Как найти смешанное произведение трех векторов. Векторное произведение векторов. Смешанное произведение векторов. Разбор типовых задач

Смешанным произведением векторов называется число, равное скалярному произведению векторана векторное произведение векторови. Смешанное произведение обозначается.

1. Модуль смешанного произведения некомпланарных векторов равен объемупараллелепипеда, построенного на этих векторах. Произведениеположительно, если тройка векторов- правая, и отрицательно, если тройка- левая, и наоборот.

2. Смешанное произведение равно нулю тогда и только тогда, когда векторыкомпланарны:

векторы компланарны.

Докажем первое свойство. Найдем по определению смешанное произведение: , где- угол между векторамии. Модуль векторного произведения (по геометрическому свойству 1) равен площадипараллелограмма, построенного на векторахи: . Поэтому. Алгебраическое значениедлины проекции векторана ось, задаваемую вектором, равно по модулю высотепараллелепипеда, построенного на векторах(рис. 1.47). Поэтому модуль смешанного произведения равен объемуэтого параллелепипеда:

Знак смешанного произведения определяется знаком косинуса угла . Если тройкаправая, тои смешанное произведениеположительно. Если же тройкалевая, тои смешанное произведениеотрицательно.

Докажем второе свойство. Равенство возможно в трех случаях:или(т.е.),или(т.е. векторпринадлежит плоскости векторови). В каждом случае векторыкомпланарны (см. разд. 1.1).

Смешанным произведением трех векторов называется число, равное векторному произведению первых двух векторов,, умноженному скалярно на вектор. Векторами это можно представить так

Так как векторы на практике задают в координатной форме, то их смешанный произведение равен определитель, построенном на их координатамВ силу того, что векторное произведение антикомутативно, а скалярное произведение коммутативно, то циклическая перестановка векторов в смешанном произведении не изменяет его значение. Перестановка двух соседних векторов меняет знак на противоположный

Смешанный произведение векторов положительный, если они образуют правую тройку и отрицательный - если левую.

Геометрические свойства смешанного произведения 1. Объем параллелепипеда, построенного на векторах равен модулю смешанного произведения этих векторов.2. Объем четырехугольной пирамиды равен трети модуля смешанного произведения3. Объем треугольной пирамиды равен одной шестой модуля смешанного произведения4. Векторы планарных тогда и только тогда, когдаВ координатах условие компланарности означает равенство нулю определителяДля практического усвоения рассмотрим примеры. Пример 1.

Определить, какой тройкой (правой или левой) являются векторы

Решение.

Найдем смешанное произведение векторов и по знаку выясним, какую тройку векторов они образуют

Векторы образуют правую тройку Векторы образуют правую тройкуВекторы образуют левую тройкуДанные векторы линейно зависимы.. Смешанным произведением трех векторов. Смешанным произведением трех векторов называется число

Геометрическое свойство смешанного произведения:

Теорема 10.1. Объём параллелепипеда, построенного на векторах равен модулю смешанного произведения этих векторов

или объём тетраэдра (пирамиды), построенного на векторах равен одной шестой модуля смешанного произведения

Доказательство. Из элементарной геометрии известно, что объём параллелепипеда равен произведению высоты на площадь основания

Площадь основания параллелепипеда S равна площади параллелограмма, построенного на векторах (см. рис. 1). Используя

Рис. 1. К доказательству теоремы 1. геометрический смысл векторного произведения векторов , получаем, что

Отсюда получаемЕсли тройка векторов левая, то вектор и вектор направлены противоположно, тогдаилиТаким образом, попутно доказано, что знак смешанного произведения определяет ориентацию тройки векторовтройка правая и ‑ тройка левая). Докажем теперь вторую часть теоремы. Из рис. 2 очевидно, что объем треугольной призмы, построенной на трех векторахравен половине объема параллелепипеда, построенного на этих векторах, то есть
Рис. 2. К доказательству теоремы 1.

