Комплексный чертеж монжа основные понятия. Комплексный чертеж монжа. Методы прямоугольного проецирования на две и три

ВВЕДЕНИЕ.......................................................................................................4

1 МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ.....................4

2 ПРИНЯТЫЕ ОБОЗНАЧЕНИЯ..................................................................5

3 ТЕМА 1 КОМПЛЕКСНЫЙ ЧЕРТЕЖ МОНЖА(точка, прямая) .......6

3.1 Комплексный чертёж точки. ........ .............................................................6

Упражнения. ......................................................................................................6

Задачи. ................................................................................................................7

Примеры решения задач…………………………………..............................8

Тесты самоконтроля знаний………………………………..........................10

3.2 Комплексный чертеж прямой..................................................................11

Упражнения. .....................................................................................................11

Задачи. ...............................................................................................................12

Примеры решения задач………………………………….............................13

Тесты самоконтроля знаний……………………………...............................15

4 ТЕМА 2 КОМПЛЕКСНЫЙ ЧЕРТЕЖ МОНЖА (ПЛОСКОСТЬ)......17 ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМЫХ И ПЛОСКОСТЕЙ

4.1 Комплексный чертёж плоскости............................................................17

Упражнения. …………….................................................................................17

Задачи. …...........................................................................................................19

Примеры решения задач…………………………………….........................21

Тесты самоконтроля знаний………………………………….......................21

4.2 Перпендикулярность прямых и плоскостей...........................................23

Упражнения. .....................................................................................................23

Задачи. …...........................................................................................................24

Примеры решения задач…………………………………….........................25

Тесты самоконтроля знаний………………………………….......................26

5 ТЕМА 3 Взаимное положение прямых И ПЛОСКОСТЕЙ

Упражнения. .....................................................................................................27

Задачи. ...............................................................................................................29

Примеры решения задач. .................................................................................30

Тесты самоконтроля знаний………………………………….......................31

6 ТЕМА 4 СПОСОБЫ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА.......................33

Упражнения. .....................................................................................................33

Задачи...............................................................................................................34

Примеры решения задач. ................................................................................36

Тесты самоконтроля знаний…………………………………......................38

7 ТЕМА 5 МНОГОГРАННЫЕ ПОВЕРХНОСТИ....................................40

Упражнения. .....................................................................................................40

Задачи. ...............................................................................................................41

Примеры решения задач. .................................................................................43

Тесты самоконтроля знаний...........................................................................44

БИБЛИОГРАФИЧЕСКИЙ СПИСОК………………..................................47

ПРИЛОЖЕНИЕ .................................................................................................47

ВВЕДЕНИЕ

Учебное пособие предназначено для лабораторных занятий по начертательной геометрии для студентов факультета землеустройства и лесного хозяйства (направления: 250700 - Ландшафтная архитектура, 250100 - Лесное дело).

Пособие используется студентами при самостоятельной подготовке к очередному занятию. Для этого он должен:

Изучить теоретический материал по заданной теме и ответить на вопросы самоконтроля;

Выполнить упражнения по заданной теме.

В начале занятия преподаватель проверяет теоретическую подготовку студентов и решение упражнений по заданной теме. В конце каждой темы рассматриваются примеры решения типовых задач . Приступая к решению упражнений новой темы, полезно ознакомиться с соответствующим примером и следовать ему в оформлении чертежа.

Пособие может быть использовано студентами также и для самоконтроля полученных знаний по тестам , приведенным в пособии после примеров решения типовых задач. Для этого он должен:

После каждого занятия ответить на тесты самоконтроля знаний, а по приведенным в приложении пособия ответам проверить правильность своих знаний.

В процессе работы с пособием студенты учатся практическим приемам, применяемым при решении задач, что позволяет им выработать навыки и умения самостоятельного их решения. По мере накопления этого опыта студенты начинают мыслить самостоятельно на профессиональном уровне, развивая при этом пространственное и логическое мышление.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ И

ОФОРМЛЕНИЮ ЗАДАЧ

При решении задач необходимо руководствоваться следующими рекомендациями:

1. По данным проекциям геометрических фигур, составляющим исходные данные задачи, представить их форму и взаимное расположение в пространстве как по отношению друг к другу, так и относительно плоскостей проекций.

2. Наметить «пространственный» план решения задачи. На этой стадии решения следует обращаться к теоремам из курса элементарной геометрии разделы «Планиметрия» и «Стереометрия», а также к теоретическому материалу в учебниках и лекциях.

