значение, принципы построения корковых отделов анализаторов.
  • 32. 3. Кодирование информации в анализаторах.
  • Лекция 33. Физиологические особенности отдельных анализаторных систем.
  • 33. 1. Зрительный анализатор
  • 33. 2. Слуховой анализатор. Механизм восприятия звука.
  • 33. 3. Вестибулярный анализатор.
  • 33.4. Кожно-кинестетический анализатор.
  • 33.5. Обонятельный и вкусовой анализаторы.
  • 33. 6. Внутренний (висцеральный) анализатор.
  • Лекция 34. Физиология высшей нервной деятельности.
  • 34. 1. Понятие о высшей нервной деятельности. Классификация условных рефлексов и их характеристика. Методы изучения внд.
  • 34. 2. Механизм образования условных рефлексов. “Замыкание” временной связи (и.П. Павлов, э.А. Асратян, п.К. Анохин).
  • 34. 4. Аналитико-синтетическая деятельность коры больших полушарий.
  • 34.5. Индивидуальные особенности высшей нервной деятельности. Типы внд.
  • Лекция 35. Особености внд человека. Физиологические механизмы сна.
  • 35.1. Особенности внд человека. Понятие о первой и второй сигнальной системах человека.
  • 35. 2. Физиологические МеХанизмы сна.
  • Лекция 36. Физиологические механизмы памяти.
  • 36.1. Физиологические механизмы усвоения и сохранения информации. Виды и механизмы памяти.
  • Лекция 37. Эмоции и мотивации. Физиологические механизмы целенаправленного поведения
  • 37.1. Эмоции: причины возникновения, значение. Информационная теория эмоций п.С. Симонова и теория эмоциональных состояний г.И. Косицкого.
  • 37.2. Функциональная система целенаправленного поведения (п.К. Анохин), ее центральные механизмы. Мотивации и их виды.
  • Лекция 38. Защитные функции организма. Ноцицептивная система.
  • 38.1. Ноцицепция: биологическое значение боли, ноцицептивная и антиноцицептивная системы.
  • Лекция 39. Физиологические механизмы трудовой деятельности и приспособления организма к изменившимся условиям.
  • 39.1. Физиологические основы трудовой деятельности. Особенности физического и умственного труда. Особенности труда в условиях современного производства, утомление и активный отдых.
  • 39. 2. Aдаптация организма к физическим, биологическим и социальным факторам. Виды адаптации. Особенности адаптации человека к климатическим факторам обитания.
  • 39.3. Биологические ритмы и их значение в деятельности человека и его адаптации к экстремальным условиям.
  • 39. 4. Стресс. Механизм развития общего адаптационного синдрома.
  • Лекция 40. Физиология репродукции. Плодо-материнские отношения и функциональная система мать-плод (фсмп).
  • 2.2. Потенциал действия: фазы потенциала действия, механизм возникновения. Восстановительный период. Явление аккомодации возбудимой ткани.

    Потенциал действия . Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя (например, толчка электрического тока), в этом участке возникает возбуждение, одним из наиболее важных проявлений которого служит быстрое колебание МП, называемое потенциалом действия (ПД)

    Причиной возникновения ПД является изменение ионной проницаемости мембраны. В состоянии покоя, как уже говорилось, проницаемость мембраны для К + превышает натриевую проницаемость. Вследствие этого поток положительно заряженных ионов из протоплазмы наружу превышает противоположный поток Na + . Поэтому мембрана в покое снаружи заряжена положительно.

    При действии на клетку раздражителя проницаемость мембраны для ионов Na+ резко повышается, и в конечном итоге становится примерно в 20 раз больше проницаемости для К + . Поэтому поток ионов Na + в клетку начинает значительно превышать направленный наружу поток К + . Ток Na + достигает величины +150 мв. Одновременно несколько уменьшается выход К + из клетки. Все это приводит к извращению (реверсии) МП, и наружная поверхность мембраны становится заряженной электро отрицательно по отношению к внутренней поверхности. Указанный сдвиг и регистрируется в виде восходящей ветви пика ПД (фаза деполяризации).