Но призма состоит из трех одинакового объема пирамид OABC , ABCD и ACDE . Действительно, объемы пирамид ABCD и ACDE равны, так как они имеют равные по площади основания BCD и CDE и одинаковую высоту, опущенную из вершины A . То же справедливо для высот и оснований пирамид OABC и ACDE. Отсюда

Для того, чтобы подробно рассмотреть такую тему, нужно охватить еще несколько разделов. Тема напрямую связана с такими терминами, как скалярное и векторное произведение. В этой статье мы постарались дать точное определение, указать формулу, которая поможет определить произведение, используя координаты векторов. Помимо этого, статья включает в себя разделы с перечислением свойств произведения и представлены подробный разбор типовых равенств и задач.

Термин

Для того, чтобы определить, в чем заключается данный термин, нужно взять три вектора.

Определение 1

Смешанным произведением a → , b → и d → является та величина, которая равняется скалярному произведению a → × b → и d → , где a → × b → - умножение a → и b → . Операцию умножения a → , b → и d → зачастую обозначают a → · b → · d → . Можно преобразовать формулу так: a → · b → · d → = (a → × b → , d →) .

Умножение в системе координат

Мы можем умножить вектора, если они указаны на координатной плоскости.

Возьмем i → , j → , k →

Произведение векторов в данном конкретном случае будет иметь следующий вид: a → × b → = (a y · b z - a z · b y) · i → + (a z · b x + a x · b z) · j → + (a x · b y + a y · b x) · k → = a y a z b y b z · i → - a x a z b x b z · j → + a x a y b x b y · k →

Определение 2

Для выполнения скалярного произведения в системе координат необходимо сложить результаты, полученный во время умножения координат.

Из этого следует:

a → × b → = (a y · b z - a z · b y) · i → + (a z · b x + a x · b z) · j → + (a x · b y + a y · b x) · k → = a y a z b y b z · i → - a x a z b x b z · j → + a x a y b x b y · k →

Мы также можем определить смешанное произведение векторов, если в заданной системе координат указаны координаты векторов, которые умножаются.

a → × b → = (a y a z b y b z · i → - a x a z b x b z · j → + a x a y b x b y · k → , d x · i → + d y · j → + d z · k →) = = a y a z b y b z · d x - a x a z b x b z · d y + a x a y b x b y · d z = a x a y a z b x b y b z d x d y d z

Таким образом, можно сделать вывод, что:

a → · b → · d = a → × b → , d → = a x a y a z b x b y b z d x d y d z

Определение 3

Смешанное произведение можно приравнять к определителю матрицы, в качестве строк которой использованы векторные координаты. Наглядно это выглядит так: a → · b → · d = a → × b → , d → = a x a y a z b x b y b z d x d y d z .

Свойства операции над векторами Из особенностей, которые выделяются в скалярном или векторном произведении, можно вывести особенности, которые характеризуют смешанное произведение. Ниже мы приведем основные свойства.

  1. (λ · a →) · b → · d → = a → · (λ · b →) · d → = a → · b → · (λ · d →) = λ · a → · b → · d → λ ∈ R ;
  2. a → · b → · d → = d → · a → · b → = b → · d → · a → ; a → · d → · b → = b → · a → · d → = d → · b → · a → ;
  3. (a (1) → + a (2) →) · b → · d → = a (1) → · b → · d → + a (2) → · b → · d → a → · (b (1) → + b (2) →) · d → = a → · b (1) → · d → + a → · b (2) → · d → a → · b → · (d (1) → + d (2) →) = a → · b → · d (2) → + a → · b → · d (2) →

Помимо приведенных свойств, следует уточнить, что если множитель нулевой, то результатом умножения также станет нуль.

Результатом умножения также будет нуль в том случае, если два или больше множителей равны.

Действительно, если a → = b → , то, следуя определению векторного произведения [ a → × b → ] = a → · b → · sin 0 = 0 , следовательно, смешанное произведение равно нулю, так как ([ a → × b → ] , d →) = (0 → , d →) = 0 .

Если же a → = b → или b → = d → , то угол между векторами [ a → × b → ] и d → равен π 2 . По определению скалярного произведения векторов ([ a → × b → ] , d →) = [ a → × b → ] · d → · cos π 2 = 0 .