3. Определить алгоритм решения задачи, кратко записать последовательность графических построений, используя принятые обозначения.

4. Приступить к геометрическим построениям.

При графическом решении задачи точность ответа зависит не только от выбора правильного пути её решения, но и от точности выполнения геометрических построений. Поэтому, решая задачу, необходимо пользоваться чертёжными инструментами. Задачи должны решаться в отдельной тетради в клетку для лабораторных занятий. Тип и толщина линий выполняются в соответствии с ГОСТ 2.303-68 ЕСКД. Построения выполняются карандашом. Для облегчения чтения чертежа, получающегося в процессе решения, целесообразно применять цветные карандаши: заданные элементы обводятся черным цветом, вспомогательные построения – синим, искомые элементы – красным. Эту же цель преследует обязательное обозначение всех точек и линий. При этом обозначение следует делать в процессе решения задачи сразу после проведения линии или определения точки пересечения линий. Надписи и буквенные обозначения выполнять стандартным шрифтом в соответствии с ГОСТ 2.304-84 ЕСКД.

Тетрадь с решенными задачами предъявляется преподавателю на зачете или экзамене.

ПРИНЯТЫЕ ОБОЗНАЧЕНИЯ

А, В, С, D, …или 1, 2, 3, 4, … - обозначение точки; прописные буквы латинского алфавита или арабские цифры.

о – изображение точки (области расположения точки); круг диаметром 2-3 мм тонкой линией от руки.

a, b, c, d, … - линия в пространстве; строчные буквы латинского алфавита.

Γ, Σ, Δ,… - плоскости, поверхности; прописные буквы греческого алфавита.

α, β, γ, δ, … - углы; строчные буквы греческого алфавита.

П – плоскость проекций (картинная плоскость); прописная буква (пи) греческого алфавита.

АВ – прямая, проходящая через точки А и В .

[AB] – отрезок, ограниченный точками А и В .

[AB ) – луч, ограниченный точкой А и проходящий через точку В.

/AB /–натуральная величина отрезка[AB ] (равная оригиналу).

/ /–расстояние от точки А до линии а.

/ /–расстояние от точки А до плоскости Σ .

/ab /–расстояние между линиями а и b.

/GD / - расстояние между поверхностями G и D.

≡- совпадение (А≡В – точки А и В совпадают).

║ - параллельны.

^ - перпендикулярны.

∩ - пересечение.

Î - принадлежит, является элементом множества.

ÐАВС – угол с вершиной в точке В.

Изображение знаков должно выполняться в соответствии с принятыми стандартами оформления технической и научной документации.

ТЕМА 1 КОМПЛЕКСНЫЙ ЧЕРТЕЖ МОНЖА

(ТОЧКА, ПРЯМАЯ)

Вопросы самоконтроля

1. Что называется проекцией точки?

2. Что называется осью проекций? Какие прямые линии называются «линиями связи» и как они расположены относительно оси проекций?

3. Можно восстановить положение точки в пространстве по ее проекциям?

4. Чем можно задать прямую линию на комплексном чертеже?

5. Какие прямые называются прямыми общего положения? Назовите прямые частного положения.

ВВЕДЕНИЕ

Начертательная геометрия изучает способы построения плоских изображений пространственных геометрических объектов, их геометрические свойства и методы решения пространственных геометрических задач на этих изображениях, что необходимо будущим специалистам при использовании чертежей в их производственной деятельности.

Методические указания предназначены для студентов при самостоятельной подготовке к лабораторным занятиям по начертательной геометрии.

Рассмотренные в пособии задачи сгруппированы по темам и используются студентами при самостоятельной подготовке к очередному занятию. Для этого они должны:

Решить задачи предыдущей темы;

Изучить теоретический материал по заданной теме и ответить на вопросы самоконтроля;

Выполнить упражнения по заданной теме;

Часть задач по теме решаются на лабораторных занятиях при помощи преподавателя, а часть задаются для домашнего решения.

В начале занятия преподаватель проверяет решенные студентами самостоятельно задачи предыдущей темы, теоретическую подготовку студентов и решение упражнений по заданной теме. В конце каждой темы рассматривается пример решения типовой задачи с поэтапным выполнением чертежей. Приступая к решению упражнений новой темы, полезно ознакомиться с соответствующим примером и следовать ему в оформлении чертежа. В конце каждой темы приводятся дополнительные задачи . Правильное решение дополнительных задач студентами дает им возможность принять участие в олимпиаде по начертательной геометрии, которая проводится в конце семестра для выявления сильных студентов по курсу. В приложении пособия приводятся тесты по темам для самоконтроля знаний, изученного материала.

