Всемирное тяготение. Всемирное тяготение определение. Формула всемирного тяготения. Всемирная гравитационная постоянная. Закон всемирного тяготения. Движение тел под действием силы тяжести Какая формула выражает закон всемирного тяготения

Всемирное тяготение определение, формула. Гравитационная постоянная.

Что такое всемирное тяготение?

Все тела притягиваются друг к другу. Эти силы называют силами всемирного тяготения.

Другое название сил всемирного тяготения – гравитационные силы.

Примером проявления сил всемирного тяготения является сила тяжести.

Тело падает на Землю под действием силы тяжести. Земля и данное тело притягиваются друг к другу.

Всемирное тяготение определение

Всемирное тяготение определение:

Два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Формула всемирного тяготени

Формула всемирного тяготения:

F = γ(m 1 m 2)/r 2

где
m 1 – масса первого тела;
m 2 – масса второго тела;
r – расстояние между телами.

Гравитационная постоянная

Коэффициент пропорциональности γ называется гравитационная постоянная.

Гравитационная постоянная в СИ равна:

γ = 6,7*10 -11 Н*м 2 /кг 2

Важно. Приведенная выше формула закона всемирного тяготения справедлива только тогда, когда расстояние между телами намного больше размеров самих тел. В иных случаях формула закона всемирного тяготения не может применяться.

Аристотель утверждал, что массивные предметы падают на землю быстрее лёгких.

Ньютон предположил, что Луну следует рассматривать как снаряд, который движется по искривленной траектории, поскольку на него действует земное тяготение. Поверхность Земли тоже искривлена, так что при достаточно быстром движении снаряда его искривленная траектория будет следовать за кривизной Земли, и он станет «падать» вокруг планеты. Если увеличить скорость снаряда, его траектория вокруг Земли вытянется в эллипс.

Галилей в начале XVII века показал, что все предметы падают «одинаково». И примерно в то же время Кеплер задумывался, что заставляет планеты двигаться по своим орбитам. Быть может, это магнетизм? Исаак Ньютон, работая над « », свел все эти движения к действию единой силы, называемой гравитацией, которая подчиняется простым универсальным законам.

Галилей экспериментально показал, что путь, пройденный телом, падающим под действием гравитации, пропорционален квадрату времени падения: шар, падающий в течение двух секунд, пройдет вчетверо больший путь, чем такой же предмет в течение одной секунды. Также Галилей показал, что скорость прямо пропорциональна времени падения, и вывел отсюда, что пушечное ядро летит по параболической траектории — одному из видов конических сечений, как и эллипсы, по которым, согласно Кеплеру, движутся планеты. Но откуда эта связь?

Когда в середине 1660-х годов Кембриджский университет закрылся на время Великой эпидемии чумы, Ньютон вернулся в семейную усадьбу и там сформулировал свой закон тяготения, хотя и держал его потом в тайне еще 20 лет. (Историю об упавшем яблоке никто не слыхал, пока восьмидесятилетний Ньютон не рассказал эту байку после большого званого ужина.)

Он предположил, что все предметы во Вселенной порождают гравитационную силу, притягивающую другие объекты (подобно тому, как яблоко притягивается к Земле), и эта самая сила гравитации определяет траектории, по которым движутся в космосе звезды, планеты и другие небесные тела.

На склоне своих дней Исаак Ньютон рассказал, как это произошло: он гулял по яблоневому саду в поместье своих родителей и вдруг увидел луну в дневном небе. И тут же на его глазах с ветки оторвалось и упало на землю яблоко. Поскольку Ньютон в это самое время работал над законами движения, он уже знал, что яблоко упало под воздействием гравитационного поля Земли. Знал он и о том, что Луна не просто висит в небе, а вращается по орбите вокруг Земли, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Тут ему и пришло в голову, что, возможно, это одна и та же сила заставляет и яблоко падать на землю, и Луну оставаться на околоземной орбите.

Закон обратных квадратов

Ньютон сумел рассчитать величину ускорения Луны под влиянием земной гравитации и нашел, что она в тысячи раз меньше, чем ускорение предметов (того же яблока) вблизи Земли. Как такое может быть, если они движутся под действием одной и той же силы?