Свойства операции умножения чаще всего требуются во время решения задач.
Для того, чтобы подробно разобрать данную тему, возьмем несколько примеров и подробно их распишем.

Пример 1

Докажите равенство ([ a → × b → ] , d → + λ · a → + b →) = ([ a → × b → ] , d →) , где λ - некоторое действительное число.

Для того, чтобы найти решение этого равенства, следует преобразовать его левую часть. Для этого необходимо воспользоваться третьим свойством смешанного произведения, которое гласит:

([ a → × b → ] , d → + λ · a → + b →) = ([ a → × b → ] , d →) + ([ a → × b → ] , λ · a →) + ([ a → × b → ] , b →)
Мы разобрали, что (([ a → × b → ] , b →) = 0 . Из этого следует, что
([ a → × b → ] , d → + λ · a → + b →) = ([ a → × b → ] , d →) + ([ a → × b → ] , λ · a →) + ([ a → × b → ] , b →) = = ([ a → × b → ] , d →) + ([ a → × b → ] , λ · a →) + 0 = ([ a → × b → ] , d →) + ([ a → × b → ] , λ · a →)

Согласно первому свойству ([ a ⇀ × b ⇀ ] , λ · a →) = λ · ([ a ⇀ × b ⇀ ] , a →) , а ([ a ⇀ × b ⇀ ] , a →) = 0 . Таким образом, ([ a ⇀ × b ⇀ ] , λ · a →) . Поэтому,
([ a ⇀ × b ⇀ ] , d → + λ · a → + b →) = ([ a ⇀ × b ⇀ ] , d →) + ([ a ⇀ × b ⇀ ] , λ · a →) = = ([ a ⇀ × b ⇀ ] , d →) + 0 = ([ a ⇀ × b ⇀ ] , d →)

Равенство доказано.

Пример 2

Необходимо доказать, что модуль смешанного произведения трех векторов не больше, чем произведения их длин.

Решение

Исходя из условия, можно представить пример в виде неравенства a → × b → , d → ≤ a → · b → · d → .

По определению, преобразуем неравенство a → × b → , d → = a → × b → · d → · cos (a → × b → ^ , d →) = = a → · b → · sin (a → , b → ^) · d → · cos ([ a → × b → ^ ] , d)

Используя элементарные функции, можно сделать вывод, что 0 ≤ sin (a → , b → ^) ≤ 1 , 0 ≤ cos ([ a → × b → ^ ] , d →) ≤ 1 .

Из этого можно сделать вывод, что
(a → × b → , d →) = a → · b → · sin (a → , b →) ^ · d → · cos (a → × b → ^ , d →) ≤ ≤ a → · b → · 1 · d → · 1 = a → · b → · d →

Неравенство доказано.

Разбор типовых задач

Для того, чтобы определить, чему равно произведение векторов, следует знать координаты умножаемых векторов. Для операции можно использовать такую формулу a → · b → · d → = (a → × b → , d →) = a x a y a z b x b y b z d x d y d z .

Пример 3

В прямоугольной системе координат представлены 3 вектора с такими координатами: a → = (1 , - 2 , 3) , b → (- 2 , 2 , 1) , d → = (3 , - 2 , 5) . Необходимо определить, чему равно произведение указанных векторов a → · b → · d → .

Исходя из теории, представленной выше, мы можем воспользоваться правилом, которое гласит, что смешанное произведение может быть вычислено через определитель матрицы. Это будет выглядеть так: a → · b → · d → = (a → × b → , d →) = a x a y a z b x b y b z d x d y d z = 1 - 2 3 - 2 2 1 3 - 2 5 = = 1 · 2 · 5 + (- 1) · 1 · 3 + 3 · (- 2) · (- 2) - 3 · 2 · 3 - (- 1) · (- 2) · 5 - 1 · 1 · (- 2) = - 7

Пример 4

Необходимо найти произведение векторов i → + j → , i → + j → - k → , i → + j → + 2 · k → , где i → , j → , k → - орты прямоугольной декартовой системы координат.

