Формула байеса простым языком. Формула полной вероятности, формула байеса. «Физический смысл» и терминология

Начнем с примера. В урне, стоящей перед вами, с равной вероятностью могут быть (1) два белых шара, (2) один белый и один черный, (3) два черных. Вы тащите шар, и он оказывается белым. Как теперь вы оцените вероятность этих трех вариантов (гипотез)? Очевидно, что вероятность гипотезы (3) с двумя черными шарами = 0. А вот как подсчитать вероятности двух оставшихся гипотез!? Это позволяет сделать формула Байеса, которая в нашем случае имеет вид (номер формулы соответствует номеру проверяемой гипотезы):

Скачать заметку в формате или

х случайная величина (гипотеза), принимающая значения: х 1 – два белых, х 2 – один белый, один черный; х 3 – два черных; у – случайная величина (событие), принимающая значения: у 1 – вытащен белый шар и у 2 – вытащен чёрный шар; Р(х 1) – вероятность первой гипотезы до вытаскивания шара (априорная вероятность или вероятность до опыта) = 1/3; Р(х 2) – вероятность второй гипотезы до вытаскивания шара = 1/3; Р(х 3) – вероятность третьей гипотезы до вытаскивания шара = 1/3; Р(у 1 |х 1) – условная вероятность вытащить белый шар, в случае, если верна первая гипотеза (шары белые) = 1; Р(у 1 |х 2) вероятность вытащить белый шар, в случае, если верна вторая гипотеза (один шар белый, второй – черный) = ½; Р(у 1 |х 3) вероятность вытащить белый шар, в случае, если верна третья гипотеза (оба черных) = 0; Р(у 1) – вероятность вытащить белый шар = ½; Р(у 2) – вероятность вытащить черный шар = ½; и, наконец, то, что мы ищем – Р(х 1 |у 1) вероятность того, что верна первая гипотеза (оба шара белых), при условии, что мы вытащили белый шар (апостериорная вероятность или вероятность после опыта); Р(х 2 |у 1) вероятность того, что верна вторая гипотеза (один шар белый, второй – черный), при условии, что мы вытащили белый шар.

Вероятность того, что верна первая гипотеза (два белых), при условии, что мы вытащили белый шар :

Вероятность того, что верна вторая гипотеза (один белый, второй – черный), при условии, что мы вытащили белый шар :

Вероятность того, что верна третья гипотеза (два черных), при условии, что мы вытащили белый шар :

Что делает формула Байеса? Она дает возможность на основании априорных вероятностей гипотез – Р(х 1), Р(х 2) , Р(х 3) – и вероятностей наступления событий – Р(у 1), Р(у 2) – подсчитать апостериорные вероятности гипотез, например, вероятность первой гипотезы, при условии, что вытащили белый шар – Р(х 1 |у 1) .

Вернемся еще раз к формуле (1). Первоначальная вероятность первой гипотезы была Р(х 1) = 1/3. С вероятностью Р(у 1) = 1/2 мы могли вытащить белый шар, и с вероятностью Р(у 2) = 1/2 – черный. Мы вытащили белый. Вероятность вытащить белый при условии, что верна первая гипотеза Р(у 1 |х 1) = 1. Формула Байеса говорит, что так как вытащили белый, то вероятность первой гипотезы возросла до 2/3, вероятность второй гипотезы по-прежнему равна 1/3, а вероятность третьей гипотезы обратилась в ноль.

Легко проверить, что вытащи мы черный шар, апостериорные вероятности изменились бы симметрично: Р(х 1 |у 2) = 0, Р(х 2 |у 2) = 1/3, Р(х 3 |у 2) = 2/3.

Вот что писал Пьер Симон Лаплас о формуле Байеса в работе , вышедшей в 1814 г.:

Это основной принцип той отрасли анализа случайностей, которая занимается переходами от событий к причинам.

Почему формула Байеса так сложна для понимания!? На мой взгляд, потому, что наш обычный подход – это рассуждения от причин к следствиям. Например, если в урне 36 шаров из которых 6 черных, а остальные белые. Какова вероятность вытащить белый шар? Формула Байеса позволяет идти от событий к причинам (гипотезам). Если у нас было три гипотезы, и произошло событие, то как именно это событие (а не альтернативное) повлияло на первоначальные вероятности гипотез? Как изменились эти вероятности?

Я считаю, что формула Байеса не просто о вероятностях. Она изменяет парадигму восприятия. Каков ход мыслей при использовании детерминистской парадигмы? Если произошло событие, какова его причина? Если произошло ДТП, чрезвычайное происшествие, военный конфликт. Кто или что явилось их виной? Как думает байесовский наблюдатель? Какова структура реальности, приведшая в данном случае к такому-то проявлению… Байесовец понимает, что в ином случае результат мог быть иным…

Немного иначе разместим символы в формулах (1) и (2):

Давайте еще раз проговорим, что же мы видим. С равной исходной (априорной) вероятностью могла быть истинной одна из трех гипотез. С равной вероятностью мы могли вытащить белый или черный шар. Мы вытащили белый. В свете этой новой дополнительной информации следует пересмотреть нашу оценку гипотез. Формула Байеса позволяет это сделать численно. Априорная вероятность первой гипотезы (формула 7) была Р(х 1) , вытащили белый шар, апостериорная вероятность первой гипотезы стала Р(х 1 |у 1). Эти вероятности отличаются на коэффициент .

Событие у 1 называется свидетельством, в большей или меньшей степени подтверждающим или опровергающим гипотезу х 1 . Указанный коэффициент иногда называют мощностью свидетельства. Чем мощнее свидетельство (чем больше коэффициент отличается от единицы), тем больше факт наблюдения у 1 изменяет априорную вероятность, тем больше апостериорная вероятность отличается от априорной. Если свидетельство слабое (коэффициент ~ 1), апостериорная вероятность почти равна априорной.

Свидетельство у 1 в = 2 раза изменило априорную вероятность гипотезы х 1 (формула 4). В то же время свидетельство у 1 не изменило вероятность гипотезы х 2 , так как его мощность = 1 (формула 5).

В общем случае формула Байеса имеет следующий вид:

х – случайная величина (набор взаимоисключающих гипотез), принимающая значения: х 1 , х 2 , … , х n . у – случайная величина (набор взаимоисключающих событий), принимающая значения: у 1 , у 2 , … , у n . Формула Байеса позволяет найти апостериорную вероятность гипотезы х i при наступлении события y j . В числителе – произведение априорной вероятности гипотезы х i Р(х i ) на вероятность наступления события y j , если верна гипотеза х i Р(y j i ). В знаменателе – сумма произведений того же, что и в числителе, но для всех гипотез. Если вычислить знаменатель, то получим суммарную вероятность наступления события у j (если верна любая из гипотез) – Р(y j ) (как в формулах 1–3).

Еще раз о свидетельстве. Событие y j дает дополнительную информацию, что позволяет пересмотреть априорную вероятность гипотезы х i . Мощность свидетельства – – содержит в числителе вероятность наступления события y j , если верна гипотеза х i . В знаменателе – суммарная вероятность наступления события у j (или вероятность наступления события у j усредненная по всем гипотезам). у j выше для гипотезы x i , чем в среднем для всех гипотез, то свидетельство играет на руку гипотезе x i , увеличивая ее апостериорную вероятность Р(y j i ). Если вероятность наступления события у j ниже для гипотезы x i , чем в среднем для всех гипотез, то свидетельство понижает, апостериорную вероятность Р(y j i ) для гипотезы x i . Если вероятность наступления события у j для гипотезы x i такая же, как в среднем для всех гипотез, то свидетельство не изменяет апостериорную вероятность Р(y j i ) для гипотезы x i .

Предлагаю вашему вниманию несколько примеров, которые, надеюсь, закрепят ваше понимание формулы Байеса.

Задача 2. Два стрелка независимо друг от друга стреляют по одной и той же мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка равна 0,8, для второго - 0,4. После стрельбы в мишени обнаружена одна пробоина. Найти вероятность того, что эта пробоина принадлежит первому стрелку. .

Задача 3. Объект, за которым ведется наблюдение, может быть в одном из двух состояний: Н 1 = {функционирует} и Н 2 = {не функционирует}. Априорные вероятности этих состояний Р(Н 1) = 0,7, Р(Н 2) = 0,3. Имеется два источника информации, которые приносят разноречивые сведения о состоянии объекта; первый источник сообщает, что объект не функционирует, второй - что функционирует. Известно, что первый источник дает правильные сведения с вероятностью 0,9, а с вероятностью 0,1 - ошибочные. Второй источник менее надежен: он дает правильные сведения с вероятностью 0,7, а с вероятностью 0,3 - ошибочные. Найдите апостериорные вероятности гипотез. .

Задачи 1–3 взяты из учебника Е.С.Вентцель, Л.А.Овчаров. Теория вероятностей и ее инженерные приложения, раздел 2.6 Теорема гипотез (формула Байеса).

Задача 4 взята из книги , раздел 4.3 Теорема Байеса.

Кто такой Байес? и какое отношение он имеет к менеджменту? – может последовать вполне справедливый вопрос. Пока поверьте мне на слово: это очень важно!.. и интересно (по крайней мере, мне).

В какой парадигме действуют большинство менеджеров: если я наблюдаю нечто, какие выводы могу из этого сделать? Чему учит Байес: что должно быть на самом деле, чтобы мне довелось наблюдать это нечто? Именно так развиваются все науки, и об этом пишет (цитирую по памяти): человек, у которого нет в голове теории, будет шарахаться от одной идеи к другой под воздействием различных событий (наблюдений). Не даром говорят: нет ничего более практичного, чем хорошая теория.

Пример из практики. Мой подчиненный совершает ошибку, и мой коллега (руководитель другого отдела) говорит, что надо бы оказать управленческое воздействие на нерадивого сотрудника (проще говоря, наказать/обругать). А я знаю, что этот сотрудник делает 4–5 тысяч однотипных операций в месяц, и совершает за это время не более 10 ошибок. Чувствуете различие в парадигме? Мой коллега реагирует на наблюдение, а я обладаю априорным знанием, что сотрудник допускает некоторое количество ошибок, так что еще одна не повлияла на это знание… Вот если по итогам месяца окажется, что таких ошибок, например, 15!.. Это уже станет поводом для изучения причин несоответствия стандартам.

Убедил в важности Байесовского подхода? Заинтриговал? Надеюсь, что «да». А теперь ложка дегтя. К сожалению, идеи Байеса редко даются с первого захода. Мне откровенно не повезло, так как я знакомился с этими идеями по популярной литературе, после прочтения которой оставалось много вопросов. Планируя написать заметку, я собрал всё, что ранее конспектировал по Байесу, а также изучил, что пишут в Интернете. Предлагаю вашему вниманию мое лучшее предположение на тему Введение в Байесовскую вероятность .

Вывод теоремы Байеса

Рассмотрим следующий эксперимент: мы называем любое число лежащее на отрезке и фиксируем, когда это число будет, например, между 0,1 и 0,4 (рис. 1а). Вероятность этого события равна отношению длины отрезка к общей длине отрезка , при условии, что появления чисел на отрезке равновероятны . Математически это можно записать p (0,1 <= x <= 0,4) = 0,3, или кратко р (X ) = 0,3, где р – вероятность, х – случайная величина в диапазоне , Х – случайная величина в диапазоне . То есть, вероятность попадания в отрезок равна 30%.

Рис. 1. Графическая интерпретация вероятностей

Теперь рассмотрим квадрат x (рис. 1б). Допустим, мы должны называть пары чисел (x , y ), каждое из которых больше нуля и меньше единицы. Вероятность того, что x (первое число) будет в пределах отрезка (синяя область 1), равна отношению площади синей области к площади всего квадрата, то есть (0,4 – 0,1) * (1 – 0) / (1 * 1) = 0,3, то есть те же 30%. Вероятность того, что y находится внутри отрезка (зеленая область 2) равна отношению площади зеленой области к площади всего квадрата p (0,5 <= y <= 0,7) = 0,2, или кратко р (Y ) = 0,2.

Что можно узнать о значениях одновременно x и y . Например, какова вероятность того, что одновременно x и y находятся в соответствующих заданных отрезках? Для этого надо посчитать отношение площади области 3 (пересечения зеленой и синей полос) к площади всего квадрата: p (X , Y ) = (0,4 – 0,1) * (0,7 – 0,5) / (1 * 1) = 0,06.

А теперь допустим мы хотим знать какова вероятность того, что y находится в интервале , если x уже находится в интервале . То есть фактически у нас есть фильтр и когда мы называем пары (x , y ), то мы сразу отбрасывает те пары, которые не удовлетворяют условию нахождения x в заданном интервале, а потом из отфильтрованных пар мы считаем те, для которых y удовлетворяет нашему условию и считаем вероятность как отношение количества пар, для которых y лежит в вышеупомянутом отрезке к общему количеству отфильтрованных пар (то есть для которых x лежит в отрезке ). Мы можем записать эту вероятность как p (Y |X у х попал в диапазоне ». Очевидно, что эта вероятность равна отношению площади области 3 к площади синей области 1. Площадь области 3 равна (0,4 – 0,1) * (0,7 – 0,5) = 0,06, а площадь синей области 1 (0,4 – 0,1) * (1 – 0) = 0,3, тогда их отношение равно 0,06 / 0,3 = 0,2. Другими словами, вероятность нахождения y на отрезке при условии, что x принадлежит отрезку p (Y |X ) = 0,2.