    При внутриклеточном отведении можно обнаружить, что поверхность возбужденного участка на очень короткий интервал, измеряемый тысячными долями секунды, становится заряженным электроотрицательно по отношению к соседнему, покоящемуся участку, т.е. при возбуждении происходит т.н. "перезарядка мембраны". Точные измерения показали, что амплитуда ПД на 30-50 мв превышает величину МП. Причина этого состоит в том, что при возбуждении происходит не просто исчезновение ПП, а возникает разность потенциалов обратного знака, в результате чего наружная поверхность мембраны становится заряженной отрицательно по отношению у ее внутренней стороне.

    Потенциал действия протекает фазно. Временной ход потенциала действия включает четыре последовательных этапа: локальный ответ, деполяризацию, реполяризацию и следовые потенциалы (рис. 2). В ПД принято различать его пик (т.н. спайк - spike) и следовые потенциалы. Пик ПД имеет восходящую и нисходящую фазы. Перед восходящей фазой регистрируется более или менее выраженный т.н. местный потенциал, или локальный ответ. Поскольку во время восходящей фазы исчезает исходная поляризация мембраны, ее называют фазой деполяризации; соответственно нисходящую фазу, в течение которой поляризация мембраны возвращается к исходному уровню, называется фазой реполяризации. Продолжительность пика ПД в нервных и скелетных мышечных волокнах варьирует в пределах 0,4-5,0 мсек. При этом фаза реполяризации всегда продолжительнее.

    Рис. 2. Фазы и временной ход потенциала действия.

    Кроме пика, в ПД различают два следовых потенциала - следовую деполяризацию (следовой отрица-тельный потенциал) и следовую гиперполяризацию (следовой положи-тельный потенциал. Амплитуда этих потенциалов не превышает нескольких милливольт, а длительность варьирует от нескольких десятков до сотен миллисекунд. Следовые потенциалы связаны с восстановительными процессами, развивающимися в мышцах и нерве после окончания возбуждения.

    Промежуток времени, в течение которого сохраняется активное состояние в виде ПД, неодинаков в разных возбудимых структурах. В нейронах он составляет около 1 мс, в волокнах скелетных мышц – 10 мс, в миокарде достигает 200–250 мс.

    Левое крыло графической записи ПД, отражающее изменение потенциала в электроположительную сторону называется деполяризацией. Область электроположительности носит название овершута, правое крыло ПД, свидетельствующее о восстановлении исходного поляризованного состояния мембраны принято называть реполяризацией. Часто, но не всегда возвращение ПД к исходному уровню в состоянии покоя происходит с наличием фаз в форме так называемых следовых потенциалов. Следовые потенциалы неодинаковы в мышцах и нервах. В волокнах скелетных мышц фаза реполяризации очень замедлена. Примерно через 1 мс после начала ПД наблюдается отчетливый перегиб крыла реполяризации – это следовая деполяризация. В нейроне чаще всего кривая реполяризации быстро пересекает уровень МПП и на некоторое время потенциал мембраны становится более электроотрицательным, чем МП. Это явление называют следовой гиперполяризацией.

    Повышение проницаемости мембраны для ионов Na + продолжается в нервных клетках очень короткое время. Связано оно с кратковременным открытием т.н. Na + -каналов (точнее, заслонок М в этих каналах), которое затем сменяется срочным закрытием Na+-пор с помощью т.н. Н-ворот. Этот процесс называется натриевой инактивацией. В результате поток Na в клетку прекращается.

    Наличие специальных Na- и К- каналов и сложного механизма запирания и открытия ворот изучено биофизиками достаточно хорошо. Показано, что существуют избирательные механизмы, регулирующие те или иные каналы. Например, яд тетродотоксин блокирует только Na-поры, а тетраэтиламмоний - только К-поры. Показано, что у некоторых клеток возникновение возбуждения связано в изменением проницаемости мембраны для Са ++ , в других - для Mg + . Исследования механизмов изменения проницаемости мембран продолжаются.