Исходя из условия, которое гласит, что вектора расположены в данной системе координат, можно вывести их координаты: i → + j → = (1 , 1 , 0) i → + j → - k → = (1 , 1 , - 1) i → + j → + 2 · k → = (1 , 1 , 2)

Используем формулу, которая использовалась выше
i → + j → × (i → + j → - k → , (i → + j → + 2 · k →) = 1 1 0 1 1 - 1 1 1 2 = 0 i → + j → × (i → + j → - k → , (i → + j → + 2 · k →) = 0

Смешанное произведение также возможно определить с помощью длины вектора, которая уже известна, и угла между ними. Разберем этот тезис в примере.

Пример 5

В прямоугольной системе координат расположены три вектора a → , b → и d → , которые перпендикулярны между собой. Они представляют собой правую тройку, их длины составляют 4 , 2 и 3 . Необходимо умножить вектора.

Обозначим c → = a → × b → .

Согласно правилу, результатом умножения скалярных векторов является число, которое равно результату умножения длин используемых векторов на косинус угла между ними. Делаем вывод, что a → · b → · d → = ([ a → × b → ] , d →) = c → , d → = c → · d → · cos (c → , d → ^) .

Используем длину вектора d → , указанную в условии примера: a → · b → · d → = c → · d → · cos (c → , d → ^) = 3 · c → · cos (c → , d → ^) . Необходимо определить с → и с → , d → ^ . По условию a → , b → ^ = π 2 , a → = 4 , b → = 2 . Вектор c → найдем с помощью формулы: c → = [ a → × b → ] = a → · b → · sin a → , b → ^ = 4 · 2 · sin π 2 = 8
Можно сделать вывод, что c → перпендикулярен a → и b → . Вектора a → , b → , c → будут являться правой тройкой, так использована декартовая система координат. Векторы c → и d → будут однонаправленными, то есть, c → , d → ^ = 0 . Используя выведенные результаты, решаем пример a → · b → · d → = 3 · c → · cos (c → , d → ^) = 3 · 8 · cos 0 = 24 .

a → · b → · d → = 24 .

Используем множители a → , b → и d → .

Вектора a → , b → и d → исходят от одной точки. Используем их как стороны для построения фигуры.

Обозначим, что c → = [ a → × b → ] . Для данного случая можно определить произведение векторов как a → · b → · d → = c → · d → · cos (c → , d → ^) = c → · n p c → d → , где n p c → d → - числовая проекция вектора d → на направление вектора c → = [ a → × b → ] .

Абсолютная величина n p c → d → равняется числу, которое также является равно высоте фигуры, для которого использованы вектора a → , b → и d → в качестве сторон. Исходя из этого, следует уточнить, что c → = [ a → × b → ] перпендикулярен a → и вектору и вектору согласно определению умножения векторов. Величина c → = a → x b → равняется площади параллелепипеда, построенного на векторах a → и b → .

Делаем вывод, что модуль произведения a → · b → · d → = c → · n p c → d → равен результату умножения площади основания на высоту фигуры, которая построена на векторах a → , b → и d → .

Определение 4

Абсолютная величина векторного произведения является объемом параллелепипеда : V п а р а л л е л е п и п и д а = a → · b → · d → .

Данная формула и является геометрическим смыслом.

Определение 5

Объем тетраэдра , который построен на a → , b → и d → , равняется 1 / 6 объема параллелепипеда Получаем, V т э т р а э д а = 1 6 · V п а р а л л е л е п и п и д а = 1 6 · a → · b → · d → .

Для того, чтобы закрепить знания, разберем несколько типичных примеров

Пример 6

Необходимо найти объем параллелепипеда, в качестве сторон которого используются A B → = (3 , 6 , 3) , A C → = (1 , 3 , - 2) , A A 1 → = (2 , 2 , 2) , заданные в прямоугольной системе координат. Объем параллелепипеда можно найти, используя формулу об абсолютной величине. Из этого следует: A B → · A C → · A A 1 → = 3 6 3 1 3 - 2 2 2 2 = 3 · 3 · 2 + 6 · (- 2) · 2 + 3 · 1 · 2 - 3 · 3 · 2 - 6 · 1 · 2 - 3 · (- 2) · 2 = - 18

Тогда, V п а р а л л е л е п и п е д а = - 18 = 18 .