Объяснение Ньютона состояло в том, что сила тяготения ослабевает с расстоянием. Объект на поверхности Земли в 60 раз ближе к центру планеты, чем Луна. Притяжение на орбите Луны составляет 1/3600, или 1/602, от того, что действует на яблоко. Таким образом, сила притяжения между двумя объектами — будь это Земля и яблоко, Земля и Луна или Солнце и комета — обратно пропорциональна квадрату разделяющего их расстояния. Удвойте расстояние, и сила уменьшится вчетверо, утройте его — сила станет меньше в девять раз и т. д. Сила также зависит от масс объектов — чем больше масса, тем сильнее гравитация.

Закон всемирного тяготения можно записать в виде формулы:
F = G(Mm/r 2).

Где: сила гравитации равна произведению большей массы M и меньшей массы m , деленному на квадрат расстояния между ними r 2 и помноженному на гравитационную постоянную, обозначаемую заглавной буквой G (строчная g обозначает вызванное тяготением ускорение).

Эта постоянная определяет притяжение между любыми двумя массами в любой точке Вселенной. В 1789 году ее использовали для вычисления массы Земли (6·1024 кг). Законы Ньютона замечательно предсказывают силы и движения в системе из двух объектов. Но при добавлении третьего всё значительно усложняется и приводит (спустя 300 лет) к математике хаоса.

На склоне своих лет рассказал о том, как он открыл закон всемирного тяготения .

Когда молодой Исаак гулял в саду среди яблонь в поместье своих родителей, он увидел луну в дневном небе. И рядом с ним упало яблоко на землю, сорвавшись с ветки.

Поскольку Ньютон в это самое время работал над законами движения, он уже знал, что яблоко упало под воздействием гравитационного поля Земли. И знал, что Луна не просто находится на небе, а вращается вокруг Земли по орбите, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Вот тут и пришла ему идея о том, что, возможно, одна и та же сила заставляет яблоко падать на землю, и Луну оставаться на околоземной орбите.

До Ньютона ученые считали, что имеются два типа гравитации: земная гравитация (действующая на Земле) и небесная гравитация (действующая на небесах). Такое представление прочно закрепилось в сознании людей того времени.

Прозрение Ньютона заключалось в том, что он объединил эти два типа гравитации в своем сознании. С этого исторического момента искусственное и ложное разделение Земли и остальной Вселенной прекратило свое существование.

Так и был открыт закон всемирного тяготения, который является одним из универсальных законов природы. Согласно закону, все материальные тела притягивают друг друга, причём величина силы тяготения не зависит от химических и физических свойств тел, от состояния их движения, от свойств среды, где находятся тела. Тяготение на Земле проявляется, прежде всего, в существовании силы тяжести, являющейся результатом притяжения всякого материального тела Землёй. С этим связан термин «гравитация» (от лат. gravitas - тяжесть) , эквивалентный термину «тяготение».

Закон тяготения гласит, что сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними.

Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Гюйгенс, Роберваль, Декарт, Борелли, Кеплер, Гассенди, Эпикур и другие.

По предположению Кеплера, тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире.

Были, впрочем, догадки с правильной зависимостью от расстояния, но до Ньютона никто так и не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).

В своём основном труде «Математические начала натуральной философии» (1687 г.) Исаак Ньютон вывел закон тяготения, основываясь на эмпирических законах Кеплера, известных к тому времени.
Он показал, что:

    • наблюдаемые движения планет свидетельствуют о наличии центральной силы;
    • обратно, центральная сила притяжения приводит к эллиптическим (или гиперболическим) орбитам.

В отличие от гипотез предшественников, теория Ньютона имела ряд существенных отличий. Сэр Исаак опубликовал не только предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель:

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики.

Но Исаак Ньютон оставил открытым вопрос о природе тяготения. Не было объяснено также и предположение о мгновенном распространении тяготения в пространстве (т. е. предположение о том, что с изменением положений тел мгновенно изменяется и сила тяготения между ними), тесно связанное с природой тяготения. На протяжении более двухсот лет после Ньютона физики предлагали различные пути усовершенствования ньютоновской теории тяготения. Только в 1915 году эти усилия увенчались успехом созданием общей теории относительности Эйнштейна , в которой все указанные трудности были преодолены.

Ньютон первый установил, что падение камня на Землю, движение планет вокруг Солнца, движение Луны вокруг Земли вызвано силой или гравитационным взаимодействием.

Между телами на расстоянии осуществляется взаимодействие посредством создаваемого ими гравитационного поля. Благодаря целому ряду опытных фактов, Ньютону удалось установить зависимость силы притяжения двух тел от расстояния между ними. Ньютоновский закон, названный законом всемирного притяжения, гласит, что два любых тела притягиваются друг к другу с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. Закон называется всемирным или универсальным, так как описывает гравитационное взаимодействие между парой любых тел во Вселенной, которые обладают массой. Силы эти очень слабые, но для них не существует никаких преград.