В предыдущем абзаце мы фактически сформулировали тождество: p (Y |X ) = p (X , Y ) / p(X ). Читается: «вероятность попадания у в диапазон , при условии, что х попал в диапазон , равна отношению вероятности одновременного попадания х в диапазон и у в диапазон , к вероятности попадания х в диапазон ».

По аналогии рассмотрим вероятность p (X |Y ). Мы называем пары (x , y ) и фильтруем те, для которых y лежит между 0,5 и 0,7, тогда вероятность того, что x находится в отрезке при условии, что y принадлежит отрезку равна отношению площади области 3 к площади зеленой области 2: p (X |Y ) = p (X , Y ) / p (Y ).

Заметим, что вероятности p (X , Y ) и p (Y, Х ) равны, и обе равны отношению площади зоны 3 к площади всего квадрата, а вот вероятности p (Y |X ) и p (X |Y ) не равны; при этом вероятность p (Y |X ) равна отношению площади области 3 к области 1, а p (X |Y ) – области 3 к области 2. Заметим также, что p (X , Y ) часто обозначают как p (X &Y ).

Итак, мы ввели два определения: p (Y |X ) = p (X , Y ) / p(X ) и p (X |Y ) = p (X , Y ) / p (Y )

Перепишем эти равенства виде: p (X , Y ) = p (Y |X ) * p(X ) и p (X , Y ) = p (X |Y ) * p (Y )

Поскольку левые части равны, равны и правые: p (Y |X ) * p(X ) = p (X |Y ) * p (Y )

Или мы можем переписать последнее равенство в виде:

Это и есть теорема Байеса!

Неужели столь несложные (почти тавтологические) преобразования рождают великую теорему!? Не спешите с выводами. Давайте еще раз проговорим, что же мы получили. Имелась некая исходная (априорная) вероятность р (Х), того, что случайная величина х равномерно распределенная на отрезке попадает в диапазон Х . Произошло некое событие Y , в результате которого мы получили апостериорную вероятность той же самой случайной величины х : р (Х|Y), и эта вероятность отличается от р (Х) на коэффициент . Событие Y называется свидетельством, в большей или меньшей степени подтверждающим или опровергающим Х . Указанный коэффициент иногда называют мощностью свидетельства . Чем мощнее свидетельство, тем больше факт наблюдения Y изменяет априорную вероятность, тем больше апостериорная вероятность отличается от априорной. Если свидетельство слабое, апостериорная вероятность почти равна априорной.

Формула Байеса для дискретных случайных величин

В предыдущем разделе мы вывели формулу Байеса для непрерывных случайных величин х и y, определенных на отрезке . Рассмотрим пример с дискретными случайными величинами, принимающими каждая по два возможных значения. В ходе проведения плановых медицинских осмотров установлено, что в сорокалетнем возрасте 1% женщин болеет раком молочной железы. 80% женщин больных раком получают положительные результаты маммографии. 9,6% здоровых женщин также получают положительные результаты маммографии. В ходе проведения осмотра женщина данной возрастной группы получила положительный результат маммографии. Какова вероятность того, что у неё на самом деле рак молочной железы?

Ход рассуждений/вычислений следующий. Из 1% больных раком маммография даст 80% положительных результатов = 1%*80% = 0,8%. Из 99% здоровых женщин маммография даст 9,6% положительных результатов = 99%*9,6% = 9,504%. Итого из 10,304% (9,504% + 0,8%) с положительными результатами маммографии, только 0,8% больных, а остальные 9,504% здоровых. Таким образом, вероятность того, что при положительном результате маммографии женщина больна раком составляет 0,8%/10,304% = 7,764%. А вы думали, что 80% или около того?

В нашем примере формула Байеса принимает следующий вид:

Давайте еще раз проговорим «физический» смысл этой формулы. Х – случайная величина (диагноз), принимающая значения: Х 1 – болен и Х 2 – здоров; Y – случайная величина (результат измерения –маммографии), принимающая значения: Y 1 – положительный результат и Y 2 – отрицательный результат; р(Х 1) – вероятность болезни до проведения маммографии (априорная вероятность), равная 1%; р(Y 1 |X 1 ) – вероятность положительного результата в случае, если пациентка больна (условная вероятность, так как она должна быть задана в условиях задачи), равная 80%; р(Y 1 |X 2 ) – вероятность положительного результата в случае, если пациентка здорова (также условная вероятность), равная 9,6%; р(Х 2) – вероятность того, что пациентка здорова до проведения маммографии (априорная вероятность), равная 99%; р(Х 1 |Y 1 ) – вероятность того, что пациентка больна, при условии положительного результата маммографии (апостериорная вероятность).

Видно, что апостериорная вероятность (то, что мы ищем) пропорциональна априорной вероятности (исходной) с несколько более сложным коэффициентом . Подчеркну еще раз. На мой взгляд, это фундаментальный аспект Байесовского подхода. Измерение (Y ) добавило некоторое количество информации к первоначально имевшейся (априорной), что уточнило наше знание об объекте.

Примеры

Для закрепления пройденного материала попробуйте решить несколько задач.

Пример 1. Имеется 3 урны; в первой 3 белых шара и 1 черный; во второй - 2 белых шара и 3 черных; в третьей - 3 белых шара. Некто подходит наугад к одной из урн и вынимает из нее 1 шар. Этот шар оказался белым. Найдите апостериорные вероятности того, что шар вынут из 1-й, 2-й, 3-й урны.

Решение. У нас есть три гипотезы: Н 1 = {выбрана первая урна), Н 2 = {выбрана вторая урна}, Н 3 = {выбрана третья урна}. Так как урна выбирается наугад, то априорные вероятности гипотез равны: Р(Н 1) = Р(Н 2) = Р(Н 3) = 1/3.

В результате опыта появилось событие А = {из выбранной урны вынут белый шар}. Условные вероятности события А при гипотезах Н 1 , Н 2 , Н 3: Р(A|Н 1) = 3/4, Р(A|Н 2) = 2/5, Р(A|Н 3) = 1. Например, первое равенство читается так: «вероятность вынуть белый шар, если выбрана первая урна равна 3/4 (так как всего шаров в первой урне 4, а белых из них – 3)».

Применяя формулу Бейеса, находим апостериорные вероятности гипотез:

Таким образом, в свете информации о появлении события А вероятности гипотез изменились: наиболее вероятной стала гипотеза Н 3 , наименее вероятной - гипотеза Н 2 .

Пример 2. Два стрелка независимо друг от друга стреляют по одной и той же мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка равна 0,8, для второго - 0,4. После стрельбы в мишени обнаружена одна пробоина. Найти вероятность того, что эта пробоина принадлежит первому стрелку (Исход {обе пробоины совпали} отбрасываем, как ничтожно маловероятный).

Решение. До опыта возможны следующие гипотезы: Н 1 = {ни первый, ни второй стрелки не попадут}, Н 2 = {оба стрелка попадут}, H 3 - {первый стрелок попадет, а второй - нет}, H 4 = {первый стрелок не попадет, а второй попадет). Априорные вероятности гипотез:

Р(H 1) = 0,2*0,6 = 0,12; Р(H 2) = 0,8*0,4 = 0,32; Р (H 3) = 0,8*0,6 = 0,48; Р(H 4) = 0,2*0,4 = 0,08.

Условные вероятности наблюденного события А = {в мишени одна пробоина} при этих гипотезах равны: P(A|H 1) = P(A|H 2) = 0; P(A|H 3) = P(A|H 4) = 1

После опыта гипотезы H 1 и H 2 становятся невозможными, а апостериорные вероятности гипотез H 3 , и H 4 по формуле Бейеса будут:

Байес против спама

Формула Байеса нашла широкое применение в разработке спам-фильтров. Предположим, вы хотите обучить компьютер определять, какие из писем являются спамом. Будем исходить из словаря и словосочетаний, используя байесовские оценки. Создадим вначале пространство гипотез. Пусть относительно любого письма у нас есть 2 гипотезы: H A – это спам, H B – это не спам, а нормальное, нужное, письмо.

Вначале «обучим» нашу будущую систему борьбы со спамом. Возьмем все имеющиеся у нас письма и разделим их на две «кучи» по 10 писем. В одну отложим спам-письма и назовем ее кучей H A , в другую – нужную корреспонденцию и назовем ее кучей H B . Теперь посмотрим: какие слова и словосочетания встречаются в спам- и нужных письмах и с какой частотой? Эти слова и словосочетания назовем свидетельствами и обозначим E 1 , E 2 … Выясняется, что общеупотребительные слова (например, слова «как», «твой») в кучах H A и H B встречаются примерно с одинаковой частотой. Таким образом, наличие этих слов в письме ничего не говорит нам о том, к какой куче его отнести (слабое свидетельство). Присвоим этим словам нейтральное значение оценки вероятности «спамности», скажем, 0,5.

Пусть словосочетание «разговорный английский» встречается всего в 10 письмах, причем чаще в спам-письмах (например, в 7 спам-письмах из всех 10), чем в нужных (в 3 из 10). Поставим этому словосочетанию для спама более высокую оценку 7/10, а для нормальных писем более низкую: 3/10. И наоборот, выяснилось, что слово «дружище» чаще встречалось в нормальных письмах (6 из 10). И вот мы получили коротенькое письмо: «Дружище! Как твой разговорный английский?» . Попробуем оценить его «спамность». Общие оценки P(H A), P(H B) принадлежности письма к каждой куче поставим, воспользовавшись несколько упрощенной формулой Байеса и нашими приблизительными оценками:

P(H A) = A/(A+B), где А = p a1 *p a2 *…*p an , B = p b1 *p b2 *…*p b n = (1 – p a1)*(1 – p a2)*… *(1 – p an).

Таблица 1. Упрощенная (и неполная) Байес-оценка письма

Таким образом, наше гипотетическое письмо получило оценку вероятности принадлежности с акцентом в сторону «спамности». Можем ли мы принять решение о том, чтобы бросить письмо в одну из куч? Выставим пороги принятия решений:

  • Будем считать, что письмо принадлежит куче H i , если P(H i) ≥ T.
  • Письмо не принадлежит куче, если P(H i) ≤ L.
  • Если же L ≤ P(H i) ≤ T, то нельзя принять никакого решения.

Можно принять T = 0,95 и L = 0,05. Поскольку для рассматриваемого письма и 0,05 < P(H A) < 0,95, и 0,05 < P(H В) < 0,95, то мы не сможем принять решение, куда отнести данное письмо: к спаму (H A) или к нужным письмам (H B). Можно ли улучшить оценку, используя больше информации?

Да. Давайте вычислим оценку для каждого свидетельства другим способом, так, как это, собственно, и предложил Байес. Пусть:

F a – это общее количество писем спама;

F ai – это количество писем со свидетельством i в куче спама;

F b – это общее количество нужных писем;

F bi – это количество писем со свидетельством i в куче нужных (релевантных) писем.

Тогда: p ai = F ai /F a , p bi = F bi /F b . P(H A) = A/(A+B), P(H B) = B/(A+B), где А = p a1 *p a2 *…*p an , B = p b1 *p b2 *…*p b n

Обратите внимание – оценки слов-свидетельств p ai и p bi стали объективными и их можно вычислять без участия человека.

Таблица 2. Более точная (но неполная) Байес-оценка по наличным признакам из письма

Мы получили вполне определенный результат – с большим перевесом с вероятностью письмо можно отнести к нужным письмам, поскольку P(H B) = 0,997 > T = 0,95. Почему результат изменился? Потому, что мы использовали больше информации – мы учли количество писем в каждой из куч и, кстати, гораздо более корректно определили оценки p ai и p bi . Определили их так, как это сделано у самого Байеса, вычислив условные вероятности. Другими словами, p a3 – это вероятность появления в письме слова «дружище» при условии того, что это письмо уже принадлежит спам-куче H A . Результат не заставил себя ждать – кажется, мы можем принять решение с большей определенностью.

Байес против корпоративного мошенничества

Любопытное применение Байесовского подхода описал MAGNUS8 .

В моем текущем проекте (ИС для выявления мошенничества на производственном предприятии) используется формула Байеса для определения вероятности фрода (мошенничества) при наличии/отсутствии нескольких фактов, косвенно свидетельствующих в пользу гипотезы о возможности совершения фрода. Алгоритм самообучаем (с обратной связью), т.е. пересчитывает свои коэффициенты (условные вероятности) при фактическом подтверждении или неподтверждении фрода при проверке службой экономической безопасности.

Стоит, наверное, сказать, что подобные методы при проектировании алгоритмов требуют достаточно высокой математической культуры разработчика, т.к. малейшая ошибка в выводе и/или реализации вычислительных формул сведет на нет и дискредитирует весь метод. Вероятностные методы особенно этим грешат, поскольку мышление человека не приспособлено для работы с вероятностными категориями и, соответственно, отсутствует «наглядность» и понимание «физического смысла» промежуточных и итоговых вероятностных параметров. Такое понимание есть лишь для базовых понятий теории вероятностей, а дальше нужно лишь очень аккуратно комбинировать и выводить сложные вещи по законам теории вероятностей - здравый смысл для композитных объектов уже не поможет. С этим, в частности, связаны достаточно серьезные методологические баталии, проходящие на страницах современных книг по философии вероятности, а также большое количество софизмов, парадоксов и задачек-курьезов по этой теме.