V п а р а л л е л е п и п и д а = 18

Пример 7

В системе координат заданы точки A (0 , 1 , 0) , B (3 , - 1 , 5) , C (1 , 0 , 3) , D (- 2 , 3 , 1) . Следует определить объем тетраэдра, который расположен на этих точках.

Воспользуемся формулой V т э т р а э д р а = 1 6 · A B → · A C → · A D → . Мы можем определить координаты векторов по координатам точек: A B → = (3 - 0 , - 1 - 1 , 5 - 0) = (3 , - 2 , 5) A C → = (1 - 0 , 0 - 1 , 3 - 0) = (1 , - 1 , 3) A D → = (- 2 - 0 , 3 - 1 , 1 - 0) = (- 2 , 2 , 1)

Дальше определяем смешанное произведение A B → · A C → · A D → по координатам векторов: A B → · A C → · A D → = 3 - 2 5 1 - 1 3 - 2 2 1 = 3 · (- 1) · 1 + (- 2) · 3 · (- 2) + 5 · 1 · 2 - 5 · (- 1) · (- 2) - (- 2) · 1 · 1 - 3 · 3 · 2 = - 7 Объем V т э т р а э д р а = 1 6 · - 7 = 7 6 .

V т э т р а э д р а = 7 6 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Смешанным (или векторно-скалярным) произведением трех векторов a, b, c (взятых в указанном порядке) называется скалярное произведение вектора a на векторное произведение b x c , т. е. число a(b x c), или, что то же, (b x c)a.
Обозначение: abc .

Назначение . Онлайн-калькулятор предназначен для вычисления смешанного произведения векторов. Полученное решение сохраняется в файле Word . Дополнительно создается шаблон решения в Excel .

Признаки компланарности векторов

Три вектора (или большее число) называются компланарными, если они, будучи приведены к общему началу, лежат в одной плоскости.
Если хотя бы один из трех векторов – нулевой, то три вектора тоже считаются компланарными.

Признак компланарности . Если система a, b, c – правая, то abc>0 ; если левая, то abcГеометрический смысл смешанного произведения . Смешанное произведение abc трех некомпланарных векторов a, b, c равно объему параллелепипеда, построенного на векторах a, b, c , взятому со знаком плюс, если система a, b, c – правая, и со знаком минус, если эта система левая.

Свойства смешанного произведения

  1. При круговой перестановке сомножителей смешанное произведение не меняется, при перестановке двух сомножителей – меняет знак на обратный: abc=bca=cab=-(bac)=-(cba)=-(acb)
    Вытекает из геометрического смысла.
  2. (a+b)cd=acd+bcd (распределительное свойство). Распространяется на любое число слагаемых.
    Вытекает из определения смешанного произведения.
  3. (ma)bc=m(abc) (сочетательное свойство относительно скалярного множителя).
    Вытекает из определения смешанного произведения. Эти свойства позволяют применять к смешанным произведениям преобразования, отличающиеся от обычных алгебраических лишь тем, что менять порядок сомножителей можно только с учетом знака произведения.
  4. Смешанное произведение, имеющее хотя бы два равных сомножителя, равно нулю: aab=0 .

Пример №1 . Найти смешанное произведение. ab(3a+2b-5c)=3aba+2abb-5abc=-5abc .

Пример №2 . (a+b)(b+c)(c+a)= (axb+axc+bxb+bxc)(c+a)= (axb+axc +bxc)(c+a)=abc+acc+aca+aba+bcc+bca . Все члены, кроме двух крайних, равны нулю. Кроме того, bca=abc . Поэтому (a+b)(b+c)(c+a)=2abc .

Пример №3 . Вычислить смешанное произведение трех векторов a=15i+20j+5k, b=2i-4j+14k, c=3i-6j+21k .
Решение . Чтобы вычислить смешанное произведение векторов, необходимо найти определитель системы, составленной из координат векторов. Запишем систему в виде.