В процессе работы с пособием студенты учатся практическим приемам, применяемым при решении задач, что позволяет им выработать навыки и умения самостоятельного их решения. По мере накопления этого опыта студент начинает мыслить самостоятельно на профессиональном уровне.


МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ И

ОФОРМЛЕНИЮ ЗАДАЧ

При решении задач необходимо руководствоваться следующими рекомендациями:

1. По данным проекциям геометрических фигур, составляющим исходные данные задачи, представить их форму и взаимное расположение в пространстве как по отношению друг к другу, так и относительно плоскостей проекций.

2. Наметить «пространственный» план решения задачи и установить последовательность выполнения геометрических операций, при помощи которых может быть получен ответ на поставленную задачу. На этой стадии решения задачи следует обращаться к теоремам из курса элементарной геометрии разделы «Планиметрия» и «Стереометрия», а также к теоретическому материалу в учебниках и лекциях.

3. Определить алгоритм решения задачи, кратко записать последовательность графических построений, используя принятые обозначения и терминологию.

4. Приступить к геометрическим построениям, используя инвариантные свойства параллельного проецирования. При выполнении первых двух пунктов полезно установить также возможное число решений и выявить причины, от которых они зависят.

5. Следует иметь в виду, что, осуществляя геометрические построения, на любом этапе решения задачи имеется возможность контроля правильности их выполнения. Это особенно ценно, если учесть, что в задачниках по начертательной геометрии не содержится ответов. В основе контроля лежат инвариантные свойства параллельного проецирования и теоремы из школьного курса стереометрии.

При графическом решении задачи точность ответа зависит не только от выбора правильного пути её решения, но и от точности выполнения геометрических построений. Поэтому, решая задачу, необходимо пользоваться чертёжными инструментами. Задачи должны решаться в отдельной тетради в клетку для лабораторных занятий. Тип и толщина линий выполняются в соответствии с ГОСТ 2.303-68 ЕСКД. Построения выполняются карандашом. Для облегчения чтения чертежа, получающегося в процессе решения, целесообразно применять цветные карандаши: заданные элементы обводятся черным цветом, вспомогательные построения – синим, искомые элементы – красным. Эту же цель преследует обязательное обозначение всех точек и линий. При этом обозначение следует делать в процессе решения задачи сразу после проведения линии или определения точки пересечения линий. Надписи и буквенные обозначения выполнять стандартным шрифтом в соответствии с ГОСТ 2.304-84 ЕСКД.

Тетрадь с решенными задачами предъявляется преподавателю на экзамене.

ПРИНЯТЫЕ ОБОЗНАЧЕНИЯ

А, В, С, D, …или 1, 2, 3, 4, … - обозначение точки; прописные буквы латинского алфавита или арабские цифры.

о – изображение точки (области расположения точки); круг диаметром 2-3 мм тонкой линией от руки.

a, b, c, d, … - линия в пространстве; строчные буквы латинского алфавита.

Γ, Σ, Δ,… - плоскости, поверхности; прописные буквы греческого алфавита.

α, β, γ, δ, … - углы; строчные буквы греческого алфавита.

П – плоскость проекций (картинная плоскость); прописная буква (пи) греческого алфавита.

АВ – прямая, проходящая через точки А и В .

[AB] – отрезок, ограниченный точками А и В .

[AB ) – луч, ограниченный точкой А и проходящий через точку В.

/AB /–натуральная величина отрезка[AB ] (равная оригиналу).

/ /–расстояние от точки А до линии а.

/ /–расстояние от точки А до плоскости Σ .

/ab /–расстояние между линиями а и b.

/GD / - расстояние между поверхностями G и D.

≡- совпадение (А≡В – точки А и В совпадают).

║ - параллельны.

^ - перпендикулярны.

∩ - пересечение.

Î - принадлежит, является элементом множества.

^ - угол, например а^b – угол между прямыми а и b.

Ð α - угол α (или число в градусах).

ÐАВС – угол с вершиной в точке В.

Изображение знаков должно выполняться в соответствии с принятыми стандартами оформления технической и научной документации.