Закон в буквенном выражении имеет вид:

Сила тяжести

Земной шар всем телам, падающим на Землю, сообщает одинаковое ускорение g = 9,8м/с2, называемое ускорением свободного падения. А это значит, что Земля действует, притягивает, все тела с силой, называемой силой тяжести. Это частный вид сил всемирного тяготения. Сила тяжести равна , зависит от массы тела m, измеряемой в килограммах (кг). Значение g = 9,8м/с2 берется приблизительным, на разных широтах и на разной долготе его значение немного меняется вследствие того, что:

  • радиус Земли меняется от полюса к экватору (что приводит к уменьшению значения g на экваторе на 0,18\%);
  • вызываемый вращением центробежный эффект зависит от географической широты (уменьшает значение на 0,34\%).

Невесомость

Предположим, что тело падает под действием силы тяжести. Другие силы на него не действуют. Это движение называется свободным падением. В тот промежуток времени, когда на тело будет действовать только Fтяж, тело будет находиться в невесомости. При свободном падении вес человека исчезает.

Вес это сила, с которой тело растягивает подвес или действует на горизонтальную опору.

Состояние невесомости испытывает парашютист во время прыжка, человек во время прыжка с трамплина, пассажир самолета падающий в воздушную яму. Невесомость мы ощущаем лишь в течение очень малого времени, всего несколько секунд. А вот космонавты, находящиеся в космическом корабле, который летит по орбите с выключенными двигателями, испытывают невесомость длительное время. Космический корабль находиться в состоянии свободного падения, и тела перестают действовать на опору или подвес – находятся в невесомости.

Искусственные спутники земли

Так как тело движется по окружности с центростремительным ускорением:

Где r — радиус круговой орбиты, R = 6400 км — это радиус Земли, а h высота над поверхностью Земли, на которой движется спутник. Силу F, действующая на тело массой m равна , где Мз= 5,98*1024кг — масса Земли.
Имеем: . Выражаем скорость, она и будет называться первой космической — это наименьшая скорость, при сообщении которой телу, оно становится искусственным спутником Земли (ИСЗ).

Ее также называют круговой. Принимаем высоту равной 0 и находим эту скорость, она примерно равна:
Она равна скорости ИСЗ, обращающегося вокруг Земли по круговой орбите при отсутствии сопротивления атмосферы.
Из формулы можно увидеть, что скорость спутника не зависит от его массы, а это значит, искусственным спутником может стать любое тело.
Если придать телу большую скорость, то оно преодолеет Земное притяжение.

Второй космической скоростью называется наименьшая скорость, дающая возможность телу без воздействия каких-либо дополнительных сил преодолеть земное притяжение и стать ИСЗ Солнца.

Эту скорость назвали параболической, она соответствует параболической траектории теле в поле тяготения Земли (если отсутствует сопротивление атмосферы). Ее можно вычислить из формулы:

Здесь r – расстояние от центра Земли до места запуска.
У поверхности Земли . Есть и еще одна скорость, имея которую тело может покинуть солнечную систему и бороздить просторы космоса.

Третья космическая скорость, наименьшая скорость, позволяющая космическому кораблю, преодолеть Солнечное притяжение и покинуть Солнечную систему.

Самым главным явлением, постоянно изучаемым физиками, является движение. Электромагнитные явления, законы механики, термодинамические и квантовые процессы – все это широкий спектр изучаемых физикой фрагментов мироздания. И все эти процессы сводятся, так или иначе, к одному – к .

Вконтакте

Все во Вселенной движется. Гравитация – привычное явление для всех людей с самого детства, мы родились в гравитационном поле нашей планеты, это физическое явление воспринимается нами на самом глубоком интуитивном уровне и, казалось бы, даже не требует изучения.

Но, увы, вопрос, почему и каким образом все тела притягиваются друг к другу , остается и на сегодняшний день не до конца раскрытым, хотя и изучен вдоль и поперек.

В этой статье мы рассмотрим, что такое всемирное притяжение по Ньютону – классическую теорию гравитации. Однако прежде чем перейти к формулам и примерам, расскажем о сути проблемы притяжения и дадим ему определение.

Быть может, изучение гравитации стало началом натуральной философии (науки о понимании сути вещей), быть может, натуральная философия породила вопрос о сущности гравитации, но, так или иначе, вопросом тяготения тел заинтересовались еще в Древней Греции .