    В результате Na-инактивации и одновременного увеличения К- проницаемости происходит усиленный выход положительных ионов К+ из протоплазмы во внешний раствор. В итоге этих двух процессов происходит восстановление поляризованного состояния мембраны (реполяризация) , и наружная ее поверхность вновь приобретает положительный заряд. В дальнейшем происходят процессы восстановления нормального ионного состава клетки и необходимого градиента концентрации ионов за счет активизации деятельности Na-К-насоса. В результате повышения проводимости резко возрастает поток катионов Na + , поэтому отрицательный заряд в клетке вблизи внутренней стороны поверхности мембраны также резко уменьшается вплоть до преобладания положительных зарядов. В результате происходит изменение знака потенциала, достигающего +30 мВ. После этого проводимость мембраны дляNa + также резко снижается.

    Для нормального протекания ПД играет существенную роль и изменение проводимости мембраны для K + , которая начинает возрастать позже возрастания проводимости дляNa + . Увеличение относительно медленного выходаK + из клетки в фазу снижения проводимости дляNa + вызывает реполяризацию мембраны.

    Таким образом, в живой клетке существуют два различных типа движения ионов через мембрану. Один из них осуществляется по градиенту концентрации ионов и не требует затраты энергии, поэтому его называют пассивным транспортом. Он ответственен за возникновение МП и ПД и ведет в конечном итоге к выравниванию концентраций ионов по обе стороны клеточной мембраны. Второй тип движения ионов через мембрану, осуществляющийся против концентрационного градиента, состоит в "выкачивании" ионов Na+ из протоплазмы и "нагнетании" ионов К+ внутрь клетки. Этот тип ионного транспорта возможет лишь при условии затраты энергии - это активный транспорт. Он является результатом работы специальных ферментных систем (т.н. насосов), и благодаря ему восстанавливается исходная разность концентраций, необходимая для поддержания МП.

    Условия возникновения возбуждения . Для возникновения ПД необходимо, чтобы под влиянием какого-либо раздражителя произошло повышение ионной проницаемости мембраны возбудимой клетки. Однако, возбуждение возможно лишь при условии, если действующий на мембрану агент имеет некоторую минимальную (пороговую) величину, способную изменить мембранный потенциал (МП, или Ео) до некоторого критического уровня (Ек, критический уровень деполяризации). Стимулы, сила которых ниже пороговой величины, называются подпороговыми, выше - надпороговыми. Показано, что пороговая сила, необходимая для возникновения возбуждения при внутриклеточном микроэлектроде равна 10 -7 - 10-9 А.

    Таким образом, главным условием для возникновения ПД является следующее: мембранный потенциал должен стать равным или меньше критического уровня деполяризации (Ео <= Eк)

    Инактивация Na+-системы. Na+-системой обозначают механизм, позволяющий в течение нескольких долей миллисекунды многократно (до 20 раз) увеличить проводимость клеточной мембраны для Na+. Достигнув пикового значения, примерно через 0,5 мс проводимость мембраны для Na+ начинает снижаться. Быстрое снижение проводимости для Na+ называют инактивацией Na+-системы. В основе инактивации Na+-системы лежит переход в инактивационное состояние потенциалзависимых Na+-каналов. Поэтому скорость и степень снижения проводимости потенциалзависимы. Это означает, что чем больше отличается потенциал мембраны от мембранного потенциала покоя в сторону электроположительности, тем сильнее инактивирована Na+-система. Поэтому деполяризация мембраны вызывает снижение тока Na+ внутрь клетки. С одной стороны, это свидетельствует о том, что усиление тока Na+ само себе служит причиной его быстрого последующего снижения и начала развития реполяризации. С другой стороны, это означает, что если исходный потенциал клетки выше потенциала покоя на 20–30 мВ, то Na+-система полностью инактивирована и никакая последующая деполяризация уже не может активировать ее, т.е. вызвать резкое увеличение проводимости для Na+ и генерацию ПД.

      Понятие и виды биопотенциалов. Природа биопотенциалов.

      Причина возникновения потенциала покоя. Стационарный потенциал Гольдмана.