ТЕМА 1 КОМПЛЕКСНЫЙ ЧЕРТЕЖ МОНЖА

(точка, прямая)

Вопросы самоконтроля

1. Свойства ортогонального проецирования.

2. Какие элементы входят в аппарат проецирования?

3. Что называется осью проекций?

4. Что называется проекцией точки?

5. Какие прямые называются «линиями связи» и как они расположены относительно оси проекций?

6. Можно восстановить положение точки в пространстве по её проекциям?

7. Чем можно задать прямую линию на комплексном чертеже?

8. Какие прямые называются прямыми общего и частичного положения? Постройте комплексный чертёж.

9. Как располагаются в пространстве две прямые относительно друг друга?

10. Что называется следом прямой?

3.1 Комплексный чертёж точки

Упражнения

3.1.5. Какая из заданных на чертеже точек А, В или С принадлежит плоскости П 1 ?

3.1.6 На наглядном чертеже (рисунок 3.1) построить проекции А 2 , В 1 , С 1 и D 2 точек-A, B, С и D. Определить в каких четвертях лежат эти точки?

Рисунок 3.1

Задачи

3.2 Комплексный чертёж прямой

Упражнения

Задачи

3.2.6 Постройте на комплексном чертеже два отрезка соответственно пересекающихся, параллельных, скрещивающихся и конкурирующих прямых.

3.2.7 Через точку А(25, 30, 10) провести отрезок АВ, параллельный плоскости проекций П 2 длиной 30 мм под углом 45° к П 1 . Записать координаты точки В. Сколько решений имеет задача?

3.2.8 Найти натуральную величину отрезка АВ и углы его наклона к плоскостям П 1 , П 2 .Координаты точек отрезка А(60, 5, 10), В(10, 20,40).

Примеры решения задач:

Задача 1 Какая из заданных точек А, В, С принадлежит плоскости П 1 ?

Решение . Если точка лежит в плоскости П 1 , то её высота равна нулю. Поэтому среди заданных точек нужно искать точку с высотой, равной нулю. Высота точки измеряется расстоянием либо от фронтальной проекции точки до оси Х 1 2 ,либо от профильной проекции до оси У 3 . И если высота точки равна нулю, то эти проекции точки будут лежать на осях Х 12 и У 3 . Этому условию удовлетворяет точка А , у которой проекция А 2 лежит на оси Х 12 , а проекция А 3 - на оси У 3 . Значит точка А расположена в горизонтальной плоскости проекций П 1 .

Точка С также лежит в плоскости проекций. Об этом говорит расположение её проекций С 1 и С 3 соответственно на осях Х 12 и Z 23 . Это значит, что у точки С равна нулю глубина. Поэтому она лежит во фронтальной плоскости проекций П 2 .

Точка В не лежит ни в одной из плоскостей проекций. Она расположена в пространстве.


Похожая информация.


Проекция геометрического объекта на одну плоскость, рассмотренная нами ранее, не дает полного и однозначного представления о форме геометрического объекта. Поэтому рассмотрим проецирование хотя бы на две взаимно перпендикулярные плоскости (рис. 1.2), одна из которых расположена горизонтально, а другая вертикально.

Несмотря на наглядность, с чертежом, изображенным на рис 1.2, а работать неудобно, т.к. горизонтальная плоскость на нем показана с искажением. Удобнее выполнять различные построения на чертеже, где плоскости проекций расположены в одной плоскости, а именно, плоскости чертежа. Для этого надо горизонтальную плоскость развернуть вокруг оси ОХ на 90° и совместить с фронтальной так, чтобы передняя пола горизонтальной плоскости ушла вниз, а задняя вверх. Этот метод предложил Г. Монж.

Рис. 1.2. Построение эпюра Монжа:

а) пространственная картина расположения проекций точки А; б) плоскостная картина расположения проекций точки А.

Поэтому чертеж, полученный таким образом (рис. 1.2, б), называется эпюром Монжа или комплексным чертежом.

Обычно двух проекций недостаточно, чтобы составить полное представление о рассматриваемом геометрическом объекте. Поэтому предлагается ввести третью плоскость проекций, ортогональную первым двум (рис.1. 3, а).

Рис. 1.3. Построение трехкартинного комплексного чертежа (эпюра Монжа):

а) пространственная модель плоскостей проекций; б) трехкартинный комплексный чертеж.

