Картирование хромосом. Явление сцепленного наследования. Полное сцепление генов и признаков Что значит полное сцепление генов

Признаки, ограниченные полом : гены их наход-ся в аутосомах, т.е. есть у обоих полов, но проявляются только у одного пола.

1) Молочная продуктивность.

2) Яичная продуктивность.

3) Икра у рыб (у женского пола).

4) Яркое оперение (у самцов).

К числу нежелательных, ограниченных полом признаков, относятся:

1) триторхизм,

2) аномалия спермиев (у самцов),

3) недоразвитие частей половых органов (у самок).

Признаки, контролируемые полом : гены в аутосомах, т.е. есть у обоих полов и проявляются также у обоих, только у одного пола чаще или интенсивнее, чем у другого.

1) Комолость доминирует у овец, рецессивно у баранов.

2) Заращение яйцеводов и семяпроводов у птиц доминантно у самок и рецессивно у самца.

3) Атаксия (расстройство координации движения) доминантно у самок и рецессивно у самца.

4) Искривление киля у птицы доминантно у самцов и рецессивно у самок.

5) Наследственное облысение доминантно у мужчин и рецессивно у женщин.

6) Указательный палец длиннее безымянного доминантно у мужчин и рецессивно у женщин.

4. Полное и неполное сцепление генов. Группа сцепления

В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве, гибриды всегда повторяли признаки родительских форм. Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган . Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.

Дрозофила каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка внешне хорошо различимы - у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибриды, имеющие серое тело и нормальные крылья (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, - над геном недоразвитых). При проведении анализирующего скрещивания самки F 1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% - серые длиннокрылые и 41,5% - черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5% - черные длиннокрылые и 8,5% - серые с зачаточными крыльями). Такие результаты могли быть получены только в том случае, если гены, отвечающие за окраску тела и форму крыльев, находятся в одной хромосоме.

1 - некроссоверные гаметы; 2 - кроссоверные гаметы.

Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов - АВ и аb, а отцовский - один тип - аb. Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и ааbb. Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Ааbb и ааВb. Для того, чтобы объяснить это, необходимо вспомнить механизм образования половых клеток - мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, появляются гаметы Аb и аВ, и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но, поскольку кроссинговер происходит при образовании небольшой части гамет, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

Группа сцепления - гены, локализованные в одной хромосоме и наследующиеся совместно. Количество групп сцепления соответствует гаплоидному набору хромосом.

Сцепленное наследование - наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот.Полное сцепление - разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным.Неполное сцепление - разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

Независимое наследование - наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.

Некроссоверные гаметы - гаметы, в процессе образования которых кроссинговер не произошел.

Нерекомбинанты - гибридные особи, у которых такое же сочетание признаков, как и у родителей.

Рекомбинанты - гибридные особи, имеющие иное сочетание признаков, чем у родителей.

Расстояние между генами измеряется в морганидах - условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

Гены, расположенные в одной хромосоме, представляют собой группу сцепления . Сцепление генов - это совместное наследование генов, расположенных в одной и той же хромосоме. Количество групп сцепления соответствует гаплоидному числу хромосом. Сцепление генов, расположенных в одной хромосоме, может быть полным или неполным. Полное сцепление : Морган скрещивал черных длиннокрылых самок с серыми с зачаточными крыльями самцами. У дрозофилы серая окраска тела доминирует над черной, длиннокрылость - над зачаточными крыльями. Серое тело - А, черное тело а; длиннокрылые - В, зачаточные крылья - в. При спермиогенезе в период мейоза гомологичные хромосомы расходятся в разные половые клетки. 1) АА//АВ*ав//ав=4АВ//ав; 2) АВ//ав*АВ//ав=АВ//АВ, АВ//ав, ав//АВ, ав//ав. Если гены наход в аутосомах, то при полном сцеплении в F1 будет единообразие по фенотипу, а в F2 - 3:1, по скольким бы признакам не различались родители, т.к. изучается одна пара хромосом.