      Условия возникновения и фазы потенциала действия.

      Механизм генерации потенциала действия.

      Методы регистрации и экспериментального исследования биопотенциалов.

    Понятия и виды биопотенциалов. Природа биопотенциалов.

    Биопотенциалы – любые разности потенциалов в живых системах: разность потенциалов между клеткой и окружающей средой; между возбуждённым и невозбуждённым участками клетки; между участками одного организма, находящимися в разных физиологических состояниях.

    Разность потенциалов - электрический градиент – характерная черта всего живого.

    Виды биопотенциалов:

      Потенциал покоя (ПП) – постоянно существующая в живых системах разность потенциалов, характерная для стационарного состояния системы. Он поддерживается постоянно протекающими звеньями обмена веществ.

      Потенциал действия (ПД) – быстро возникающая и вновь исчезающая разность потенциалов, характерная для переходных процессов.

    Биопотенциалы тесно связаны с метаболическими процессами, следовательно, являются показателями физиологического состояния системы.

    Величина и характер биопотенциалов являются показателями изменений в клетке в норме и патологии.

    Существует большая группа электрофизиологических методов диагностики , основанных на регистрации биопотенциалов (ЭКГ, ЭМГ и т.д.).

    В основе возникновения биопотенциалов лежит несимметричное относительно мембраны распределение ионов, т.е. различные концентрации ионов по разные стороны мембраны. Непосредственная причина – различная скорость диффузии ионов по их градиентам, определяющаяся селективностью мембраны.

    Биопотенциалы – ионные потенциалы, преимущественно мембранной природы – это основное положение Мембранной теории биопотенциалов (Бернштейн, Ходжкин, Катц).

    Причина возникновения потенциала покоя. Стационарный потенциал Гольдмана.

    Натриевый насос – создаёт и поддерживает градиент концентрации иона натрия, иона калия, регулируя их поступление в клетку и выведение из неё.

    В состоянии покоя клетка проницаема главным образом для ионов калия. Они диффундируют по градиенту концентрации через клеточную мембрану из клетки в окружающую жидкость. Крупные органические анионы, содержащиеся в клетке не могут преодолеть мембрану. Таким образом внешняя поверхность мембраны заряжается положительно, а внутренняя – отрицательно.

    Изменение зарядов и разности потенциалов на мембране продолжается пока силы, обуславливающие градиент концентрации калия не уравновесятся силами возникающего электрического поля, следовательно, не будет достигнуто стационарное состояние системы.

    Разность потенциалов через мембрану в этом случае и есть – потенциал покоя.

    Вторая причина возникновения потенциала покоя – электрогенность калий-натриевого насоса.

    Теоретическое определение потенциала покоя:

    При учёте лишь калиевой проницаемости мембраны в состоянии покоя потенциал покоя можно вычислить по уравнению Нернста:

    R – универсальная газовая постоянная

    T – абсолютная температура

    F – число Фарадея

    С iK – концентрация калия внутри клетки

    C eK – концентрация калия снаружи клетки

    На самом деле, помимо ионов калия, клеточная мембрана проницаема также и для ионов натрия и хлора, однако в меньшей степени. Если градиент натрия поступает внутрь клетки, то мембранный потенциал уменьшается. Если градиент хлора поступает внутрь клетки, то мембранный потенциал увеличивается.

    , где

    P – проницаемость мембраны для данного иона.

    Условия возникновения и фазы потенциала действия.

    Раздражители – внешние или внутренние факторы, действующие на клетку.

    При действии раздражителей на клетку меняется электрическое состояние клеточной мембраны.

    Потенциал действия возникает лишь при действии раздражителя достаточной силы и длительности.

    Пороговая сила – минимальная сила раздражителя, необходимая для инициации потенциала действия. Раздражители большей силы – надпороговые ; меньшей силы – подпороговые . Пороговая сила раздражителя находится в обратной зависимости от его длительности в определённых пределах.

    Если у раздражителя надпороговой или пороговой силы на участке раздражения возникает электрический импульс характерной формы, распространяющийся вдоль всей мембраны, то возникнет потенциал действия .