Еще один нюанс, с которым пришлось столкнуться - к сожалению, практически все мало-мальски ПОЛЕЗНОЕ НА ПРАКТИКЕ на эту тему написано на английском языке. В русскоязычных источниках в основном только общеизвестная теория с демонстрационными примерами лишь для самых примитивных случаев.

Полностью соглашусь с последним замечанием. Например, Google при попытке найти что-то типа «книги Байесовская вероятность», ничего внятного не выдал. Правда, сообщил, что книгу с байесовской статистикой запретили в Китае . (Профессор статистики Эндрю Гельман сообщил в блоге Колумбийского университета, что его книгу «Анализ данных с помощью регрессии и многоуровневых/иерархических моделей» запретили публиковать в Китае. Тамошнее издательство сообщило, что «книга не получила одобрения властей из-за различных политически чувствительных материалов в тексте».) Интересно, не аналогичная ли причина привела к отсутствию книг по Байесовской вероятности в России?

Консерватизм в процессе обработки информации человеком

Вероятности определяют степень неопределенности. Вероятность, как согласно Байесу, так и нашей интуиции, составляет просто число между нулем и тем, что представляет степень, для которой несколько идеализированный человек считает, что утверждение верно. Причина, по которой человек несколько идеализирован, состоит в том, что сумма его вероятностей для двух взаимно исключающих событий должна равняться его вероятности того, что произойдет любое из этих событий. Свойство аддитивности имеет такие последствия, что мало реальных людей могут соответствовать им всем.

Теорема Байеса – это тривиальное последствие свойства аддитивности, бесспорное и согласованное для всех сторонников вероятностей, как Байеса, так и других. Один их способов написать это следующий. Если Р(H А |D) – последующая вероятность того, что гипотеза А была после того, как данная величина D наблюдалась, Р(H А) – его априорная вероятность до того, как наблюдалась данная величина D, Р(D|H А) – вероятность того, что данная величина D будет наблюдаться, если верно Н А, а Р(D) – безусловная вероятность данной величины D, то

(1) Р(H А |D) = Р(D|H А) * Р(H А) / Р(D)

Р(D) лучше всего рассматривать как нормализующую константу, заставляющую апостериорные вероятности составить в целом единицу по исчерпывающему набору взаимно исключающих гипотез, которые рассматриваются. Если ее необходимо подсчитать, она может быть такой:

Но чаще Р(D) устраняется, а не подсчитывается. Удобный способ устранять ее состоит в том, чтобы преобразовать теорему Байеса в форму отношения вероятность–шансы.

Рассмотрим другую гипотезу, Н B , взаимно исключающую Н А, и изменим мнение о ней на основе той же самой данной величины, которая изменила ваше мнение о Н А. Теорема Байеса говорит, что

(2) Р(H B |D) = Р(D|H B) * Р(H B) / Р(D)

Теперь разделим Уравнение 1 на Уравнение 2; результат будет таким:

где Ω 1 – апостериорные шансы в пользу Н А через H B , Ω 0 – априорные шансы, a L – количество, знакомое статистикам как отношение вероятности. Уравнение 3 – это такая же соответствующая версия теоремы Байеса как и Уравнение 1, и часто значительно более полезная особенно для экспериментов, с участием гипотез. Сторонники Байеса утверждают, что теорема Байеса – формально оптимальное правило о том, как пересматривать мнения в свете новых данных.

Мы интересуемся сравнением идеального поведения, определенного теоремой Байеса, с фактическим поведением людей. Чтобы дать вам некоторое представление о том, что это означает, давайте попробуем провести эксперимент с вами как с испытуемым. Эта сумка содержит 1000 покерных фишек. У меня две такие сумки, причем в одной 700 красных и 300 синих фишек, а в другой 300 красных и 700 синих. Я подбросил монету, чтобы определить, какую использовать. Таким образом, если наши мнения совпадают, ваша вероятность в настоящее время, что выпадет сумка, в которой больше красных фишек – 0,5. Теперь, Вы наугад составляете выборку с возвращением после каждой фишки. В 12 фишках вы получаете 8 красных и 4 синих. Теперь, на основе всего, что вы знаете, какова вероятность того, что выпала сумка, где больше красных? Ясно, что она выше, чем 0,5. Пожалуйста, не продолжайте читать, пока вы не записали вашу оценку.

Если вы похожи на типичного испытуемого, ваша оценка попала в диапазон от 0,7 до 0,8. Если бы мы проделали соответствующее вычисление, тем не менее, ответ был бы 0,97. Действительно очень редко человек, которому предварительно не продемонстрировали влияние консерватизма, приходит к такой высокой оценке, даже если он был знаком с теоремой Байеса.

Если доля красных фишек в сумке – р , то вероятность получения r красных фишек и (n – r ) синих в n выборках с возвращением – p r (1– p) n– r . Так, в типичном эксперименте с сумкой и покерными фишками, если Н A означает, что доля красных фишек составляет р А и Н B – означает, что доля составляет р B , тогда отношение вероятности:

При применении формулы Байеса необходимо учитывать только вероятность фактического наблюдения, а, не вероятности других наблюдений, которые он, возможно, сделал бы, но не сделал. Этот принцип имеет широкое воздействие на все статистические и нестатистические применения теоремы Байеса; это самый важный технический инструмент размышления Байеса.

Байесовская революция

Ваши друзья и коллеги разговаривают о чем-то, под названием «Теорема Байеса» или «Байесовское правило», или о чем-то под названием байесовское мышление. Они действительно заинтересованы в этом, так что вы лезете в интернет и находите страницу о теореме Байеса и… Это уравнение. И все… Почему математическая концепция порождает в умах такой энтузиазм? Что за «байесианская революция» происходит в среде учёных, причем утверждается, что даже сам экспериментальный подход может быть описан, как её частный случай? В чём секрет, который знают последователи Байеса? Что за свет они видят?

Байесовская революция в науке произошла не потому, что все больше и больше когнитивных ученых внезапно начали замечать, что ментальные явления имеют байесовскую структуру; не потому, что ученые в каждой области начали использовать байесовский метод; но потому, что наука сама по себе является частным случаем теоремы Байеса; экспериментальное свидетельство есть байесовское свидетельство. Байесовские революционеры утверждают, что когда вы выполняете эксперимент и получаете свидетельство, которое «подтверждает» или «опровергает» вашу теорию, это подтверждение или опровержение происходит по байесовским правилам. Для примера, вы должны принимать во внимание не только то, что ваша теория может объяснить явление, но и то, что есть другие возможные объяснения, которые также могут предсказать это явление.

Ранее, наиболее популярной философией науки была – старая философия, которая была смещена байесовской революцией. Идея Карла Поппера, что теории могут быть полностью фальсифицированы, однако никогда не могут быть полностью подтверждены, это еще один частный случай байесовских правил; если p(X|A) ≈ 1 – если теория делает верные предсказания, тогда наблюдение ~X очень сильно фальсифицирует А. С другой стороны, если p(X|A) ≈ 1 и мы наблюдаем Х, это не очень сильно подтверждает теорию; возможно какое-то другое условие В, такое что p(X|B) ≈ 1, и при котором наблюдение Х не свидетельствует в пользу А но свидетельствует в пользу В. Для наблюдения Х определенно подтверждающего А, мы должны были бы знать не то, что p(X|A) ≈ 1, а что p(X|~A) ≈ 0, что мы не можем знать, поскольку мы не можем рассматривать все возможные альтернативные объяснения. Например, когда эйнштейновская теория общей относительности превзошла ньютоновскую хорошо подтверждаемую теорию гравитации, это сделало все предсказания ньютоновской теории частным случаем предсказаний эйнштейновской.

Похожим образом, попперовское заявление, что идея должна быть фальсифицируема может быть интерпретировано как манифестация байесовского правила о сохранении вероятности; если результат Х является положительным свидетельством для теории, тогда результат ~Х должен опровергать теорию в каком-то объеме. Если вы пытаетесь интерпретировать оба Х и ~Х как «подтверждающие» теорию, байесовские правила говорят, что это невозможно! Чтобы увеличить вероятность теории вы должны подвергнуть ее тестам, которые потенциально могут снизить ее вероятность; это не просто правило, чтобы выявлять шарлатанов в науке, но следствие из теоремы байесовской вероятности. С другой стороны, идея Поппера, что нужна только фальсификация и не нужно подтверждение является неверной. Теорема Байеса показывает, что фальсификация это очень сильное свидетельство, по сравнению с подтверждением, но фальсификация все еще вероятностна по своей природе; она не управляется фундаментально другими правилами и не отличается в этом от подтверждения, как утверждает Поппер.

Таким образом, мы обнаруживаем, что многие явления в когнитивных науках, плюс статистические методы, используемые учеными, плюс научный метод сам по себе – все они являются частными случаями теоремы Байеса. В этом и состоит Байесовская революция.

Добро пожаловать в Байесовский Заговор!

Литература по Байесовской вероятности

2. Очень много различных применений Байеса описывает нобелевский лауреат по экономике Канеман (со товарищи) в замечательной книге . Только в моем кратком конспекте этой очень большой книги я насчитал 27 упоминаний имени пресвитерианского священника. Минимум формул. (.. Мне очень понравилась. Правда, сложноватая, много математики (а куда без нее), но отдельные главы (например, глава 4. Информация), явно по теме. Советую всем. Даже, если математика для вас сложна, читайте через строку, пропуская математику, и выуживая полезные зерна…

14. (дополнение от 15 января 2017 г. ) , глава из книги Тони Крилли. 50 идей, о которых нужно знать. Математика.

Физик Нобелевский лауреат Ричарда Фейнмана, отзываясь об одном философе с особо большим самомнением, как-то сказал: «Меня раздражает вовсе не философия как наука, а та помпезность, которая создана вокруг нее. Если бы только философы могли сами над собой посмеяться! Если бы только они могли сказать: «Я говорю, что это вот так, а Фон Лейпциг считал, что это по-другому, а ведь он тоже кое-что в этом смыслит». Если бы только они не забывали пояснить, что это всего лишь их .

Понимание (изучение) вероятностей начинается там, где заканчивается классический курс теории вероятностей. Почему-то в школе и вузе преподают частотную (комбинаторную) вероятность, или вероятность того, что определено. Человеческий мозг устроен иначе. У нас имеются теории (мнения) по поводу всего на свете. Мы субъективно оцениваем вероятность тех или иных событий. Мы также можем изменить свое мнение, если произошло нечто неожиданное. Это то, что мы делаем каждый день. Например, если вы встречаетесь с подругой у памятника Пушкину, вы понимаете, будет ли она вовремя, опоздает на 15 минут или полчаса. Но выйдя на площадь из метро, и увидев 20 см свежего снега, вы обновите свои вероятности, чтобы учесть новые данные.

Такой подход был впервые описан Байесом и Лапласом. Хотя Лаплас , я думаю, что он не был знаком с работой Байеса. По непонятной мне причине байесовский подход довольно слабо представлен в русскоязычной литературе. Для сравнения отмечу, что по запросу Байес Ozon выдает 4 ссылки, а Amazon – около 1000.

Настоящая заметка является переводом небольшой английской книги, и даст вам интуитивное понимание того, как использовать теорему Байеса. Она начинается с определения, а далее использует примеры в Excel, которые позволят отслеживать весь ход рассуждений.

Scott Hartshorn. Bayes’ Theorem Examples: A Visual Guide For Beginners. – 2016, 82 p.

Скачать заметку в формате или , примеры в формате

Определение теоремы Байеса и интуитивное объяснение

Теорема Байеса

где A и B – события, P(A) и P(B) – вероятности A и B без учета друг друга, P(A|B) – условная вероятность события А при условии, что B истинно, P (B|A) – условная вероятность B, если А истинно.

На самом деле, уравнение несколько сложнее, но для большинства применений достаточно и этого. Результат вычислений – это просто нормализованное взвешенное значение на основе первоначального предположения. Итак, возьмите первоначальное предположение, взвесьте его по отношению к другим первоначальным возможностям, нормализуйте на основе наблюдения:

В ходе решения проблем мы будем выполнять следующие шаги (далее они станут понятнее):

  1. Определите, какую из вероятностей мы хотим вычислить, а какую мы наблюдаем.
  2. Оцените начальные вероятности для всех возможных вариантов.
  3. Предположив истинность некоего начального варианта, рассчитайте вероятность нашего наблюдения; и так для всех начальных вариантов.
  4. Найдите взвешенную величину, как произведение начальной вероятности (шаг 2) и условной вероятности (шаг 3), и так для каждого из начальных вариантов.
  5. Нормализуйте результаты: разделите каждую взвешенную вероятность (шаг 4) на сумму всех взвешенных вероятностей; сумма нормализованных вероятностей = 1.
  6. Повторите шаги 2–5 для каждого нового наблюдения.

Пример 1. Простой пример с костями

Предположим, у вашего друга есть 3 кости: с 4, 6 и 8 гранями. Он случайным образом выбирает одну из них, не показывает вам, бросает и сообщает результат – 2. Вычислите вероятность того, что был выбран 4-гранник, 6-гранник, 8-гранник.

Шаг 1. Мы хотим вычислить вероятность выбора 4-гранника, 6-гранника или 8-гранника. Мы наблюдаем выпавшее число – 2.

Шаг 2. Поскольку костей было 3, исходная вероятность выбора каждой из них – 1/3.

Шаг 3. Наблюдение – кость упала гранью 2. Если был взят 4-гранник, шансы этого равны 1/4. Для 6-гранника шансы выпадения 2-ки – 1/6. Для 8-гранника – 1/8.