Явление неполного сцепления в наследовании признаков

В результате скрещивания потомки имели сочетание признаков, как у исходных родительских форм, но появились особи и с новым сочетанием признаков - сцепление неполное . В - серое, в - чёрное, V - нормальные, v - зачаточные. Bv||Bv*bV||bV=Bv||bV; самок из первого поколения скрестили с самцами анализаторами: BV//bV*bv//bv=Bv//bv,bV//bv - не кроссоверное. Bv//bV*bv//bv=2bv//bv, 2BV//bv - кросоверное. Обмен гомологичных хромосом своими частями называется перекрестом или кроссинговером. Особей с новыми сочетаниями признаков, образовавшимися в результате кроссинговера, называют кроссоверами. Количество появления новых форм зависит от частоты перекреста, которая определяется по следующей формуле: Частота перекрёста = (Число кроссоверных форм)·100/ Общее число потомков. За единицу измерения перекреста принята его величина, равная 1 %. Ее называют морганидой. Величина перекреста зависит от расстояния между изучаемыми генами. Чем больше отдалены гены друг от друга, тем чаще происходит перекрест; чем ближе они расположены, тем вероятность перекреста меньше.

Карты хромосом. Пример их построения

Карта хромосом - план расположения генов в хромосоме. Гены расположены в хромосомах в линейной последовательности на определенных расстояниях друг от друга. Явление торможения кроссинговера на одном участке кроссинговером на другом получило название интерференции. Чем меньше будет расстояние, разделяющее три гена, тем больше интерференция. Принимая во внимание линейное расположение генов в хромосоме, взяв за единицу расстояния частоту кроссинговера, Морган составили первую карту расположения генов в одной из хромосом дрозофилы: сh___13.6___ y___28.2___b. При построении карт указывают не расстояние между генами, а расстояние до каждого гена от нулевой точки начала хромосомы. Доминантный аллель обозначается прописной буквой, рецессивный - строчной. После построения генетических карт встал вопрос о том, отвечает ли расположение генов в хромосоме, построенное на основании частоты кроссинговера, истинному расположению. Каждая хромосома по длине имеет специфические рисунки дисков, что позволяет отличать разные ее участки друг от друга. Материалом для проверки служили хромосомы, у которых вследствие мутации возникали различные хромосомные перестройки: не хватало отдельных дисков, или они были перевернуты, или удвоены. Физические расстояния между генами на генетической карте не вполне соответствуют установленным цитологическим. Однако это не снижает ценности генетических карт хромосом для предсказания вероятности появления особей с новыми сочетаниями признаков. На основании анализа результатов многочисленных экспериментов с дрозофилой Т. Морган сформулировал хромосомную теорию наследственности, сущность которой заключается в следующем: 1) гены находятся в хромосомах, располагаются в них линейно на определенном расстоянии друг от друга; 2) гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом; З) признаки, гены которых находятся в одной хромосоме, наследуются сцеплено; 4) в потомстве гетерозиготных родителей новые сочетания генов, расположенных в одной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза. Частота кроссинговера зависит от расстояния между генами; 5) на основании линейного расположения генов в хромосоме и частоты кроссинговера как показателя расстояния между генами можно построить карты хромосом.

Лекция №7 Хромосомная теория наследственности.

План лекции: 1. Основные положения хромосомной теории наследственности.

2. Генетический анализ полного сцепления.

3. Генетический анализ неполного сцепления.

4. Картирование хромосом.

Основные положения хромосомной теории наследственности.

Основные положения хромосомной теории наследственности были сформулированы в 1910-1916 годах Т.Морганом с сотрудниками .

Основные положения:

  1. Гены находятся в хромосомах, линейно, на определённом расстоянии друг от друга.
  2. Гены, расположенные в одной хромосоме, образуют одну группу сцепления и наследуются совместно (сцепленно); число групп сцепления определяется гаплоидным набором хромосом (1п), у гетерогаметного пола число групп сцепления может быть на одну больше (1п+1).
  3. У гетерозиготных особей группы сцепления могут изменяться в результате кроссинговера – обмена участками гомологичных хромосом.
  4. Частота кроссинговера определяется по проценту кроссоверных особей и зависит от расстояния между генами: чем гены дальше друг от друга находятся, тем чаще наблюдается кроссинговер, но не более 50%.
  5. Используя закономерности линейного расположения генов в хромосомах и частоту кроссинговера как показатель расстояния между отдельными парами генов, можно построить карты расположения генов в хромосомах (картировать хромосомы); расстояние определяется в процентах кроссоверных особей или в сантиморганидах (1% = 1сМ).