Движение понималось как суть чувственной характеристики тела, а точнее, тело двигалось, пока наблюдатель это видит. Если мы не можем явление измерить, взвесить, ощутить, значит ли это, что этого явления не существует? Естественно, не значит. И с тех пор, как Аристотель понял это, начались размышления о сути гравитации.

Как оказалось в наши дни, спустя многие десятки веков, гравитация является основой не только земного притяжения и притяжения нашей планеты к , но и основой зарождения Вселенной и почти всех имеющихся элементарных частиц.

Задача движения

Проведем мысленный эксперимент. Возьмем в левую руку небольшой шарик. В правую возьмем такой же. Отпустим правый шарик, и он начнет падать вниз. Левый при этом остается в руке, он по-прежнему недвижим.

Остановим мысленно ход времени. Падающий правый шарик «зависает» в воздухе, левый все также остается в руке. Правый шарик наделен «энергией» движения, левый – нет. Но в чем глубокая, осмысленная разница между ними?

Где, в какой части падающего шарика прописано, что он должен двигаться? У него такая же масса, такой же объем. Он обладает такими же атомами, и они ничем не отличаются от атомов покоящегося шарика. Шарик обладает ? Да, это правильный ответ, но откуда шарику известно, что обладает потенциальной энергией, где это зафиксировано в нем?

Именно эту задачу ставили перед собой Аристотель, Ньютон и Альберт Эйнштейн. И все три гениальных мыслителя отчасти решили для себя эту проблему, но на сегодняшний день существует ряд вопросов, требующих разрешения.

Гравитация Ньютона

В 1666 году величайшим английским физиком и механиком И. Ньютоном открыт закон, способный количественно посчитать силу, благодаря которой вся материя во Вселенной стремится друг к другу. Это явление получило название всемирное тяготение. Когда вас просят: «Сформулируйте закон всемирного тяготения», ваш ответ должен звучать так:

Сила гравитационного взаимодействия, способствующая притяжению двух тел, находится в прямой пропорциональной связи с массами этих тел и в обратной пропорциональной связи с расстоянием между ними.

Важно! В законе притяжения Ньютона используется термин «расстояние». Под этим термином следует понимать не дистанцию между поверхностями тел, а расстояние между их центрами тяжести. К примеру, если два шара радиусами r1 и r2 лежат друг на друге, то дистанция между их поверхностями равна нулю, однако сила притяжения есть. Все дело в том, что расстояние между их центрами r1+r2 отлично от нуля. В космических масштабах это уточнение не суть важно, но для спутника на орбите данная дистанция равна высоте над поверхностью плюс радиус нашей планеты. Расстояние между Землей и Луной также измеряется как расстояние между их центрами, а не поверхностями.

Для закона тяготения формула выглядит следующим образом:

,

  • F – сила притяжения,
  • – массы,
  • r – расстояние,
  • G – гравитационная постоянная, равная 6,67·10−11 м³/(кг·с²).

Что же представляет собой вес, если только что мы рассмотрели силу притяжения?

Сила является векторной величиной, однако в законе всемирного тяготения она традиционно записана как скаляр. В векторной картине закон будет выглядеть таким образом:

.

Но это не означает, что сила обратно пропорциональна кубу дистанции между центрами. Отношение следует воспринимать как единичный вектор, направленный от одного центра к другому:

.

Закон гравитационного взаимодействия

Вес и гравитация

Рассмотрев закон гравитации, можно понять, что нет ничего удивительного в том, что лично мы ощущаем притяжение Солнца намного слабее, чем земное . Массивное Солнце хоть и имеет большую массу, однако оно очень далеко от нас. тоже далеко от Солнца, однако она притягивается к нему, так как обладает большой массой. Каким образом найти силу притяжения двух тел, а именно как вычислить силу тяготения Солнца, Земли и нас с вами – с этим вопросом мы разберемся чуть позже.

Насколько нам известно, сила тяжести равна:

где m – наша масса, а g – ускорение свободного падения Земли (9,81 м/с 2).

Важно! Не бывает двух, трех, десяти видов сил притяжения. Гравитация – единственная сила, дающая количественную характеристику притяжения. Вес (P = mg) и сила гравитации – одно и то же.

Если m – наша масса, M – масса земного шара, R – его радиус, то гравитационная сила, действующая на нас, равна:

Таким образом, поскольку F = mg:

.