8.1. Определения смешанного произведения, его геометрический смысл

Рассмотрим произведение векторов а , b и с , составленное следующим образом: (а хb ) с . Здесь первые два вектора перемножаются векторно, а их результат скалярно на третий вектор. Такое произведение называется векторноскалярным, или смешанным, произведением трех векторов. Смешанное произведение представляет собой некоторое число.

Выясним геометрический смысл выражения (а хb )*с . Построим параллелепипед, ребрами которого являются векторы а , b , с и вектор d =а хb (см. рис. 22).

Имеем: (а х b ) с = d с = |d | пр d с , |d |=|а х b | =S , где S - площадь параллелограмма, построенного на векторах а и b , пр d с = Н Для правой тройки векторов и пр d с = - Н для левой, где Н- высота параллелепипе­да. Получаем: (a xb )*c =S *(±H ), т. е. (a xb )*c =±V , где V - объем параллелепипеда, образованного векторами а , b и с .

Таким образом, смешанное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах, взятому со знаком «плюс», если эти векторы образуют правую тройку, и со знаком «минус», если они образуют левую тройку.

8.2. Свойства смешанного произведения

1. Смешанное произведение не меняется при циклической перестановке его сомножителей, т. е. (а х b ) с =(b х с ) а =(с х а ) b .

Действительно, в этом случае не изменяется ни объем параллелепипеда, ни ориентация его ребер

2. Смешанное произведение не меняется при перемене местами знаков вкторного и скалярного умножения, т. е. (а хb ) с =а *(b x с ).

Действительно, (а хb ) с =±V и а (b хс )=(b хс ) а =±V . Знак в правой части этих равенств берем один и тот же, так как тройки векторов а , b , с и b , с , а - одной ориентации.

Следовательно, (a хb ) с =a (b хс ). Это позволяет записывать смешанное произведение векторов (а х b )с в виде abc без знаков векторного, скалярного умножения.

3. Смешанное произведение меняет свой знак при перемене мест любых вух векторов-сомножителей, т. е. abc =-acb , abc =-bac , abc =-cba .

Действительно, такая перестановка равносильна перестановке сомножителей в векторном произведении, меняющей у произведения знак.

4.Смешанное произведение ненулевых векторов а , b и с равно нулю огда и только тогда, когда они компланарны.

Если abc =0 , то а , b и с - компланарны.

Допустим, что это не так. Можно было бы построить параллелепипед с объемом V¹ 0. Но так как abc =±V , то получили бы, что abc ¹ 0 . Это противоречит условию: abc =0 .

Обратно, пусть векторы а , b , с - компланарны. Тогда вектор d =а хb будет перпендикулярен плоскости, в которой лежат векторы а , b ,с , и следовательно, d ^ с . Поэтому d с =0 , т. е. abc =0 .

8.3. Выражение смешанного произведения через координаты

Пусть заданы векторы a =а х i +a y j +a z k , b =b x i +b y j +b z k , с =c x i +c y j +c z k . Найдем их смешанное произведение, используя выражения в координатах для векторного и скалярного произведений:

Полученную формулу можно записать короче:

так как правая часть равенства (8.1) представляет собой разложение определителя третьего порядка по элементам третьей строки.

Итак, смешанное произведение векторов равно определителю третьего порядка, составленному из координат перемножаемых векторов.

8.4. Некоторые приложения смешанного произведения

Определение взаимной ориентации векторов в пространстве

Определение взаимной ориентации векторов а, b и с основано на следующих соображениях. Если abc > 0 , то а , b , с - правая тройка; если abc <0 , то а , b , с - левая тройка.

Установление компланарности векторов

Векторы а , b и с компланарны тогда и только тогда, когда их смешанное произведение равно нулю

Определение объемов параллелепипеда и треугольной пирамиды

Нетрудно показать, что объем параллелепипеда, построенного на векторах а , b и с вычисляется как V =|аbс |, а объем треугольной пирамиды, построенной на этих же векторах, равен V =1/6*|abc |.