Шаг 4. Выпадение 2-ки для 4-гранника = 1/3 * 1/4 = 1/12, для 6-гранника = 1/3 * 1/6 = 1/18, для 8-гранника = 1/3 * 1/8 = 1/24.

Шаг 5. Общая вероятность выпадении 2-ки = 1/12 + 1/18 + 1/24 = 13/72. Это число меньше 1, потому что шансы бросить 2-ку меньше 1. Но мы знаем, что уже бросили именно 2-ку. Таким образом, нам нужно разделить шансы каждого варианта из шага 4 на 13/72, чтобы сумма всех шансов для всех костей лечь 2-ой равнялась 1. Этот процесс называется нормализацией.

Нормализуя каждую взвешенную вероятность, мы находим вероятность того, что именно эта кость была выбрана:

  • 4-гранник = (1/12) / (13/72) = 6/13
  • 6-гранник = (1/18) / (13/72) = 4/13
  • 8-гранник = (1/24) / (13/72) = 3/13

И это ответ.

Когда мы начали решать задачу, мы предположили, что вероятность выбрать определенную кость равна 33,3%. После выпадения 2-ки, мы рассчитали, что шансы, что первоначально был выбран 4-гранник выросли до 46,1%, шансы выбора 6-гранника снизились до 30,8%, а шансы, что был выбран 8-гранник и вовсе упали до 23,1%.

Если сделать еще один бросок, мы могли бы использовать новые рассчитанные проценты в качестве наших начальных предположений и уточнить вероятности на основе второго наблюдения.

Если у вас единственное наблюдение, все шаги удобно представить в виде таблицы:

Таблица. 1. Пошаговое решение в виде таблицы (формулы см. в файле Excel на листе Пример 1 )

Обратите внимание:

  • Если бы вместо 2-ки выпала, например, 7-ка, то шансы на шаге 3 у 4- и 6-гранника равнялись бы нулю, и после нормализации шансы 8-гранника составили бы 100%.
  • Поскольку пример включает лишь три кости и один бросок, мы использовали простые дроби. Для большинства проблем с большим количеством вариантов и событий легче работать с десятичными дробями.

Пример 2. Больше костей. Больше бросков

На этот раз у нас 6 костей с 4, 6, 8, 10, 12 и 20 гранями. Мы выбираем одну из них случайным образом и бросаем 15 раз. Какова вероятность того, что была выбрана определенная кость?

Я использую модель в Excel (рис. 1; см. лист Пример 2 ). Случайные числа генерируются в столбце B с помощью функции =СЛУЧМЕЖДУ(1;$B$9). В данном случае в ячейке В9 выбран 8-гранник, поэтому случайные числа могут принимать значения от 1 до 8. Поскольку Excel обновляет случайные числа после каждого изменения на листе, я скопировал столбец В в буфер и вставил только значения в столбец C. Теперь значения не меняются и будут использоваться для последующих рисунков. (Я добавил вам возможность «поиграть» с выбором числа граней и случайными бросками на листе Пример 2 игровой . Особенно любопытные результаты получаются, если в ячейке В9 установить число 13 🙂 – Прим. Багузина .)

Рис. 1. Генератор случайных чисел

Шаг 2. Поскольку всего шесть кубиков, то вероятность выбрать один случайным образом равна 1/6 или 0,167.

Шаги 3 и 4. Запишем уравнение для вероятности первоначального выбора определенной кости после соответствующего броска. Как мы видели в конце примера 1, некоторые броски могут не соответствовать тем или иным костям. Например, выпадение 9-ки делает вероятность 4-, 6- и 8-гранной кости равной нулю. Если же выпало «легитимное» число, то его вероятность для данной кости равна единице, деленной на число граней. Для удобства мы объединили шаги 3 и 4, поэтому мы сразу запишем формулу для вероятности броска, умноженной на нормализованную вероятность после предыдущего броска (рис. 2):

ЕСЛИ(бросок > числа граней; 0; 1/число граней * предыдущая нормализованная вероятность)

Если вы аккуратно воспользуетесь , то сможете протащить эту формулу на все строки.

Рис. 2. Уравнение вероятности; чтобы увеличить изображение кликните на нем правой кнопкой мыши и выберите Открыть картинку в новой вкладке

Шаг 5. Последним шагом является нормализация результатов после каждого броска (область L11:R28 на рис. 3).

Рис. 3. Нормализация результатов

Итак, после 15 бросков с вероятностью 96,4% мы можем считать, что первоначально выбрали 8-гранную кость. Хотя остаются шансы, что была выбрана кость с бо льшим числом граней: 3,4% – за 10-гранную кость, 0,2% – за 12-гранную, 0,0001% – за 20-гранную. А вот вероятность 4- и 6-гранных костей равна нулю, так как среди выпавших чисел были 7 и 8. Это, естественно, соответствует тому, что мы ввели число 8 в ячейку В9, ограничив значения для генератора случайных чисел.

Если мы построим график вероятности каждого варианта первоначального выбора кости, бросок за броском, то увидим (рис. 4):

  • После первого броска вероятность выбора 4-гранной кости падает до нуля, так как сразу же выпала 6-ка. Поэтому лидерство захватил вариант 6-гранной кости.
  • Для нескольких первых бросков 6-гранная кость имеет наибольшую вероятность, так как она содержит меньше всего граней среди костей, которые могут отвечать выпавшим значениям.
  • На пятом броске выпала 8-ка, вероятность 6-гранника падает до нуля, и 8-гранник становится лидером.
  • Вероятности 10-, 12- и 20-гранных костей при первых бросках плавно уменьшались, а затем испытали всплеск, когда 6-гранная кость выпала из гонки. Это связано с тем, что результаты были нормализованы по гораздо меньшей выборке.

Рис. 4. Изменение вероятностей бросок за броском

Обратите внимание:

  • Теорема Байеса для нескольких событий – просто повторное умножение на последовательно обновляемых данных. Окончательный ответ не зависит от того, в каком порядке наступали события.
  • Не обязательно нормализовать вероятности после каждого события. Можете сделать это один раз в самом конце. Проблема в том, что, если не заниматься нормализацией постоянно, вероятности становятся такими маленькими, что Excel может работать некорректно из-за ошибок округления. Таким образом, практичнее нормализовывать на каждом шаге, чем проверять, не подошли ли вы к границе точности Excel.

Теорема Байеса. Терминология

  • Начальная вероятность, вероятность каждой возможности до того, как произошло наблюдение, называется априорной .
  • Нормализованный ответ после вычисления вероятности для каждой точки данных (для каждого наблюдения) называется апостериорным .
  • Суммарная вероятность, используемая для нормализации ответа, является константой нормализации .
  • Условная вероятность, т.е. вероятность каждого события, называется правдоподобием .

Вот как эти термины выглядят для первого примера (сравни с рис. 1).

Рис. 5. Термины теоремы Байеса

Сама теорема Байеса в новых определениях выглядит так (сравни с формулой 2):

Пример 3. Нечестная монета

У вас есть монета, которая, как вы подозреваете, не является честной. Вы кидаете ее 100 раз. Вычислите вероятность того, что нечестная монета упадет орлом вверх с вероятностью 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%.

Обратимся к файлу Excel, лист Пример 3 . В ячейках В13:В112 я сгенерировал случайное число от 0 до 1, и с помощью специальной вставки перенес значения в столбец С. В ячейке В8 я указал ожидаемый процент выпадений орла для этой нечестной монеты. В столбце D с помощью функции ЕСЛИ я превратил вероятности в единицы (орлы, для вероятности р от 0,35 до 1) или в нули (решки, для р от 0 до 0,35).

Рис. 6. Исходные данные для подбрасываний нечестной монеты

У меня получилось 63 орла и 37 решек, что хорошо соответствует генератору случайных чисел, если на входе мы установили вероятность орлов 65%.

Шаг 1. Мы хотим вычислить вероятности того, что орлы относятся к корзинам 0%, 10%, … 100%, наблюдая 63 орла и 37 решки при 100 бросках.

Шаг 2. Есть 11 начальных возможностей: вероятности 0%, 10%, … 100%. Будем наивно полагать, что все начальные возможности имеют равную вероятность, то есть 1 шанс из 11 (рис. 7). (Более реалистично мы могли бы придать начальным вероятностям, располагающимся в районе 50% большие веса, чем вероятностям на краях – 0% и 100%. Но самое замечательное заключается в том, что, поскольку у нас целых 100 подбрасываний, первоначальные вероятности не так уж важны!)

Шаг 3 и 4. Расчет правдоподобия. Чтобы рассчитать вероятность после каждого подбрасывания в Excel используется функция ЕСЛИ. В случае, если выпал орел, правдоподобие равно произведению возможности на предыдущую нормированную вероятность. Если выпала решка, правдоподобие равно (1 минус возможность) * предыдущую нормированную вероятность (рис. 8).

Рис. 8. Правдоподобие

Шаг 5. Нормализация выполняется, как и в предыдущем примере.

Результаты наиболее наглядно представить в виде серии гистограмм. Начальный график – это априорная вероятность. Затем каждый новый график – ситуация после очередных 25 бросков (рис. 9). Поскольку мы задали на входе вероятность орла 65%, представленные графики не вызывают удивления.

Рис. 9. Вероятности вариантов после серии бросков

Что на самом деле означает 70%-ный шанс для возможности 0,6? Это не 70%-ный шанс, что монета точно попадает на 60%. Поскольку у нас был шаг размером 10% между вариантами, мы оцениваем, что есть 70%-ный шанс, что эта монета попадет в диапазон между 55 и 65%. Решение использовать 11 начальных вариантов, с шагом 10% было полностью произвольным. Мы могли бы использовать 101 начальную возможность с шагом 1%. В этом случае мы бы получили результат с максимумом при 63% (так как у нас было 63 орла) и более плавное падение на графике.

Обратите внимание, в этом примере мы наблюдали более медленную сходимость по сравнению с Примером 2. Это связано с тем, что разница между монетой, переворачивающейся 60% против 70%, меньше, чем между кубиками с 8 и 10 гранями.

Пример 4. Еще кости. Но с ошибками в потоке данных

Вернемся к примеру 2. У друга в мешке кости с 4, 6, 8, 10, 12, 20 гранями. Он вынимает одну кость случайным образом и бросает ее 80 раз. Он записывает выпавшие числа, но в 5% случаев ошибается. В этом случае появляется случайное число от 1 и 20 вместо фактического результата броска. После 80 бросков, как вы думаете, какая кость была выбрана?

В качестве входных данных в Excel (лист Пример 4 ) я ввел количество сторон (8), а также вероятность того, что данные содержат ошибку (0,05). Формула для значения броска (рис. 10):

ЕСЛИ (СЛЧИС() > вероятности ошибки; СЛУЧМЕЖДУ(1; число граней); СЛУЧМЕЖДУ(1;20))

Если случайное число больше вероятности ошибки (0,05), то при этом броске ошибки не было, так что генератор случайных чисел выбирает значение между 1 и «загаданным» количеством сторон кубика, в противном случае следует сгенерировать случайное целое число между 1 и 20.

Рис. 10. Расчет значения броска

На первый взгляд, мы могли бы решить эту проблему так же, как и в примере 2. Но, если не учитывать вероятность ошибки, мы получим график вероятностей как на рис. 11. (Самый простой способ получить его в EXCEL – сначала сгенерировать броски в столбце В при значении ошибки 0,05; затем перенести значения бросков в столбец С, и наконец, поменять значение в ячейке В11 на 0; поскольку формулы расчета правдоподобия в диапазоне D14:J94 ссылаются на ячейку В11, эффект не учета ошибок будет достигнут.)

Рис. 11. Обработка значения бросков без учета вероятности присутствия ошибок

Поскольку вероятность ошибки мала, а генератор случайных чисел настроен на 8-гранник, вероятность последнего с каждым броском становится доминирующей. Более того, так как ошибка может с вероятностью 40% (восемь из двадцати) дать значение в пределах 8, то значение ошибки, повлиявшее на результат, появилось лишь на 63-ем броске. Однако, если ошибки не берутся в расчет, вероятность 8-гранника обратится в ноль, а 100% получит 20-гранник. Заметим, что к 63-му броску вероятность 20-гранника составляла всего 2*10 –25 .

Шансы получить ошибку – 5%, а вероятность того, что ошибка даст значение больше 8, составляет 60%. Т.е., 3% бросков дадут ошибку со значением более 8, которая и случилась на броске 63, когда была сделана запись 17. Если формула правдоподобия не будет учитывать возможные ошибки, мы получим взлет вероятности 20-гранника с 2*10 –25 до 1, как на рис. 11.

Если человек скрупулезно наблюдает за данными, он может обнаружить эту ошибку и не принимать в расчет ошибочные значения. Для автоматизации процесса дополните уравнение правдоподобия проверкой на ошибки. Никогда не устанавливайте нулевые вероятности ошибок, если вы допускаете, что их нельзя полностью исключить. Если вы учтете вероятности ошибок, то сотни «правильных» данных не позволят отдельным ошибочным значениям испортить картину.