Генетический анализ полного сцепления.

Полное сцепление означает, что гены, находящиеся в одной паре гомологичных хромосом, своего места расположения не изменяют и наследуются совместно. Кроссинговер, даже если и происходит, то исходную комбинацию генов в каждой из хромосом не затрагивает. Такая комбинация генов передаётся из поколения в поколение в одном и том же сочетании.

Определение групп сцепления основано на изучении характера фенотипического расщепления у гибридов второго поколения (F 2) полученного по схеме дигибридного скрещивания в соответствии с третьим законом Г.Менделя. Если у потомков F 2 наблюдается сочетание признаков такое же, как и у исходных родителей (либо одного, либо другого) в соотношении 3:1 , то это говорит о полном сцеплении, так как при независимом наследовании должны были появиться четыре фенотипических класса особей в соотношении 9:3:3:1.



P AABB × aabb

F 1 AaBb

Схема 2. Скрещивание при условии полного сцепления.

F 1 AaBb × ааbb

Как видно, все три схемы до второго поколения выглядят совершенно одинаково. Сравнительный анализ расщепления в первой и второй схеме наглядно показывает различия между независимым наследованием и полным сцеплением (во второй схеме отсутствуют два фенотипа, что говорит о нарушении третьего закона Г.Менделя). Сравнительный анализ расщепления во второй и третьей схеме наглядно показывает различия между полным и неполным сцеплением (появление в третьей схеме ещё двух фенотипов при условии, что гены А и В составляют одну группу сцепления). Однако, сравнивая первую и третью схемы , видно, что они очень похожи : в каждой по четыре фенотипа. Различить их можно только на основе анализа числового расщепления по фенотипу . Кроссоверные особи, отличающиеся от родителей сочетанием признаков, составляют 20% от общего числа, некроссоверные 80%. При этом видна ещё одна закономерность : группы кроссоверных и некроссоверных особей , в свою очередь каждая, разбиваются на два равных по частоте встречаемости фенотипа (кроссоверные 2×10%, некроссоверные 2×40%). Следовательно, различить первую и третью схемы можно лишь на основе анализа числового расщепления с применением методов математической статистики.

Картирование хромосом.

Закон Моргана : Если А, В и С – гены, расположенные в одной хромосоме, и известно расстояние между А и В, В и С, то расстояние между А и С есть функция суммы или разности этих расстояний.

Картирование хромосом начинается с определения расстояния между конкретными парами генов (А-В, В-С, А-С) на основе анализа стандартных схем скрещивания.

Сначала определяется расстояние между генами А и В:

Р ААВВ × ааbb

F 1 AaBb × aabb

AB Ab aB ab
ab AaBb Aabb aaBb aabb
40% 10% 10% 40%
40% 20% 40%

По данной схеме расстояние между генами А и В = 20% (или сМ). Далее создаётся рисунок условной хромосомы, на котором произвольно отмечаются две точки, обозначающие локусы генов А и В. На рисунке расстояние отмеряется в «см» или «мм» и, следовательно, неметрическая система измерения (% или сМ) заменяется метрической. Это даёт возможность использовать выбранное расстояние как эталон, по которому в соответствии с величиной кроссинговера определяется место расположения других генов.

Р ААCC × ааcc

F 1 AaCc × aacc

AC Ac aC ac
ac AaCc Aacc aaCc Aacc
47,5% 2,5% 2,5% 47,5%
47,5% 5% 47,5%

По данной схеме расстояние между генами А и С = 5%. Для гена С появляются два возможных места положения, находящиеся на одинаковом расстоянии (5%) справа и слева от гена А. Однако, один ген не может занимать одновременно два локуса, следовательно одна точка лишняя (неверная), её надо удалить. Для определения точного места расположения гена С проводится очередное скрещивание (по стандартной схеме), в котором определяется расстояние между генами В и С. В соответствии с предложенным условием расстояние между генами может быть либо 15%, либо 25%. Если расстояние между генами В и С оказывается равным 15%, то ген С должен быть расположен между А и С (А-С-В). Если же расстояние будет равно 25%, то ген С должен быть расположен слева от гена А (С-А-В).