    Фазы потенциала действия:

      Восходящая – деполяризация

      Нисходящая – реполяризация

      Гиперполяризация (возможна, но не обязательна)

    - потенциал цитоплазмы

    - действие раздражителя ((над)пороговой силы)

    д – деполяризация

    р – реполяризация

    г – гиперполяризация

    Фаза деполяризации – быстрая перезарядка мембраны: внутри положительный заряд, снаружи – отрицательный.

    Фаза реполяризации – возвращение заряда и потенциала мембраны к исходному уровню.

    Фаза гиперполяризации – временное превышение уровня покоя, предшествующее восстановлению потенциала покоя.

    Амплитуда потенциала действия заметно превышает амплитуду потенциала покоя – «овершут » (перелёт).

    Механизм генерации потенциала действия.

    Потенциал действия – результат изменения ионной проницаемости мембраны.

    Проницаемость мембраны для ионов натрия – непосредственная функция мембранного потенциала. Если мембранный потенциал понижается, то натриевая проницаемость возрастает.

    Действие порогового раздражителя : уменьшение мембранного потенциала до критической величины (критическая деполяризация мембраны) → резкое повышение натриевой проницаемости → усиленный приток натрия в клетку по градиенту → дальнейшая деполяризация мембраны → процесс зацикливается → включается механизм положительной обратной связи. Усиленный приток натрия в клетку вызывает перезарядку мембраны и окончание фазы деполяризации. Положительный заряд на внутренней поверхности мембраны становится достаточным для уравновешивания градиента концентрации ионов натрия. Усиленное поступление натрия в клетку заканчивается, следовательно, заканчивается фаза деполяризации.

    P K: P Na: P Cl в состоянии покоя 1: 0,54: 0,045,

    на высоте фазы деполяризации: 1: 20: 0,045.

    В процессе фазы деполяризации проницаемость мембраны для ионов калия и хлора не меняется, а для ионов натрия – возрастает в 500 раз.

    Фаза реполяризации : увеличивается проницаемость мембраны для ионов калия → усиленный выход ионов калия из клетки по градиенту концентрации → Уменьшение положительного заряда на внутренней поверхности мембраны, обратное изменение мембранного потенциала → уменьшение натриевой проницаемости → обратная перезарядка мембраны → уменьшение калиевой проницаемости, замедление оттока калия из клетки.

    К концу фазы реполяризации происходит восстановление потенциала покоя. Мембранный потенциал и проницаемость мембраны для ионов калия и натрия возвращается к уровню покоя.

    Фаза гиперполяризации : возникает, если проницаемость мембраны для ионов калия ещё повышена, а для ионов натрия уже вернулась к уровню покоя.

    Резюме:

    Потенциал действия формируется двумя потоками ионов через мембрану. Поток ионов натрия внутрь клетки → перезарядка мембраны. Поток ионов калия наружу → восстановление потенциала покоя. Потоки почти одинаковы по величине, но сдвинуты по времени.

    Диффузия ионов через клеточную мембрану в процессе генерации потенциала действия осуществляется по каналам, которые являются высокоселективными, т.е. они обладают большей проницаемостью для данного иона (открытие для него дополнительных каналов).

    При генерации потенциала действия клетка приобретает определённое количество натрия и теряет определённое количество калия. Выравнивание концентраций этих ионов между клеткой и средой не происходит благодаря калий-натриевому насосу.

    Методы регистрации и экспериментального исследования биопотенциалов .

    Работа органов и тканей нашего организма зависит от многих факторов. Некоторые клетки (кардиомиоциты и нервы) зависят от передачи нервных импульсов, генерируемых в специальных компонентах клеток или узлах. В основе лежит образование специфической волны возбуждения, носящей название потенциала действия.

    Что это такое?