Дополняем уравнение функции правдоподобия проверкой на ошибки (рис. 12):

ЕСЛИ($C15>F$13;$B$11*1/20*N14;($B$11*1/20+(1-$B$11)/F$13)*N14)

Рис. 12. Функция правдоподобия с учетом ошибок

Если записанное значение броска больше числа граней ($C15>F$13) условную вероятность не обнуляем, а уменьшаем с учетом вероятности ошибки ($B$11*1/20*N14). Если записанное число меньше числа граней, условную вероятность увеличиваем не в полном объеме, а также с учетом возможной ошибки ($B$11*1/20+(1-$B$11)/F$13)*N14). В последнем случае считаем, что записанное число могло явиться как следствием ошибки ($B$11*1/20), так и результатом правильной записи (1-$B$11)/F$13).

Изменение нормализованной вероятности становится более устойчивым к возможным ошибкам (рис. 13).

Рис. 13. Изменение нормализованной вероятности от броска к броску

В этом примере 6-гранная кость изначально является фаворитом, потому что первые 3 броска – 5, 6, 1. Потом выпадет 7-ка и вероятность 8-гранника идет вверх. Однако, появление 7-ки не обнуляет вероятность 6-гранника, потому что 7-ка может быть ошибкой. И следующие девять бросков вроде бы подтверждают это, когда выпадают значения не более 6: вероятность 6-гранника снова начинает расти. Тем не менее, на 14-м и 15-м бросках опять выпадают 7-ки, и вероятность 6-гранной кости приближается к нулю. Позже, появляются значения 17 и 19, которые «система» определяет, как явно ошибочные.

Пример 4A. Что делать, если у вас действительно высокая частота ошибок?

Этот пример аналогичен предыдущему, но частота ошибок увеличена с 5% до 75%. Поскольку данные стали менее релевантными, мы увеличили число бросков до 250. Применяя те же уравнения, что и в примере 4 получим следующий график:

Рис. 14. Нормализованная вероятность при 75% ошибочных записей

Со столь высокой частотой ошибок потребовалось гораздо больше бросков. К тому же результат менее определен, и 6-гранник периодически становится более вероятным. Если у вас еще более высокая частота ошибок, например, 99%, все равно можно получить правильный ответ. Очевидно, чем выше частота ошибок, тем больше бросков нужно сделать. Для 75% ошибок мы получаем одно правильное значение из четырех. Если же вероятность ошибки составит 99%, мы бы получили лишь одно правильное значение из ста. Нам, вероятно, понадобится в 25 раз больше данных, чтобы выявить доминирующий вариант.

А что если вы не знаете вероятность ошибки? Рекомендую «поиграть» с примерами 4 и 4А, устанавливая в ячейке В11 различные значения от очень маленьких (например, 2*10 –25 для примера 4) до очень больших (например, 90% для примера 4А). Вот основные выводы:

  • Если оценка частоты ошибок выше, чем фактическая частота ошибок, результаты будут сходиться медленнее, но все равно сходятся к правильному ответу.
  • Если вы оцениваете частоту ошибок слишком низко, существует риск того, что результаты не будут правильными.
  • Чем меньше фактическая частота ошибок, тем больше места для маневра у вас есть в угадывании частоты ошибок.
  • Чем выше фактическая частота ошибок, тем больше данных вам нужно.

Пример 5. Проблема немецкого танка

В этой задаче вы пытаетесь оценить, сколько танков было произведено, исходя из серийных номеров захваченных танков. Теорема Байеса была использована союзниками во время второй мировой войны, и в конечном итоге дала результаты более низкие, чем те, о которых сообщала разведка. После войны записи показали, что статистические оценки с использованием теоремы Байеса были более точными. (Любопытно, что я написал заметку по этой теме, еще не зная, что такое вероятности по Байесу; см. . – Прим. Багузина .)

Итак, вы анализируете серийные номера, снятые с разбитых или захваченных танков. Цель – оценить, сколько танков было произведено. Вот что вы знаете о серийных номерах танков:

  • Они начинаются с 1.
  • Это целые числа без пропусков.
  • Вы нашли следующие серийные номера: 30, 70, 140, 125.

Нас интересует ответ на вопрос: каково максимальное число танков? Я начну с 1000 танков. Но кто-то другой мог начать с 500 танков или 2000 танков, и мы можем получить разные результаты. Я собираюсь анализировать каждые 20 танков, что означает, что у меня есть 50 начальных возможностей для количества танков. Можно усложнить модель, и проанализировать для каждого отдельного числа в Excel, но ответ сильно не изменится, а анализ значительно усложнится.

Я предполагаю, что все возможности количества танков равны (т.е. вероятность наличия 50 танков, такая же, как и 500). Обратите внимание, что в файле Excel больше столбцов, чем показано на рисунке. Условная вероятность для функции правдоподобия очень похожа на условную вероятность из Примера 2:

  • Если наблюдаемый серийный номер больше максимального серийного номера для этой группы, то вероятность наличия такого количества танков равна 0.
  • Если наблюдаемый серийный номер меньше максимального серийного номера для этой группы, вероятность есть единица, деленная на число танков, умноженная на нормализованную вероятность на предыдущем шаге (рис. 15).

Рис. 15. Условные вероятности распределения танков по группам

Нормализованные вероятности выглядят следующим образом (рис. 16).

Рис. 16. Нормализованные вероятности количества танков

Наблюдается большой всплеск вероятности для максимально наблюдаемого серийного номера. После этого происходит асимптотическое снижение к нулю. Для 4 обнаруженных серийных номеров максимум отвечает 140 танкам. Но, несмотря на то, что это число является наиболее вероятным ответом, это не лучшая оценка, так как она почти наверняка недооценивает количество танков.

Если взять средневзвешенное количество танков, т.е. суммировать попарно перемноженные группы и их вероятности для четырех танков, применив формулу:

ОКРУГЛ(СУММПРОИЗВ(BD9:DA9;BD14:DA14);0)

мы получаем наилучшую оценку равную 193.

Если бы мы первоначально исходили из 2000 танков, средневзвешенное значение было бы 195 танков, что по существу ничего не меняет.

Пример 6. Тестирование на наркотики

Вы знаете, что 0,5% населения употребляет наркотики. У вас есть тест, который дает 99% истинных положительных результатов для употребляющих наркотик, и 98% истинных отрицательных результатов для не употребляющих. Вы случайным образом выбираете человека, проводите тест и получаете положительный результат. Какова вероятность того, что человек на самом деле употребляет наркотики?

Для нашего случайного индивидуума первоначальная вероятность того, что он является потребителем наркотиков, равна 0,5%, и вероятность того, что он не является потребителем наркотиков составляет 99,5%.

Следующий шаг – расчет условной вероятности:

  • Если испытуемый употребляет наркотики, то тест будет положительным в 99% случаев и отрицательным в 1% случаев.
  • Если испытуемый не употребляет наркотики, то тест будет положительным в 2% случаев и отрицательным в 98% случаев.

Функции правдоподобия для употребляющих и не употребляющих наркотики представлены на рис. 17.

Рис. 17. Функции правдоподобия: (а) для употребляющих наркотики; (б) для не употребляющих наркотики

После нормализации, мы видим, что, несмотря на положительный результат теста, вероятность того, что этот случайный человек, употребляет наркотики, составляет всего 0,1992 или 19,9%. Этот результат удивляет многих людей, потому что в конце концов, точность теста довольно высока – целых 99%. Поскольку начальная вероятность была лишь 0,5%, даже большого увеличения этой вероятности было недостаточно, чтобы сделать отклик действительно большим.

Интуиция большинства людей не учитывает начальную вероятность. Даже если условная вероятность действительно высока, очень низкая начальная вероятность может привести к низкой конечной вероятности. Интуиция большинства людей настроена вокруг начальной вероятности 50/50. Если это так, и результат теста положителен, то нормализованная вероятность составит ожидаемые 98%, подтверждая, что человек употребляет наркотики (рис. 18).

Рис. 18. Результат теста при исходной вероятности 50/50

Альтернативный подход к объяснению подобных ситуаций см. .

Библиографию по теореме Байеса смотри в конце заметки .

Если событие А может произойти только при выполнении одного из событий , которые образуютполную группу несовместных событий , то вероятность события А вычисляется по формуле

Эта формула называется формулой полной вероятности .

Вновь рассмотрим полную группу несовместных событий , вероятности появления которых. СобытиеА может произойти только вместе с каким-либо из событий , которые будем называтьгипотезами . Тогда по формуле полной вероятности

Если событие А произошло, то это может изменить вероятности гипотез .

По теореме умножения вероятностей

.

Аналогично, для остальных гипотез

Полученная формула называется формулой Байеса (формулой Бейеса ). Вероятности гипотез называютсяапостериорными вероятностями , тогда как -априорными вероятностями .

Пример. В магазин поступила новая продукция с трех предприятий. Процентный состав этой продукции следующий: 20% - продукция первого предприятия, 30% - продукция второго предприятия, 50% - продукция третьего предприятия; далее, 10% продукции первого предприятия высшего сорта, на втором предприятии - 5% и на третьем - 20% продукции высшего сорта. Найти вероятность того, что случайно купленная новая продукция окажется высшего сорта.

Решение. Обозначим через В событие, заключающееся в том, что будет куплена продукция высшего сорта, через обозначим события, заключающиеся в покупке продукции, принадлежащей соответственно первому, второму и третьему предприятиям.

Можно применить формулу полной вероятности, причем в наших обозначениях:

Подставляя эти значения в формулу полной вероятности, получим искомую вероятность:

Пример. Один из трех стрелков вызывается на линию огня и производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго - 0,5; для третьего - 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

Решение. Возможны три гипотезы:

На линию огня вызван первый стрелок,

На линию огня вызван второй стрелок,

На линию огня вызван третий стрелок.

Так как вызов на линию огня любого стрелка равновозможен, то

В результате опыта наблюдалось событие В - после произведенных выстрелов мишень не поражена. Условные вероятности этого события при сделанных гипотезах равны:

по формуле Байеса находим вероятность гипотезы после опыта:

Пример. На трех станках-автоматах обрабатываются однотипные детали, поступающие после обработки на общий конвейер. Первый станок дает 2% брака, второй – 7%, третий – 10%. Производительность первого станка в 3 раза больше производительности второго, а третьего – в 2 раза меньше, чем второго.

а) Каков процент брака на конвейере?

б) Каковы доли деталей каждого станка среди бракованных деталей на конвейере?

Решение. Возьмем с конвейера наудачу одну деталь и рассмотрим событие А – деталь бракованная. Оно связано с гипотезами относительно того, где была обработана эта деталь: – взятая наудачу деталь обработана на-ом станке,.

Условные вероятности (в условии задачи они даны в форме процентов):

Зависимости между производительностями станков означают следующее:

А так как гипотезы образуют полную группу, то .

Решив полученную систему уравнений, найдем: .

а) Полная вероятность того, что взятая наудачу с конвейера деталь – бракованная:

Другими словами, в массе деталей, сходящих с конвейера, брак составляет 4%.

б) Пусть известно, что взятая наудачу деталь – бракованная. Пользуясь формулой Байеса, найдем условные вероятности гипотез:

Таким образом, в общей массе бракованных деталей на конвейере доля первого станка составляет 33%, второго – 39%, третьего – 28%.

Практические задания

Задание 1

Решение задач по основным разделам теории вероятности

Цель - получение практических навыков в решении задач по

разделам теории вероятностей

Подготовка к выполнению практического задания

Ознакомиться с теоретическим материалом по данной тематике, изучить содержание теоретического, а также соответствующие разделы в литературных источниках

Порядок выполнения задания

Решить 5 задач согласно номеру варианта задания, приведенного в таблице 1.

Варианты исходных данных

Таблица 1

номер задачи

Состав отчета по заданию 1

5 решенных задач согласно номеру варианта.

Задачи для самостоятельного решения

1.. Являются ли случаями следующие группы событий: а) опыт - бросание монеты; события: А1 - появление герба; А2 - появление цифры; б) опыт - бросание двух монет; события: В1 - появление двух гербов; В2 - появление двух цифр; В3 - появление одного герба и одной цифры; в) опыт - бросание игральной кости; события: С1 - появление не более двух очков; С2 - появление трех или четырех очков; С3 - появление не менее пяти очков; г) опыт - выстрел по мишени; события: D1 - попадание; D2 - промах; д) опыт - два выстрела по мишени; события: Е0 - ни одного попадания; Е1 - одно попадание; Е2 - два попадания; е) опыт - вынимание двух карт из колоды; события: F1 - появление двух красных карт; F2 - появление двух черных карт?

2. В урне A белых и B черных шаров. Из урны вынимают наугад один шар. Найти вероятность того, что этот шар - белый.

3. В урне A белых и B черных шаров. Из урны вынимают один шар и откладывают в сторону. Этот шар оказался белым. После этого из урны берут еще один шар. Найти вероятность того, что этот шар тоже будет белым.

4. В урне A белых и B черных шаров. Из урны вынули один шар и, не глядя, отложили в сторону. После этого из урны взяли еще один шар. Он оказался белым. Найти вероятность того, что первый шар, отложенный в сторону, - тоже белый.

5. Из урны, содержащей A белых и B черных шаров, вынимают один за другим все шары, кроме одного. Найти вероятность того, что последний оставшийся в урне шар будет белым.

6. Из урны, в которой A белых шаров и B черных, вынимают подряд все находящиеся в ней шары. Найти вероятность того, что вторым по порядку будет вынут белый шар.

7. В урне A белых и B черных шаров (A > 2). Из урны вынимают сразу два шара. Найти вероятность того, что оба шара будут белыми.