Для определения места расположения следующего гена проводится изучение расстояния от неизвестного гена до двух уже изученных. Вновь сначала появляются две точки, одна из которых затем исключается. Такая работа проводится до полного определения места расположения всех генов после чего крайний ген принимается за точку отсчёта, а остальные располагаются по отношению к нему с нарастающим эффектом в соответствии с величиной кроссинговера. Так появляется обозначение всех локусов.

Гены, расположенные в одной хромосоме, представляют собой группу сцепления . Сцепление генов - это совместное наследование генов, расположенных в одной и той же хромосоме. Количество групп сцепления соответствует гаплоидному числу хромосом. Сцепление генов, расположенных в одной хромосоме, может быть полным или неполным. Полное сцепление : Морган скрещивал черных длиннокрылых самок с серыми с зачаточными крыльями самцами. У дрозофилы серая окраска тела доминирует над черной, длиннокрылость - над зачаточными крыльями. Серое тело - А, черное тело а; длиннокрылые - В, зачаточные крылья - в. При спермиогенезе в период мейоза гомологичные хромосомы расходятся в разные половые клетки. 1) АА//АВ*ав//ав=4АВ//ав; 2) АВ//ав*АВ//ав=АВ//АВ, АВ//ав, ав//АВ, ав//ав. Если гены наход в аутосомах, то при полном сцеплении в F1 будет единообразие по фенотипу, а в F2 – 3:1, по скольким бы признакам не различались родители, т.к. изучается одна пара хромосом.

Явление неполного сцепления в наследовании признаков

В результате скрещивания потомки имели сочетание признаков, как у исходных родительских форм, но появились особи и с новым сочетанием признаков - сцепление неполное . В – серое, в – чёрное, V – нормальные, v - зачаточные. Bv||Bv*bV||bV=Bv||bV; самок из первого поколения скрестили с самцами анализаторами: BV//bV*bv//bv=Bv//bv,bV//bv – не кроссоверное. Bv//bV*bv//bv=2bv//bv, 2BV//bv – кросоверное. Обмен гомологичных хромосом своими частями называется перекрестом или кроссинговером. Особей с новыми сочетаниями признаков, образовавшимися в результате кроссинговера, называют кроссоверами. Количество появления новых форм зависит от частоты перекреста, которая определяется по следующей формуле: Частота перекрёста = (Число кроссоверных форм)·100/ Общее число потомков. За единицу измерения перекреста принята его величина, равная 1 %. Ее называют морганидой. Величина перекреста зависит от расстояния между изучаемыми генами. Чем больше отдалены гены друг от друга, тем чаще происходит перекрест; чем ближе они расположены, тем вероятность перекреста меньше.

Карты хромосом. Пример их построения

Карта хромосом - план расположения генов в хромосоме. Гены расположены в хромосомах в линейной последовательности на определенных расстояниях друг от друга. Явление торможения кроссинговера на одном участке кроссинговером на другом получило название интерференции. Чем меньше будет расстояние, разделяющее три гена, тем больше интерференция. Принимая во внимание линейное расположение генов в хромосоме, взяв за единицу расстояния частоту кроссинговера, Морган составили первую карту расположения генов в одной из хромосом дрозофилы: сh___13.6___ y___28.2___b. При построении карт указывают не расстояние между генами, а расстояние до каждого гена от нулевой точки начала хромосомы. Доминантный аллель обозначается прописной буквой, рецессивный - строчной. После построения генетических карт встал вопрос о том, отвечает ли расположение генов в хромосоме, построенное на основании частоты кроссинговера, истинному расположению. Каждая хромосома по длине имеет специфические рисунки дисков, что позволяет отличать разные ее участки друг от друга. Материалом для проверки служили хромосомы, у которых вследствие мутации возникали различные хромосомные перестройки: не хватало отдельных дисков, или они были перевернуты, или удвоены. Физические расстояния между генами на генетической карте не вполне соответствуют установленным цитологическим. Однако это не снижает ценности генетических карт хромосом для предсказания вероятности появления особей с новыми сочетаниями признаков. На основании анализа результатов многочисленных экспериментов с дрозофилой Т. Морган сформулировал хромосомную теорию наследственности, сущность которой заключается в следующем: 1) гены находятся в хромосомах, располагаются в них линейно на определенном расстоянии друг от друга; 2) гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом; З) признаки, гены которых находятся в одной хромосоме, наследуются сцеплено; 4) в потомстве гетерозиготных родителей новые сочетания генов, расположенных в одной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза. Частота кроссинговера зависит от расстояния между генами; 5) на основании линейного расположения генов в хромосоме и частоты кроссинговера как показателя расстояния между генами можно построить карты хромосом.