    Потенциалом действия принято называть волну возбуждения, передвигающуюся от клетки к клетке. За счет ее образования и прохождения через происходит кратковременное изменение их заряда (в норме внутренняя сторона мембраны заряжена отрицательно, а наружная - положительно). Образованная волна способствует изменению свойств ионных каналов клетки, что приводит к перезарядке мембраны. В тот момент, когда потенциал действия проходит через мембрану, происходит кратковременное изменение ее заряда, что приводит к изменению свойств клетки.

    Образование данной волны лежит в основе функционирования а также системы путей проведения сердца.

    При нарушении его образования развиваются многие заболевания, что делает определение потенциала действия необходимым в комплексе лечебно-диагностических мероприятий.

    Как же образуется потенциал действия и что для него характерно?

    История исследования

    Изучение возникновения возбуждения в клетках и волокнах было начато довольно давно. Первыми его возникновение заметили биологи, изучавшие воздействие различных раздражителей на оголенный берцовый нерв лягушки. Ими было замечено, что при воздействии на него концентрированным раствором пищевой соли наблюдалось сокращение мышц.

    В дальнейшем исследования были продолжены неврологами, однако основная наука после физики, изучающая потенциал действия - физиология. Именно физиологами было доказано наличие потенциала действия в клетках сердца и нервах.

    По мере углубления в изучение потенциалов было доказано наличие и потенциала покоя.

    С начала 19 века начали создаваться методы, позволяющие зафиксировать наличие данных потенциалов и измерить их величину. В настоящее время фиксация и изучение потенциалов действия проводится в двух инструментальных исследованиях - снятии электрокардиограмм и электроэнцефалограмм.

    Механизм потенциала действия

    Образование возбуждения происходит за счет изменения внутриклеточной концентрации ионов натрия и калия. В норме в клетке содержится больше калия, чем натрия. Внеклеточная концентрация ионов натрия значительно больше, чем в цитоплазме. Изменения, вызываемые потенциалом действия, способствуют изменению заряда на мембране, в результате чего обуславливается ток ионов натрия внутрь клетки. Из-за этого изменяются заряды снаружи и внутри заряжается положительно, а внешняя среда - отрицательно.

    Это делается для облегчения прохождения волны по клетке.

    После того как волна была передана через синапс, происходит обратное восстановление заряда за счет тока внутрь клетки отрицательно заряженных ионов хлора. Восстанавливаются исходные уровни заряда снаружи и внутри клетки, что приводит к образованию потенциала покоя.

    Периоды покоя и возбуждения чередуются. В патологической клетке все может происходить иначе, и образование ПД там будет подчиняться несколько иным законам.

    Фазы ПД

    Течение потенциала действия можно разделить на несколько фаз.

    Первая фаза протекает до образования (проходящим потенциалом действия стимулируется медленная разрядка мембраны, которая достигает максимального уровня, обычно он составляет около -90 мЭв). Данная фаза носит название предспайк. Осуществляется за счет входа в клетку ионов натрия.

    Следующая фаза - пиковый потенциал (или спайк), образует параболу с острым углом, где восходящая часть потенциала означает деполяризацию мембраны (быстрая), а нисходящая часть - реполяризацию.

    Третья фаза - отрицательный следовый потенциал - показывает следовую деполяризацию (переход от пика деполяризации до состояния покоя). Обусловлена входом ионов хлора внутрь клетки.

    На четвертом этапе, фазе положительного следового потенциала, происходит возврат уровней заряда мембраны к исходному.

    Данные фазы, обусловленные потенциалом действия, строго следуют одна за одной.

    Функции потенциала действия

    Несомненно, развитие потенциала действия имеет важное значение в функционировании тех или иных клеток. В работе сердца возбуждению принадлежит главная роль. Без него сердце было бы просто неактивным органом, но за счет распространения волны по всем клеткам сердца происходит его сокращение, что способствует проталкиванию крови по сосудистому руслу, обогащению ею всех тканей и органов.

    Также не могла бы нормально выполнять свою функцию без потенциала действия. Органы не могли бы получать сигналы к выполнению той или иной функции, в результате чего были бы просто бесполезными. Кроме того, совершенствование передачи нервного импульса в нервных волокнах (появление миелина и перехватов Ранвье) позволило передавать сигнал за считаные доли секунды, что и обусловило развитие рефлексов и сознательных движений.