8. В урне A белых и B черных шаров (A > 2, B > 3). Из урны вынимают сразу пять шаров. Найти вероятность р того, что два из них будут белыми, а три черными.

9. В партии, состоящей из X изделий, имеется I дефектных. Из партии выбирается для контроля I изделий. Найти вероятность р того, что из них ровно J изделий будут дефектными.

10. Игральная кость бросается один раз. Найти вероятность следующих событий: А - появление четного числа очков; В - появление не менее 5 очков; С- появление не более 5 очков.

11. Игральная кость бросается два раза. Найти вероятность р того, что оба раза появится одинаковое число очков.

12. Бросаются одновременно две игральные кости. Найти вероятности следующих событий: А - сумма выпавших очков равна 8; В - произведение выпавших очков равно 8;С- сумма выпавших очков больше, чем их произведение.

13. Бросаются две монеты. Какое из событий является более вероятным: А - монеты лягут одинаковыми сторонами; В - монеты лягут разными сторонами?

14. В урне A белых и B черных шаров (A > 2; B > 2). Из урны вынимают одновременно два шара. Какое событие более вероятно: А - шары одного цвета; В - шары разных цветов?

15. Трое игроков играют в карты. Каждому из них сдано по 10 карт и две карты оставлены в прикупе. Один из игроков видит, что у него на руках 6 карт бубновой масти и 4 - не бубновой. Он сбрасывает две карты из этих четырех и берет себе прикуп. Найти вероятность того, что он прикупит две бубновые карты.

16. Из урны, содержащей п перенумерованных шаров, наугад вынимают один за другим все находящиеся в ней шары. Найти вероятность того, что номера вынутых шаров будут идти по порядку: 1, 2,..., п.

17. Та же урна, что и в предыдущей задаче, но каждый шар после вынимания вкладывается обратно и перемешивается с другими, а его номер записывается. Найти вероятность того, что будет записана естественная последовательность номеров: 1, 2,..., п.

18. Полная колода карт (52 листа) делится наугад на две равные пачки по 26 листов. Найти вероятности следующих событий: А - в каждой из пачек окажется по два туза; В - в одной из пачек не будет ни одного туза, а в другой - все четыре; С-в одной из пачек будет один туз, а в другой - три.

19. В розыгрыше первенства по баскетболу участвуют 18 команд, из которых случайным образом формируются две группы по 9 команд в каждой. Среди участников соревнований имеется 5 команд

экстра-класса. Найти вероятности следующих событий: А - все команды экстра-класса попадут в одну и ту же группу; В - две команды экстра-класса попадут в одну из групп, а три - в другую.

20. На девяти карточках написаны цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8. Две из них вынимаются наугад и укладываются на стол в порядке появления, затем читается полученное число, например 07(семь), 14 (четырнадцать) и т. п. Найти вероятность того, что число будет четным.

21. На пяти карточках написаны цифры: 1, 2, 3, 4, 5. Две из них, одна за другой, вынимаются. Найти вероятность того, что число на второй карточке будет больше, чем на первой.

22. Тот же вопрос, что в задаче 21, но первая карточка после вынимания кладется обратно и перемешивается с остальными, а стоящее на ней число записывается.

23. В урне A белых, B черных и C красных шаров. Из урны вынимают один за другим все находящиеся в ней шары и записывают их цвета. Найти вероятность того, что в этом списке белый цвет появится раньше черного.

24. Имеется две урны: в первой A белых и B черных шаров; во второй C белых и D черных. Из каждой урны вынимается по шару. Найти вероятность того, что оба шара будут белыми.

25. В условиях задачи 24 найти вероятность того, что вынутые шары будут разных цветов.

26. В барабане револьвера семь гнезд, из них в пяти заложены патроны, а два оставлены пустыми. Барабан приводится во вращение, в результате чего против ствола случайным образом оказывается одно из гнезд. После этого нажимается спусковой крючок; если ячейка была пустая, выстрела не происходит. Найти вероятность р того, что, повторив такой опыт два раза подряд, мы оба раза не выстрелим.

27. В тех же условиях (см. задачу 26)найти вероятность того, что оба раза выстрел произойдет.

28. В урне имеется А; шаров, помеченных номерами 1, 2, ..., к Из урны I раз вынимается по одному шару (I <к), номер шара записывается и шар кладется обратно в урну. Найти вероятность р того, что все записанные номера будут различны.

29. Из пяти букв разрезной азбуки составлено слово «книга». Ребенок, не умеющий читать, рассыпал эти буквы и затем собрал в произвольном порядке. Найти вероятность р того, что у него снова получилось слово «книга».

30. Из букв разрезной азбуки составлено слово «ананас». Ребенок, не умеющий читать, рассыпал эти буквы и затем собрал в произвольном порядке. Найти вероятность р того, что у него снова слово «ананас

31. Из полной колоды карт (52 листа, 4 масти) вынимается сразу несколько карт. Сколько карт нужно вынуть для того, чтобы с вероятностью, большей чем 0,50, утверждать, что среди них будут карты одной и той же масти?

32. N человек случайным образом рассаживаются за круглым столом (N > 2). Найти вероятность р того, что два фиксированных лица А и В окажутся рядом.

33. Та же задача (см 32), но стол прямоугольный, и N человек рассаживаются случайно вдоль одной из его сторон.

34. На бочонках лото написаны числа от 1 до N. Из этих N бочонков случайно выбираются два. Найти вероятность того что на обоих бочонках написаны числа, меньшие чем k (2

35. На бочонках лото написаны числа от 1 до N. Из этих N бочонков случайно выбираются два. Найти вероятность того что на одном из бочонков написано число, большее чем k, а на другом - меньшее чем k. (2

36. Батарея из М орудий ведет огонь по группе, состоящей из N целей (М < N). Орудия выбирают себе цели последовательно, случайным образом, при условии, что никакие два орудия стрелять по одной цели не могут. Найти вероятность р того, что будут обстреляны цели с номерами 1, 2,..., М.

37.. Батарея, состоящая из к орудий, ведет огонь по группе, состоящей из I самолетов (к < 2). Каждое орудие выбирает себе цель случайно и независимо от других. Найти вероятность того, что все к орудий будут стрелять по одной и той же цели.

38. В условиях предыдущей задачи найти вероятность того, что все орудия будут стрелять по разным целям.

39. Четыре шарика случайным образом разбрасываются по четырем лункам; каждый шарик попадает в ту или другую лунку с одинаковой вероятностью и независимо от других (препятствий к попаданию в одну и ту же лунку нескольких шариков нет). Найти вероятность того, что в одной из лунок окажется три шарика, в другой - один, а в двух остальных лунках шариков не будет.

40. Маша поссорилась с Петей и не хочет ехать с ним в одном автобусе. От общежития до института с 7 до 8 отправляется 5 автобусов. Не успевший на эти автобусы опаздывает на лекцию. Сколькими способами Маша и Петя могут доехать до института на разных автобусах и не опоздать на лекцию?

41. В информационно-технологическом управлении банка работает 3 аналитика, 10 программистов и 20 инженеров. Для сверхурочной в праздничный день начальник управления должен выделить одного сотрудника. Сколькими способами это можно сделать?

42. Начальник службы безопасности банка должен ежедневно расставлять 10 охранников по 10 постам. Сколькими способами это можно сделать?

43. Новый президент банка должен назначить 2 новых вице президентов из числа 10 директоров. Сколькими способами это можно сделать?

44. Одна из воюющих сторон захватил 12, а другая – 15 пленных. Сколькими способами можно обменять 7 военнопленных?

45. Петя и Маша коллекционируют видеодиски. У Пети есть 30 комедий, 80 боевиков и 7 мелодрам, у Маши – 20 комедий, 5 боевиков и 90 мелодрам. Сколькими способами Петя и Маша могут обменяться 3 комедиями, 2 боевиками и 1 мелодрамой?

46. В условиях задачи 45 сколькими способами Петя и Маша могут обменяться 3 мелодрамами и 5 комедиями?

47. В условиях задачи 45 сколькими способами Петя и Маша могут обменяться 2 боевиками и 7 комедиями.

48. Одна из воюющих сторон захватил 15, а другая – 16 пленных. Сколькими способами можно обменять 5 военнопленных?

49. Сколько автомобилей можно зарегистрировать в 1 городе, если номер имеет 3 цифры и 3 буквы (только те чьё написание совпадает с латинскими – А,В,Е,К,М,Н,О,Р,С,Т,У,Х)?

50. Одна из воюющих сторон захватил 14, а другая – 17 пленных. Сколькими способами можно обменять 6 военнопленных?

51. Сколько различных слов можно составить переставляя буквы в слове «мама»?

52. В корзине 3 красных и 7 зеленых яблок. Из нее вынимают одно яблоко. Найти вероятность того, что оно будет красным.

53. В корзине 3 красных и 7 зеленых яблок. Из нее вынули и отложили в сторону одно зеленое яблоко. После чего из корзины вынимают еще 1 яблоко. Какова вероятность того, что это яблоко будет зеленым?

54. В партии, состоящей из 1000 изделий, 4 имеют дефекты. Для контроля выбирают партию из 100 изделий. Какова вероятность ТОО, что в контрольной партии не окажется бракованных?

56.В 80-е годы в СССР была популярна игра «спортлото 5 из 36». Играющий отмечал на карточке 5 чисел от 1 до 36 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок не угадал ни одного числа.

57.В 80-е годы в СССР была популярна игра «спортлото 5 из 36». Играющий отмечал на карточке 5 чисел от 1 до 36 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок угадал одно число.

58.В 80-е годы в СССР была популярна игра «спортлото 5 из 36». Играющий отмечал на карточке 5 чисел от 1 до 36 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок угадал 3 числа.

59.В 80-е годы в СССР была популярна игра «спортлото 5 из 36». Играющий отмечал на карточке 5 чисел от 1 до 36 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок не угадал все 5 чисел.

60.В 80-е годы в СССР была популярна игра «спортлото 6 из 49». Играющий отмечал на карточке 6 чисел от 1 до 49 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок угадал 2 числа.

61. В 80-е годы в СССР была популярна игра «спортлото 6 из 49». Играющий отмечал на карточке 6 чисел от 1 до 49 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок не угадал ни одного числа.

62.В 80-е годы в СССР была популярна игра «спортлото 6 из 49». Играющий отмечал на карточке 6 чисел от 1 до 49 и получал призы различного достоинства если он угадывал разное число чисел, объявленных тиражной комиссией. Найти вероятность того, что игрок угадал все 6 чисел.

63. В партии, состоящей из 1000 изделий, 4 имеют дефекты. Для контроля выбирают партию из 100 изделий. Какова вероятность ТОО, что в контрольной партии окажется только 1 бракованная?

64. Сколько различных слов можно составить переставляя буквы в слове «книга»?

65. Сколько различных слов можно составить переставляя буквы в слове «ананас»?

66. В лифт вошло 6 человек, а общежитие имеет 7 этажей. Какова вероятность того что все 6 человек выйдут на одном этаже?

67. В лифт вошло 6 человек, здание имеет 7 этажей. Какова вероятность того что все 6 человек выйдут на разных этажах?

68. Во время грозы на участке между 40 и 79 км линии электропередачи произошел обрыв провода. Считая что обрыв одинаково возможен в любой точке, найти вероятность того что обрыв произошел между 40-м и 45-м километрами.

69. На 200 километровом участке газопровода происходит утечка газа между компрессорными станциями А и В, которая одинаково возможна в любой точке трубопровода. какова вероятность того что утечка происходит не далее 20 км от А

70. На 200 километровом участке газопровода происходит утечка газа между компрессорными станциями А и В, которая одинаково возможна в любой точке трубопровода. какова вероятность того что утечка происходит ближе к А, чем к В

71. Радар инспектора ДПС имеет точность 10 км\час и округляет в ближайшую сторону. Что происходит чаще – округление в пользу водителя или инспектора?

72. Маша тратит на дорогу в институт от 40 до 50 минут, причем любое время в этом промежутке является равновероятным. Какова вероятность того что она потратит на дорогу от 45 до 50 минут.

73. Петя и Маша договорились встретиться у памятника Пушкину с 12 до 13 часов, однако никто не смог указать точно время прихода. Они договорились ждать друг друга 15 минут. Какова вероятность их встречи?

74. Рыбаки поймали в пруду 120 рыб, из них 10 оказались окольцованными. Какова вероятность поймать окольцованную рыбу?

75. Из корзины содержащей 3 красных и 7 зеленых яблок вынимают все яблоки по очереди. какова вероятность того что 2-е яблоко окажется красным?

76. Из корзины содержащей 3 красных и 7 зеленых яблок вынимают все яблоки по очереди. какова вероятность того что последнее яблоко окажется зеленым?

77. Студенты считают что из 50 билетов 10 являются «хорошими». Петя и Маша по очереди тянут по одному билету. Какова вероятность того, что Маше достался «хороший» билет?

78. Студенты считают что из 50 билетов 10 являются «хорошими». Петя и Маша по очереди тянут по одному билету. Какова вероятность того, что им обоим достался «хороший» билет?

79. Маша пришла на экзамен зная ответы на 20 вопросов программы из 25. Профессор задает 3 вопроса. Какова вероятность того что Маша ответит на 3 вопроса?

80. Маша пришла на экзамен зная ответы на 20 вопросов программы из 25. Профессор задает 3 вопроса. Какова вероятность того что Маша не ответит ни на один вопрос?