Тогда плоскость П 1 называется горизонтальной плоскостью проекций, П 2 - фронтальной плоскостью проекций (т.к. она расположена перед нами по фронту), П 3 - профильной плоскостью проекций (расположена в профиль по отношению к наблюдателю). Соответственно А 1 - горизонтальная проекция точки А , А 2 - фронтальная проекция точки А, А 3 - профильная проекция точки А .

Оси ОХ, ОY, OZ называются осями проекций. Они аналогичны координатным осям декартовой системы координат с той лишь разницей, что ось ОХ имеет положительное направление не вправо, а влево. Теперь, чтобы получить проекции в одной плоскости (плоскости чертежа) необходимо и профильную плоскость проекций развернуть до совмещения с фронтальной. Для этого ее нужно развернуть на 90° вокруг оси OZ , причем переднюю полу плоскости развернем вправо, а заднюю влево. В результате получим трехкартинный комплексный чертеж (эпюр Монжа), показанный на рис. 1.3, б. Так как ось ОY разворачивается вместе с двумя плоскостями П 1 и П 3 , то на комплексном чертеже ее изображают дважды.

Из этого следует важное правило взаимосвязи проекций. А именно, исходя из рис. 1.3, а, в математической форме его можно записать в виде: А 1 А x = ОА y = А z А 3 . Следовательно, в текстологическом виде оно звучит так: расстояние от горизонтальной проекции точки до оси ОХ равно расстоянию от профильной проекции указанной точки до оси ОZ . Тогда по двум любым проекциям точки можно построить третью. Горизонтальную и фронтальную проекции точки А связывает вертикальная линия связи, а фронтальную и профильную проекции – горизонтальная.

В связи с тем, что комплексный чертеж представляет собой свернутую в плоскости модель пространства, на нем нельзя изобразить проецируемую точку (за исключением случаев, когда ее положение совпадает с одной из проекций). Исходя из этого, следует иметь в виду, что на комплексном чертеже мы оперируем не самими геометрическими объектами, а их проекциями.

1. Метод ортогонального проецирования

2. Точка

4. Вопросы и задания

Метод ортогонального проецирования

Если информацию о расстоянии точки относительно плоскости проекции дать не с помощью числовой отметки, а с помощью второй проекции точки, построенной на второй плоскости проекций, то чертеж называют двухкартинным или комплексным . Основные принципы построения таких чертежей изложены Гаспаром Монжем - крупным французским геометром конца 18, начала 19 веков, 1789-1818 гг. одним из основателей знаменитой политехнической школы в Париже и участником работ по введению метрической системы мер и весов.

Изложенный Монжем метод ортогонального проецирования на две взаимно перпендикулярные плоскости проекций был и остается основным методом составления технических чертежей.

В соответствии с методом предложенным Г. Монжем рассмотрим в пространстве две взаимно перпендикулярные плоскости проекций.

Одну из плоскостей проекций П 1 располагают горизонтально, а вторую П 2 - вертикально. П 1 - горизонтальная плоскость проекций, П 2 - фронтальная. Плоскости бесконечны и непрозрачны.

Плоскости проекций делят пространство на четыре двугранных угла – четверти. Рассматривая ортогональные проекции, предполагают, что наблюдатель находится в первой четверти на бесконечно большом расстоянии от плоскостей проекций (рис. 89).

Линия пересечения плоскостей проекций называется осью координат и обозначается x 21 .

Так как эти плоскости непрозрачны, то видимыми для наблюдателя будут только те геометрические объекты, которые располагаются в пределах той же первой четверти.

Чтобы получить плоский чертеж, состоящий из указанных проекций, плоскость П 1 совмещают вращением вокруг оси x 12 с плоскостью П 2 . Проекционный чертеж, на котором плоскости проекций со всем тем, что на них изображено, совмещенные определенным образом одна с другой, называется эпюром Монжа или комплексным чертежом.

Геометрические объекты делятся на: линейные (точка, прямая, плоскость), нелинейные (кривая линия, поверхность) и составные (многогранники, одномерные и двумерные обводы).

Точка

Геометрический объект любой сложности можно рассматривать как геометрическое место точек, по взаимному расположению, которых можно составить представление об объекте, а по расположению их относительно системы координат можно судить о положении его в пространстве.

Точка – одно из основных понятий геометрии. При систематическом изложении геометрии точка обычно принимается за одно из исходных понятий.

Точка в ортогональной системе двух плоскостей проекций

При построении проекции необходимо помнить, что ортогональной проекцией точки на плоскость является основание перпендикуляра, опущенного из данной точки на эту плоскость. Для точки А её ортогональные проекции A 1 и А 2 , которые называют соответственно горизонтальной и фронтальной проекциями.