    Кроме данных систем органов, потенциал действия образуется и во многих других клетках, однако в них он играет роль лишь в выполнении клеткой своих специфических функций.

    Возникновение потенциала действия в сердце

    Основным органом, работа которого основана на принципе образования потенциала действия, является сердце. За счет существования узлов образования импульсов осуществляется работа данного органа, функция которого заключается в доставке крови к тканям и органам.

    Генерация потенциала действия в сердце происходит в синусовом узле. Он находится в месте впадения полых вен в правом предсердии. Оттуда импульс распространяется по волокнам проводящей системы сердца - от узла к атриовентрикулярному соединению. Проходя по точнее, по его ножкам, импульс проходит к правому и левому желудочку. В их толще расположены более мелкие пути проведения - волокна Пуркинье, по которым возбуждение доходит до каждой клетки сердца.

    Потенциал действия кардиомиоцитов является составным, т.е. зависит от сокращения всех клеток сердечной ткани. При наличии блока (рубец после инфаркта) образование потенциала действия нарушается, что фиксируется на электрокардиограмме.

    Нервная система

    Как же образуется ПД в нейронах - клетках нервной системы. Тут все осуществляется несколько проще.

    Внешний импульс воспринимается отростками нервных клеток - дендритами, связанными с рецепторами, расположенными как в коже, так и во всех других тканях (потенциал покоя и потенциал действия также сменяют друг друга). Раздражение провоцирует образование потенциала действия в них, после чего импульс через тело нервной клетки идет в ее длинный отросток - аксон, а от него через синапсы - к другим клеткам. Таким образом, образованная волна возбуждения доходит до головного мозга.

    Особенностью нервной системы является наличие двух типов волокон - покрытых миелином и без него. Возникновение потенциала действия и его передача в тех волокнах, где есть миелин, осуществляется значительно быстрее, чем в демиелинезированных.

    Данный феномен наблюдается из-за того, что распространение ПД по миелинизированным волокнам происходит за счет “прыжков” - импульс перескакивает участки миелина, что в результате уменьшает его путь и, соответственно, ускоряет распространение.

    Потенциал покоя

    Без развития потенциала покоя не было бы и потенциала действия. Под потенциалом покоя понимают нормальное, невозбужденное состояние клетки, при котором заряды внутри и вне ее мембраны значительно отличаются (то есть снаружи мембрана заряжена положительно, а внутри - отрицательно). Потенциал покоя показывает разницу между зарядами внутри и извне клетки. Обычно в норме он составляет от -50 до -110 мЭв. В нервных волокнах данная величина обычно равна -70 мЭв.

    Обусловлен он миграцией ионов хлора внутрь клетки и созданием негативного заряда на внутренней стороне мембраны.

    При смене концентрации внутриклеточных ионов (как было указано выше) ПП сменяет ПД.

    В норме все клетки организма находятся в невозбужденном состоянии, поэтому смену потенциалов можно считать физиологически необходимым процессом, так как без них не могли бы осуществлять свою деятельность сердечно-сосудистая и нервная системы.

    Значимость исследования потенциалов покоя и действия

    Потенциал покоя и потенциал действия позволяют определить состояние организма, а также отдельных органов.

    Фиксация потенциала действия с сердца (электрокардиография) позволяет определить его состояние, а также функциональную способность всех его отделов. Если изучать нормальную ЭКГ, то можно заметить, что все зубцы на ней есть проявление потенциала действия и последующего потенциала покоя (соответственно, возникновение данных потенциалов в предсердиях отображает зубец Р, а распространение возбуждения в желудочках - зубец R).

    Что касаемо электроэнцефалограммы, то на ней возникновение различных волн и ритмов (в частности, альфа и бета-волн у здорового человека) также обусловлено возникновением потенциалов действия в нейронах головного мозга.

    Данные исследования позволяют своевременно выявить развитие того или иного патологического процесса и обуславливают практически до 50 процентов успешного лечения исходного заболевания.

    mob_info