81. Маша пришла на экзамен зная ответы на 20 вопросов программы из 25. Профессор задает 3 вопроса. Какова вероятность того что Маша ответит на 1 вопрос?

82. Статистика запросов кредитов в банке такова: 10% - гос. органы, 20% - другие банки, остальное – физические лица. Вероятность невозвращения кредитов соответственно 0.01, 0.05 и 0.2. Какая доля кредитов не возвращается?

83. вероятность того что недельный оборот торговца мороженым превысит 2000 руб. составляет 80% при ясной погоде, 50 % при переменной облачности и 10% при дождливой погоде. Какова вероятность что оборот превысит 2000 руб. если вероятность ясной погоды – 20%, а переменной облачности и дождей – по 40%.

84. В урне А белых (б) и В черных (ч) шаров. Из урны вынимают (одновременно или последовательно) два шара. Найти вероятность того, что оба шара будут белыми.

85. В урне А белых и В

86. В урне А белых и В

87. В урне А белых и В черных шаров. Из урны вынимается один шар, отмечается его цвет и шар возвращается в урну. После этого из урны берется еще один шар. Найти вероятность того, что эти шары будут разных цветов.

88. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча; после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трех игр в коробке не останется неигранных мячей?

89. Уходя из квартиры, N каждый гость наденет свои калоши;

90. Уходя из квартиры, N гостей, имеющих одинаковые размеры обуви, надевают калоши в темноте. Каждый из них может отличить правую калошу от левой, но не может отличить свою от чужой. Найти вероятность того что каждый гость, наденет калоши, относящиеся к одной паре (может быть и не свои).

91. В условиях задачи 90найти вероятность того что каждый уйдет в своих калошах если гости не могут отличить правой калоши от левой и просто берут первые попавшиеся две калоши.

92. Ведется стрельба по самолету, уязвимыми частями которого являются два двигателя и кабина пилота. Для того чтобы поразить (вывести из строя) самолет, достаточно поразить оба двигателя вместе или кабину пилота. При данных условиях стрельбы вероятность поражения первого двигателя равна p1 второго двигателя р2, кабины пилота р3. Части самолета поражаются независимо друг от друга. Найти вероятность того, что самолет будет поражен.

93. Два стрелка, независимо один от другого, делают по два выстрела (каждый по своей мишени). Вероятность попадания в мишень при одном выстреле для первого стрелка p1 для второго р2. Выигравшим соревнование считается тот стрелок, в мишени которого будет больше пробоин. Найти вероятность Рх того, что выиграет первый стрелок.

94. за космическим объектом, объект обнаруживается с вероятностью р. Обнаружение объекта в каждом цикле происходит независимо от других. Найти вероятность того, что при п циклах объект будет обнаружен.

95. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что получится слово «конец».

96. Два шарика разбрасываются случайно и независимо друг от друга по четырем ячейкам, расположенным одна за другой по прямой линии. Каждый шарик с одинаковой вероятностью 1/4 попадает в каждую ячейку. Найти вероятность того, что шарики попадут в соседние ячейки.

97. Производится стрельба по самолету зажигательными снарядами. Горючее на самолете сосредоточено в четырех баках, расположенных в фюзеляже один за другим. Площади баков одинаковы. Для того чтобы зажечь самолет, достаточно попасть двумя снарядами либо в один и тот же бак, либо в соседние баки. Известно, что в область баков попало два снаряда. Найти вероятность того, что самолет загорится.

98. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.

99. Из полной колоды карт (52 листа) вынимаются сразу четыре карты, но каждая карта после вынимания возвращается в колоду. Найти вероятность того, что все эти четыре карты будут разных мастей..

100. При включении зажигания двигатель начинает работать с вероятностью р.

101. Прибор может работать в двух режимах: 1) нормальном и 2) ненормальном. Нормальный режим наблюдается в 80 % всех случаев работы прибора; ненормальный - в 20 %. Вероятность выхода прибора из строя за время t в нормальном режиме равна 0,1; в ненормальном - 0,7. Найти полную вероятность р выхода прибора из строя.

102. Магазин получает товар от 3 поставщиков: 55% от 1-го, 20 от 2-го и 25% от 3-го. Доля брака составляет 5, 6 и 8 процентов соответственно. Какова вероятность того что купленный бракованный товар поступил от второго поставщика.

103.Поток автомобилей мимо АЗС состоит на 60% из грузовых и на 40% из легковых автомобилей. Какова вероятность нахождения на АЗС грузового автомобиля, если вероятность его заправки 0.1, а легкового – 0.3

104. Поток автомобилей мимо АЗС состоит на 60% из грузовых и на 40% из легковых автомобилей. Какова вероятность нахождения на АЗС грузового автомобиля, если вероятность его заправки 0.1, а легкового – 0.3

105. Магазин получает товар от 3 поставщиков: 55% от 1-го, 20 от 2-го и 25% от 3-го. Доля брака составляет 5, 6 и 8 процентов соответственно. Какова вероятность того что купленный бракованный товар поступил от 1-го поставщика.

106. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что получится слово «книга».

107. Магазин получает товар от 3 поставщиков: 55% от 1-го, 20 от 2-го и 25% от 3-го. Доля брака составляет 5, 6 и 8 процентов соответственно. Какова вероятность того что купленный бракованный товар поступил от 1-го поставщика.

108. Два шарика разбрасываются случайно и независимо друг от друга по четырем ячейкам, расположенным одна за другой по прямой линии. Каждый шарик с одинаковой вероятностью 1/4 попадает в каждую ячейку. Найти вероятность того, что 2 шарика попадут в одну ячейку

109. При включении зажигания двигатель начинает работать с вероятностью р. Найти вероятность того, что двигатель начнет работать при втором включении зажигания;

110. Производится стрельба по самолету зажигательными снарядами. Горючее на самолете сосредоточено в четырех баках, расположенных в фюзеляже один за другим. Площади баков одинаковы. Для того чтобы зажечь самолет, достаточно попасть двумя снарядами в один и тот же бак. Известно, что в область баков попало два снаряда. Найти вероятность того, что самолет загорится

111. Производится стрельба по самолету зажигательными снарядами. Горючее на самолете сосредоточено в четырех баках, расположенных в фюзеляже один за другим. Площади баков одинаковы. Для того чтобы зажечь самолет, достаточно попасть двумя снарядами в соседние баки. Известно, что в область баков попало два снаряда. Найти вероятность того, что самолет загорится

112.В урне А белых и В черных шаров. Из урны вынимается один шар, отмечается его цвет и шар возвращается в урну. После этого из урны берется еще один шар. Найти вероятность того, что оба вынутые шара будут белыми.

113. В урне А белых и В черных шаров. Из урны вынимаются сразу два шара. Найти вероятность того, что эти шары будут разных цветов.

114. Два шарика разбрасываются случайно и независимо друг от друга по четырем ячейкам, расположенным одна за другой по прямой линии. Каждый шарик с одинаковой вероятностью 1/4 попадает в каждую ячейку. Найти вероятность того, что шарики попадут в соседние ячейки.

115. Маша пришла на экзамен зная ответы на 20 вопросов программы из 25. Профессор задает 3 вопроса. Какова вероятность того что Маша ответит на 2 вопроса?

116. Студенты считают что из 50 билетов 10 являются «хорошими». Петя и Маша по очереди тянут по одному билету. Какова вероятность того, что им обоим достался «хороший» билет?

117. Статистика запросов кредитов в банке такова: 10% - гос. органы, 20% - другие банки, остальное – физические лица. Вероятность невозвращения кредитов соответственно 0.01, 0.05 и 0.2. Какая доля кредитов не возвращается?

118. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что получится слово «конец».

119 Статистика запросов кредитов в банке такова: 10% - гос. органы, 20% - другие банки, остальное – физические лица. Вероятность невозвращения кредитов соответственно 0.01, 0.05 и 0.2. Какая доля кредитов не возвращается?

120. вероятность того что недельный оборот торговца мороженым превысит 2000 руб. составляет 80% при ясной погоде, 50 % при переменной облачности и 10% при дождливой погоде. Какова вероятность что оборот превысит 2000 руб. если вероятность ясной погоды – 20%, а переменной облачности и дождей – по 40%.

Пусть известны их вероятности и соответствующие условные вероятности . Тогда вероятность наступления события равна:

Эта формула получила название формулы полной вероятности . В учебниках она формулируется теоремой, доказательство которой элементарно: согласно алгебре событий , (произошло событие и или произошло событие и после него наступило событие или произошло событие и после него наступило событие или …. или произошло событие и после него наступило событие ) . Поскольку гипотезы несовместны, а событие – зависимо, то по теореме сложения вероятностей несовместных событий (первый шаг) и теореме умножения вероятностей зависимых событий (второй шаг) :

Наверное, многие предчувствуют содержание первого примера =)

Куда ни плюнь – везде урна:

Задача 1

Имеются три одинаковые урны. В первой урне находятся 4 белых и 7 черных шаров, во второй – только белые и в третьей – только черные шары. Наудачу выбирается одна урна и из неё наугад извлекается шар. Какова вероятность того, что этот шар чёрный?

Решение : рассмотрим событие – из наугад выбранной урны будет извлечён чёрный шар. Данное событие может произойти или не произойти в результате осуществления одной из следующих гипотез:
– будет выбрана 1-я урна;
– будет выбрана 2-я урна;
– будет выбрана 3-я урна.

Так как урна выбирается наугад, то выбор любой из трёх урн равновозможен , следовательно:

Обратите внимание, что перечисленные гипотезы образуют полную группу событий , то есть, по условию чёрный шар может появиться только из этих урн, а например, не прилететь с бильярдного стола. Проведём простую промежуточную проверку:
, ОК, едем дальше:

В первой урне 4 белых + 7 черных = 11 шаров, по классическому определению :
– вероятность извлечения чёрного шара при условии , что будет выбрана 1-я урна.

Во второй урне только белые шары, поэтому в случае её выбора появление чёрного шара становится невозможным : .

И, наконец, в третьей урне одни чёрные шары, а значит, соответствующая условная вероятность извлечения чёрного шара составит (событие достоверно) .



– вероятность того, что из наугад выбранной урны будет извлечен чёрный шар.

Ответ :

Разобранный пример снова наводит на мысль о том, как важно ВНИКАТЬ В УСЛОВИЕ. Возьмём те же задачи с урнами и шарами – при их внешней схожести способы решения могут быть совершенно разными: где-то требуется применить только классическое определение вероятности , где-то события независимы , где-то зависимы , а где-то речь о гипотезах. При этом не существует чёткого формального критерия для выбора пути решения – над ним почти всегда нужно думать. Как повысить свою квалификацию? Решаем, решаем и ещё раз решаем!

Задача 2

В тире имеются 5 различных по точности боя винтовок. Вероятности попада­ния в мишень для данного стрелка соответственно равны 0,5; 0,55; 0,7; 0,75 и 0,4. Чему равна вероятность попадания в мишень, если стрелок делает один выстрел из слу­чайно выбранной винтовки?

Краткое решение и ответ в конце урока.

В большинстве тематических задач гипотезы, конечно же, не равновероятны:

Задача 3

В пирамиде 5 винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок производит один выстрел из наудачу взятой винтовки.

Решение : в этой задаче количество винтовок точно такое же, как и в предыдущей, но вот гипотезы всего две:
– стрелок выберет винтовку с оптическим прицелом;
– стрелок выберет винтовку без оптического прицела.
По классическому определению вероятности : .
Контроль:

Рассмотрим событие: – стрелок поразит мишень из наугад взятой винтовки.
По условию: .

По формуле полной вероятности:

Ответ : 0,85

На практике вполне допустим укороченный способ оформления задачи, который вам тоже хорошо знаком:

Решение : по классическому определению: – вероятности выбора винтовки с оптическим и без оптического прицела соответственно.

По условию, – вероятности попадания в мишень из соответствующих типов винтовок.

По формуле полной вероятности:
– вероятность того, что стрелок поразит мишень из наугад выбранной винтовки.

Ответ : 0,85

Следующая задача для самостоятельного решения:

Задача 4

Двигатель работает в трёх режимах: нормальном, форсированном и на холостом ходу. В режиме холостого хода вероятность его выхода из строя равна 0,05, при нормальном режиме работы – 0,1, а при форсированном – 0,7. 70% времени двигатель работает в нормальном режиме, а 20% – в форсированном. Какова вероятность выхода из строя двигателя во время работы?

На всякий случай напомню – чтобы получить значения вероятностей проценты нужно разделить на 100. Будьте очень внимательны! По моим наблюдениям, условия задач на формулу полной вероятности частенько пытаются подзапутать; и я специально подобрал такой пример. Скажу по секрету – сам чуть не запутался =)

Решение в конце урока (оформлено коротким способом)

Задачи на формулы Байеса

Материал тесно связан с содержанием предыдущего параграфа. Пусть событие наступило в результате осуществления одной из гипотез . Как определить вероятность того, что имела место та или иная гипотеза?

При условии , что событие уже произошло , вероятности гипотез переоцениваются по формулам, которые получили фамилию английского священника Томаса Байеса:


– вероятность того, что имела место гипотеза ;
– вероятность того, что имела место гипотеза ;

– вероятность того, что имела место гипотеза .

На первый взгляд кажется полной нелепицей – зачем пересчитывать вероятности гипотез, если они и так известны? Но на самом деле разница есть:

– это априорные (оцененные до испытания) вероятности.