Пример 6.3.

Вершинами пирамиды служат точки А(1; 2; 3), В(0; -1; 1),С(2; 5; 2) и D (3; 0; -2). Найти объем пирамиды.

Решение: Находим векторы а ,b ис :

а=AB =(-1;-3;-2), b =АС=(1;3;-1), с=AD =(2; -2; -5).

Находима , b и с :


=-1 (-17)+3 (-3)-2 (-8)=17-9+16=24.

Следовательно, V =1/6*24=4

Данный онлайн калькулятор вычисляет смешанное произведение векторов. Дается подробное решение. Для вычисления смешанного произведения векторов выберите способ представления векторов (по координатам или по двум точкам) введите данные в ячейки и нажимайте на кнопку "Вычислить."

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Смешанное произведение векторов (теория)

Смешанное произведение трех векторов это число, которое получается при скалярном произведении результата векторного произведения первых двух векторов на третьий вектор. Другими словами, если заданы три вектора a, b и c , то для получения смешанного произведения этих векторов, сначала векторно умножаются первые два вектора и полученный вектор [ab ] скалярно умножается на вектор c .

Смешанное произведение трех векторов a, b и c обозначается так: abc или так (a,b,c ). Тогда можно записать:

abc =([ab ],c )

Прежде чем сформулировать теорему, представляющую геометрический смысл смешанного произведения, ознакомьтесь с понятиями правая тройка, левая тройка, правая система координат, левая система координат (определения 2, 2" и 3 на странице векторное произведение векторов онлайн).

Для определенности, в дальнейшем мы будем рассматривать только правые системы координат.

Теорема 1. Смешанное произведение векторов ([ab ],c ) равно объему параллелипеда, построенного на приведенных к общему началу векторах a, b, c , взятому со знаком плюс, если тройка a, b, c правая, и со знаком минус, если тройка a, b, c левая. Если векторы a, b, c компланарны, то ([ab ],c ) равно нулю.

Следствие 1. Имеет место следующее равенство:

Следовательно нам достаточно доказать, что

([ab ],c )=([bc ],a ) (3)

Из выражения (3) видно, что левая и правая часть равны объему параллелипеда. Но и знаки правой и левой частей совпадают, так как тройки векторов abc и bca имеют одинаковую ориентацию.

Доказанное равенство (1) позволяет записать смешанное произведение трех векторов a, b, c просто в виде abc , не указывая, какие именно два вектора перемножаются векторно первые два или последние два.

Следствие 2. Необходимым и достаточным условием компланарности трех векторов является равенство нулю их смешанного произведения.

Доказательство вытекает из теоремы 1. Действительно, если векторы компланарны, то смешанное произведение этих векторов равно нулю. Обратное, если смешанное произведение равно нулю, то из теоремы 1 вытекает компланарность этих векторов (так как объем параллелипеда, построенного на приведенных к общему началу векторах равно нулю).

Следствие 3. Смешанное произведение трех векторов, два из которых совпадают, равно нулю.

Действительно. Если два вектора из трех совпадают, то они компланарны. Следовательно, смешанное произведение этих векторов равно нулю.

Смешанное произведение векторов в декартовых координатах

Теорема 2. Пусть три вектора a, b и c определены своими декартовыми прямоугольными координатами

Доказательство. Смешанное произведение abc равно скалярному произведению векторов [ab ] и c . Векторное произведение векторов [ab ] в декартовых координатах вычисляется формулой ():

Последнее выражение можно записать, используя определители второго порядка:

необходимо и достаточно равенство нулю определителя, строки которой заполнены координатами этих векторов, т.е:

. (7)

Для доказательства следствия достаточно рассмотреть формулу (4) и следствие 2.

Смешанное произведение векторов на примерах

Пример 1. Найти смешанное произведение векторов abс , где

Смешанное произведение векторов a, b, c равен определителю матрицы L . Вычислим определитель матрицы L , разложив определитель по строке 1:

Конечная точка вектора a .

mob_info