Проекции точки всегда расположены на прямой, перпендикулярной оси х 12 и пересекающей эту ось в точке А х . Справедливо и обратное, т. е. если на плоскостях проекций даны точки А 1 и А 2 расположенные на прямой, пересекающей ось х 12 в точке А х под прямым углом, то они являются проекцией некоторой точки А.

На эпюре Монжа проекции A 1 и А 2 расположены на одном перпендикуляре к оси х 12 При этом расстояние А 1 А Х - от горизонтальной проекции точки до оси равно расстоянию от самой точки А до плоскости П 2 , а расстояние А 2 А х - от фронтальной проекции точки до оси равно расстоянию от самой точки А до плоскости П 1 (рис. 90).

Прямые линии, соединяющие разноименные проекции точки на эпюре, называются линиями проекционной связи .

Точка в ортогональной системе трех плоскостей проекций

В практике изображения различных геометрических объектов, чтобы сделать чертеж более ясным, возникает необходимость использовать третью – профильную плоскость проекций П 3 , расположенную перпендикулярно к П 1 и П 2 . Плоскости проекций П 1 , П 2 и П 3 являются основными плоскостями проекций (рис. 91).

Третья плоскость, перпендикулярная и П 1 , и П 2 , обозначается буквой П 3 и называется профильной.

Проекции точек на эту плоскость обозначаются прописными буквами латинского алфавита или цифрами с индексом 3.

Плоскости проекций, попарно пересекаясь, определяют три оси Ох , Оу и Oz, которые можно рассматривать как систему декартовых координат в пространстве с началом в точке 0.

Для получения эпюра точки в системе трех плоскостей проекций плоскости П 1 и П 3 вращают, до совмещения с плоскостью П 2 . При обозначении осей на эпюре отрицательные полуоси обычно не указывают. Если существенно только само изображение предмета, а не его положение относительно плоскостей проекций, то оси на эпюре не показывают (рис. 92).

В трехмерном пространстве положение точки устанавливают с помощью прямоугольных декартовых координат х, у и z (абсцисса, ордината и аппликата).

Сформулируем основные свойства ортогональных проекций на примере точки:

1. Две проекции точки определяют её положение в пространстве.

2. Две проекции точки лежат на одной линии связи.

3. По двум проекциям точки можно построить третью.

Прямая линия

Прямая линия - одно из основных понятий геометрии. При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии. Если основой построения геометрии служит понятие расстояния между двумя точками пространства, то прямую линию можно определить как линию, вдоль которой расстояние между двумя точками является кратчайшим.

Прямая линия - алгебраическая линия первого порядка: в декартовой системе координат прямая линия задаётся на плоскости уравнением 1 - ой степени (линейное уравнение).

Общее уравнение прямой (полное): Ах+Ву+С=0,

где А, В и С - любые постоянные, причем А и В одновременно не равны нулю. Если один из коэффициентов равен нулю, уравнение называется неполным.

Способы графического задания прямой линии

1.Двумя точками и В).

2. Двумя плоскостями (а; b).

3. Двумя проекциями.

4. Точкой и углами наклона к плоскостям проекций.

Положение прямой линии относительно плоскостей проекций

Прямая по отношению к плоскостям проекций она может занимать как общее, так и частные положения.

1. Прямая не параллельная ни одной плоскости проекций называется прямой общего положения .

2. Прямые параллельные плоскостям проекций, занимают частное положение в пространстве и называются прямыми уровня . В зависимости от того, какой плоскости проекций параллельна заданная прямая, различают:

2.1. Прямые параллельные фронтальной плоскости проекций называются фронтальными или фронталями - n.

2.2. Прямые параллельные горизонтальной плоскости проекций называются горизонтальными или горизонталями - m.

2.3. Прямые параллельные профильной плоскости проекций называются профильными - р.

3. Прямые перпендикулярные плоскостям проекций, занимают частное положение в пространстве и называются проецирующими . Прямая перпендикулярная одной плоскости проекций, параллельна двум другим. В зависимости оттого, какой плоскости проекций перпендикулярна исследуемая прямая, различают:

3.1. Горизонтально проецирующая прямая – m.

3.2. Фронтально проецирующая прямая – n.

3.3. Профильно проецирующая прямая – р (рис. 93).

mob_info