– это апостериорные (оцененные после испытания) вероятности тех же гипотез, пересчитанные в связи «со вновь открывшимися обстоятельствами » – с учётом того факта, что событие достоверно произошло .

Рассмотрим это различие на конкретном примере:

Задача 5

На склад поступило 2 партии изделий: первая – 4000 штук, вторая – 6000 штук. Средний процент нестандартных изделий в первой партии составляет 20%, а во второй – 10%. Наудачу взятое со склада изделие оказалось стандартным. Найти вероятность того, что оно: а) из первой партии, б) из второй партии.

Первая часть решения состоит в использовании формулы полной вероятности. Иными словами, вычисления проводятся в предположении, что испытание ещё не произведено и событие «изделие оказалось стандартным» пока не наступило.

Рассмотрим две гипотезы:
– наудачу взятое изделие будет из 1-й партии;
– наудачу взятое изделие будет из 2-й партии.

Всего: 4000 + 6000 = 10000 изделий на складе. По классическому определению :
.

Контроль:

Рассмотрим зависимое событие: – наудачу взятое со склада изделие будет стандартным.

В первой партии 100% – 20% = 80% стандартных изделий, поэтому: при условии , что оно принадлежит 1-й партии.

Аналогично, во второй партии 100% – 10% = 90% стандартных изделий и – вероятность того, что наудачу взятое на складе изделие будет стандартным при условии , что оно принадлежит 2-й партии.

По формуле полной вероятности:
– вероятность того, что наудачу взятое на складе изделие будет стандартным.

Часть вторая. Пусть наудачу взятое со склада изделие оказалось стандартным. Эта фраза прямо прописана в условии, и она констатирует тот факт, что событие произошло .

По формулам Байеса:

а) – вероятность того, что выбранное стандартное изделие принадлежит 1-й партии;

б) – вероятность того, что выбранное стандартное изделие принадлежит 2-й партии.

После переоценки гипотезы , разумеется, по-прежнему образуют полную группу :
(проверка;-))

Ответ :

Понять смысл переоценки гипотез нам поможет Иван Васильевич, которой снова сменил профессию и стал директором завода. Он знает, что сегодня 1-й цех отгрузил на склад 4000, а 2-й цех – 6000 изделий, и приходит удостовериться в этом. Предположим, вся продукция однотипна и находится в одном контейнере. Естественно, Иван Васильевич предварительно подсчитал, что изделие, которое он сейчас извлечёт для проверки, с вероятностью будет выпущено 1-м цехом и с вероятностью – вторым. Но после того как выбранное изделие оказывается стандартным, он восклицает: «Какой же классный болт! – его скорее выпустил 2-й цех». Таким образом, вероятность второй гипотезы переоценивается в лучшую сторону , а вероятность первой гипотезы занижается: . И эта переоценка небезосновательна – ведь 2-й цех произвёл не только больше изделий, но и работает в 2 раза лучше!

Вы скажете, чистый субъективизм? Отчасти – да, более того, сам Байес интерпретировал апостериорные вероятности как уровень доверия . Однако не всё так просто – в байесовском подходе есть и объективное зерно. Ведь вероятности того, что изделие будет стандартным (0,8 и 0,9 для 1-го и 2-го цехов соответственно) это предварительные (априорные) и средние оценки. Но, выражаясь философски – всё течёт, всё меняется, и вероятности в том числе. Вполне возможно, что на момент исследования более успешный 2-й цех повысил процент выпуска стандартных изделий (и/или 1-й цех снизил) , и если проверить бОльшее количество либо все 10 тысяч изделий на складе, то переоцененные значения окажутся гораздо ближе к истине.

Кстати, если Иван Васильевич извлечёт нестандартную деталь, то наоборот – он будет больше «подозревать» 1-й цех и меньше – второй. Предлагаю убедиться в этом самостоятельно:

Задача 6

На склад поступило 2 партии изделий: первая – 4000 штук, вторая – 6000 штук. Средний процент нестандартных изделий в первой партии 20%, во второй – 10%. Наудачу взятое со склада изделие оказалось не стандартным. Найти вероятность того, что оно: а) из первой партии, б) из второй партии.

Условие отличатся двумя буквами, которые я выделил жирным шрифтом. Задачу можно решить с «чистого листа», или воспользоваться результатами предыдущих вычислений. В образце я провёл полное решение, но чтобы не возникло формальной накладки с Задачей №5, событие «наудачу взятое со склада изделие будет нестандартным» обозначено через .

Байесовская схема переоценки вероятностей встречается повсеместно, причём её активно эксплуатируют и различного рода мошенники. Рассмотрим ставшее нарицательным АО на три буквы, которое привлекает вклады населения, якобы куда-то их инвестирует, исправно выплачивает дивиденды и т.д. Что происходит? Проходит день за днём, месяц за месяцем и всё новые и новые факты, донесённые путём рекламы и «сарафанным радио», только повышают уровень доверия к финансовой пирамиде (апостериорная байесовская переоценка в связи с произошедшими событиями!) . То есть, в глазах вкладчиков происходит постоянное увеличение вероятности того, что «это серьёзная контора» ; при этом вероятность противоположной гипотезы («это очередные кидалы») , само собой, уменьшается и уменьшается. Дальнейшее, думаю, понятно. Примечательно, что заработанная репутация даёт организаторам время успешно скрыться от Ивана Васильевича, который остался не только без партии болтов, но и без штанов.

К не менее любопытным примерам мы вернёмся чуть позже, а пока на очереди, пожалуй, самый распространенный случай с тремя гипотезами:

Задача 7

Электролампы изготавливаются на трех заводах. 1-й завод производит 30% общего количества ламп, 2-й – 55%, а 3-й – остальную часть. Продукция 1-го завода содержит 1% бракованных ламп, 2-го – 1,5%, 3-го – 2%. В магазин поступает продукция всех трех заводов. Купленная лампа оказалась с браком. Какова вероятность того, что она произведена 2-м заводом?

Заметьте, что в задачах на формулы Байеса в условии обязательно фигурирует некое произошедшее событие, в данном случае – покупка лампы.

Событий прибавилось, и решение удобнее оформить в «быстром» стиле.

Алгоритм точно такой же: на первом шаге находим вероятность того, что купленная лампа вообще окажется бракованной.

Пользуясь исходными данными, переводим проценты в вероятности:
– вероятности того, что лампа произведена 1-м, 2-м и 3-м заводами соответственно.
Контроль:

Аналогично: – вероятности изготовления бракованной лампы для соответствующих заводов.

По формуле полной вероятности:

– вероятность того, что купленная лампа окажется с браком.

Шаг второй. Пусть купленная лампа оказалась бракованной (событие произошло)

По формуле Байеса:
– вероятность того, что купленная бракованная лампа изготовлена вторым заводом

Ответ :

Почему изначальная вероятность 2-й гипотезы после переоценки увеличилась ? Ведь второй завод производит средние по качеству лампы (первый – лучше, третий – хуже). Так почему же возросла апостериорная вероятность, что бракованная лампа именно со 2-го завода? Это объясняется уже не «репутацией», а размером. Так как завод №2 выпустил самое большое количество ламп, то на него (по меньшей мере, субъективно) и пеняют: «скорее всего, эта бракованная лампа именно оттуда» .

Интересно заметить, что вероятности 1-й и 3-й гипотез, переоценились в ожидаемых направлениях и сравнялись:

Контроль: , что и требовалось проверить.

К слову, о заниженных и завышенных оценках:

Задача 8

В студенческой группе 3 человека имеют высокий уровень подготовки, 19 человек – средний и 3 – низкий. Вероятности успешной сдачи экзамена для данных студентов соответственно равны: 0,95; 0,7 и 0,4. Известно, что некоторый студент сдал экзамен. Какова вероятность того, что:

а) он был подготовлен очень хорошо;
б) был подготовлен средне;
в) был подготовлен плохо.

Проведите вычисления и проанализируйте результаты переоценки гипотез.

Задача приближена к реальности и особенно правдоподобна для группы студентов-заочников, где преподаватель практически не знает способностей того или иного студента. При этом результат может послужить причиной довольно-таки неожиданных последствий (особенно это касается экзаменов в 1-м семестре) . Если плохо подготовленному студенту посчастливилось с билетом, то преподаватель с большой вероятностью сочтёт его хорошо успевающим или даже сильным студентом, что принесёт неплохие дивиденды в будущем (естественно, нужно «поднимать планку» и поддерживать свой имидж) . Если же студент 7 дней и 7 ночей учил, зубрил, повторял, но ему просто не повезло, то дальнейшие события могут развиваться в самом скверном ключе – с многочисленными пересдачами и балансировкой на грани вылета.

Что и говорить, репутация – это важнейший капитал, не случайно многие корпорации носят имена-фамилии своих отцов-основателей, которые руководили делом 100-200 лет назад и прославились своей безупречной репутацией.

Да, байесовский подход в известной степени субъективен, но… так устроена жизнь!

Закрепим материал заключительным индустриальным примером, в котором я расскажу о до сих пор не встречавшихся технических тонкостях решения:

Задача 9

Три цеха завода производят однотипные детали, которые поступают на сборку в общий контейнер. Известно, что первый цех производит в 2 раза больше деталей, чем второй цех, и в 4 раза больше третьего цеха. В первом цехе брак составляет 12%, во втором – 8%, в третьем – 4%. Для контроля из контейнера берется одна деталь. Какова вероятность того, что она окажется бракованной? Какова вероятность того, что извлечённую бракованную деталь выпустил 3-й цех?

Таки Иван Васильевич снова на коне =) Должен же быть у фильма счастливый конец =)

Решение : в отличие от Задач №№5-8 здесь в явном виде задан вопрос, который разрешается с помощью формулы полной вероятности. Но с другой стороны, условие немного «зашифровано», и разгадать этот ребус нам поможет школьный навык составлять простейшие уравнения. За «икс» удобно принять наименьшее значение:

Пусть – доля деталей, выпускаемая третьим цехом.

По условию, первый цех производит в 4 раза больше третьего цеха, поэтому доля 1-го цеха составляет .

Кроме того, первый цех производит изделий в 2 раза больше, чем второй цех, а значит, доля последнего: .

Составим и решим уравнение:

Таким образом: – вероятности того, что извлечённая из контейнера деталь выпущена 1-м, 2-м и 3-м цехами соответственно.

Контроль: . Кроме того, будет не лишним ещё раз посмотреть на фразу «Известно, что первый цех производит изделий в 2 раза больше второго цеха и в 4 раза больше третьего цеха» и убедиться, что полученные значения вероятностей действительно соответствуют этому условию.

За «икс» изначально можно было принять долю 1-го либо долю 2-го цеха – вероятности выйдут такими же. Но, так или иначе, самый трудный участок пройден, и решение входит в накатанную колею:

Из условия находим:
– вероятности изготовления бракованной детали для соответствующих цехов.

По формуле полной вероятности:
– вероятность того, что наугад извлеченная из контейнера деталь окажется нестандартной.

Вопрос второй: какова вероятность того, что извлечённую бракованную деталь выпустил 3-й цех? Данный вопрос предполагает, что деталь уже извлечена, и она оказалось бракованной. Переоцениваем гипотезу по формуле Байеса:
– искомая вероятность. Совершенно ожидаемо – ведь третий цех производит не только самую малую долю деталей, но и лидирует по качеству!

В данном случае пришлось упрощать четырёхэтажную дробь , что в задачах на формулы Байеса приходится делать довольно часто. Но для данного урока я как-то так случайно подобрал примеры, в которых многие вычисления можно провести без обыкновенных дробей.

Коль скоро в условии нет пунктов «а» и «бэ», то ответ лучше снабдить текстовыми комментариями:

Ответ : – вероятность того, что извлечённая из контейнера деталь окажется бракованной; – вероятность того, что извлечённую бракованную деталь выпустил 3-й цех.

Как видите, задачи на формулу полной вероятности и формулы Байеса достаточно простЫ, и, наверное, по этой причине в них так часто пытаются затруднить условие, о чём я уже упоминал в начале статьи.

Дополнительные примеры есть в файле с готовыми решениями на Ф.П.В. и формулы Байеса , кроме того, наверное, найдутся желающие более глубоко ознакомиться с данной темой в других источниках. А тема действительно очень интересная – чего только стОит один парадокс Байеса , который обосновывает тот житейский совет, что если у человека диагностирована редкая болезнь, то ему имеет смысл провести повторное и даже два повторных независимых обследования. Казалось бы, это делают исключительно от отчаяния… – а вот и нет! Но не будем о грустном.


– вероятность того, что произвольно выбранный студент сдаст экзамен.
Пусть студент сдал экзамен. По формулам Байеса:
а) – вероятность того, что студент, сдавший экзамен, был подготовлен очень хорошо. Объективная исходная вероятность оказывается завышенной, поскольку почти всегда некоторым «середнячкам» везёт с вопросами и они отвечают очень сильно, что вызывает ошибочное впечатление безупречной подготовки.
б) – вероятность того, что студент, сдавший экзамен, был подготовлен средне. Исходная вероятность оказывается чуть завышенной, т.к. студентов со средним уровнем подготовки обычно большинство, кроме того, сюда преподаватель отнесёт неудачно ответивших «отличников», а изредка и плохо успевающего студента, которому крупно повезло с билетом.
в) – вероятность того, что студент, сдавший экзамен, был подготовлен плохо. Исходная вероятность переоценилась в худшую сторону. Неудивительно.
Проверка:
Ответ :
mob_info