Массы m сокращаются, и остается выражение для ускорения свободного падения:

Как видим, ускорение свободного падения – действительно постоянная величина, поскольку в ее формулу входят величины постоянные — радиус, масса Земли и гравитационная постоянная. Подставив значения этих констант, мы убедимся, что ускорение свободного падения равно 9,81 м/с 2 .

На разных широтах радиус планеты несколько отличается, поскольку Земля все-таки не идеальный шар. Из-за этого ускорение свободного падения в отдельных точках земного шара разное.

Вернемся к притяжению Земли и Солнца. Постараемся на примере доказать, что земной шар притягивает нас с вами сильнее, чем Солнце.

Примем для удобства массу человека: m = 100 кг. Тогда:

  • Расстояние между человеком и земным шаром равно радиусу планеты: R = 6,4∙10 6 м.
  • Масса Земли равна: M ≈ 6∙10 24 кг.
  • Масса Солнца равна: Mc ≈ 2∙10 30 кг.
  • Дистанция между нашей планетой и Солнцем (между Солнцем и человеком): r=15∙10 10 м.

Гравитационное притяжение между человеком и Землей:

Данный результат довольно очевиден из более простого выражения для веса (P = mg).

Сила гравитационного притяжения между человеком и Солнцем:

Как видим, наша планета притягивает нас почти в 2000 раз сильнее.

Как найти силу притяжения между Землей и Солнцем? Следующим образом:

Теперь мы видим, что Солнце притягивает нашу планету более чем в миллиард миллиардов раз сильнее, чем планета притягивает нас с вами.

Первая космическая скорость

После того как Исаак Ньютон открыл закон всемирного тяготения, ему стало интересно, с какой скоростью нужно бросить тело, чтобы оно, преодолев гравитационное поле, навсегда покинуло земной шар.

Правда, он представлял себе это несколько иначе, в его понимании была не вертикально стоящая ракета, устремленная в небо, а тело, которое горизонтально совершает прыжок с вершины горы. Это была логичная иллюстрация, поскольку на вершине горы сила притяжения немного меньше .

Так, на вершине Эвереста ускорение свободного падения будет равно не привычные 9,8 м/с 2 , а почти м/с 2 . Именно по этой причине там настолько разряженный , частицы воздуха уже не так привязаны к гравитации, как те, которые «упали» к поверхности.

Постараемся узнать, что такое космическая скорость.

Первая космическая скорость v1 – это такая скорость, при которой тело покинет поверхность Земли (или другой планеты) и перейдет на круговую орбиту.

Постараемся узнать численной значение этой величины для нашей планеты.

Запишем второй закон Ньютона для тела, которое вращается вокруг планеты по круговой орбите:

,

где h — высота тела над поверхностью, R — радиус Земли.

На орбите на тело действует центробежное ускорение , таким образом:

.

Массы сокращаются, получаем:

,

Данная скорость называется первой космической скоростью:

Как можно заметить, космическая скорость абсолютно не зависит от массы тела. Таким образом, любой предмет, разогнанный до скорости 7,9 км/с, покинет нашу планету и перейдет на ее орбиту.

Первая космическая скорость

Вторая космическая скорость

Однако, даже разогнав тело до первой космической скорости, нам не удастся полностью разорвать его гравитационную связь с Землей. Для этого и нужна вторая космическая скорость. При достижении этой скорости тело покидает гравитационное поле планеты и все возможные замкнутые орбиты.

Важно! По ошибке часто считается, что для того чтобы попасть на Луну, космонавтам приходилось достигать второй космической скорости, ведь нужно было сперва «разъединиться» с гравитационным полем планеты. Это не так: пара «Земля — Луна» находятся в гравитационном поле Земли. Их общий центр тяжести находится внутри земного шара.

Для того чтобы найти эту скорость, поставим задачу немного иначе. Допустим, тело летит из бесконечности на планету. Вопрос: какая скорость будет достигнута на поверхности при приземлении (без учета атмосферы, разумеется)? Именно такая скорость и потребуется телу, чтобы покинуть планету.

Закон всемирного тяготения. Физика 9 класс

Закон Всемирного тяготения.

Вывод

Мы с вами узнали, что хотя гравитация является основной силой во Вселенной, многие причины этого явления до сих пор остались загадкой. Мы узнали, что такое сила всемирного тяготения Ньютона, научились считать ее для различных тел, а также изучили некоторые полезные следствия, которые вытекают из такого явления, как всемирный закон тяготения.

mob_info