Бисексуальность, интерсексуальность, гиандроморфизм, химеризм по половым хром-мам. Роль гормонов и условий среды в развит признаков пола

Любая зигота имеет х-хром-мы и аутосомы, т.е. имеет гены и женского и мужского пола, т.е. генетически любой организм бисексуальный (двуполый). Интерсексы – гермофродиты – особи с развитыми и женскими и мужскими признаками. 2 типа: истинные – имеют женские и мужские половые железы из-за нарушения баланса генов; условные – имеют железы одного пола, а наружный половой признак другого пола из-за нарушения баланса гормонов. Иногда у насекомых и животных встречается гиандроморфы – одна часть тела имеет женские признаки, а другая – мужские. Причины: зигота женского пола разделяется на 2 бластомера. Один из них потерял одну х-хром-му. Из этого бластомера будет развиваться мужская половина тела. Химеризм по половине хромосом хх/ху встречается у многоплодных животных, у бычков – когда в одном и том же организме содержатся хх- хромосомы, а воспроизводство ху- хромосом нарушено. При обычном кормлении вырастают самцы, а если в корм добавлять женские половые гормоны, то вырастают самки (рыбки мальки). Если личинка морского червя прикрепится ко дну моря – самка, если к хоботку самки – самец.

Типы детерминации пола у животных. Первичное и вторичное соотношение полов. Проблема регулирования пола

Детерминация обеспечивает образование равного кол-ва самцов и самок, что необходимо для нормального самовоспроизведения вида. Типы : 1) эпигамный – пол особи определяется в процессе онтогенеза, зависит от внешней среды. 2) прогамный – пол определяется в ходе гаметогенеза у родителей особи. 3) сингамный – пол определяется в момент слияния гамет. Первичное и вторичное соотношение полов: соотношение полов, кот определяется в момент слияния гамет, наз-ся первичным , всегда 1:1. Любое изменение в соотношении полов, как до, так и после рождения, наз-ся вторичным. Обычно после рождения оно смещается в пользу женского пола, поэтому у многих видов животных и у чел-ка мужских особей рождается больше, чем женских: кролики – 57%, человек – 51%, птицы – 59%. Проблема регулирования пола: имеет важное хозяйственное значение. Н-р: в молочном скотоводстве, в яичном птицеводстве желательны самки, а там, где основной продукт – мясо, лучше самцы. Проблема в том, чтобы разделить сперму на х- и у- фракции. Способы: 1) электрофорез – х – спермии имеют отрицательный заряд – движутся к катоду, а у – спермии – к аноду. Гарантия 80%. 2) Метод осаждения – х – сперма более плотная и осядает вниз, а у – остаётся сверху. 3) Использование набора кислот для изменения рН женских половых путей для создания условий только для х – или только для у-. 4) Партеногенез: геногенез – получение самок – рентгеновскими лучами облучают овоцит. первого порядка, тем самым задерживают расхождение хром-м, образ-ся яйцеклетка с диплоидным набором хром-м, в кот без оплодотворения развивается самка. Андрогенез – получение самцов – ядро яйцеклетки убивают лучами рентгена, затем в неё проникают два спермия, ядра сливаются, давая диплоидный набор, будет самец. 5) Метод разделения спермы на фракции по кол-ву ДНК в спермиях. 6) Чем моложе родители, тем вероятность рождения у них мужского пола больше. 7) Чем больше спермы в половых путях самки, тем вероятнее рождение мужского пола. 8) Чем больше хранится сперма – самка. 9) У птицы кормление: если петуху в корм добавлять Са, то самка, а если К – самцы. 10) В любой популяции действует закон равновесия, т.е. соотношение полов стремится 1:1.

СЦЕПЛЕНИЕ ГЕНОВ явление, в основе которого лежит локализация генов в одной хромосоме. При полном сцепление генов образуются только два типа гамет (с исходными сочетаниями сцепленных генов), при неполном - и новые комбинации аллелей сцепленных генов. Неполное сцепление генов - результат кроссинговера между сцепленными генами, поэтому полное сцепление генов возможно у организмов, в клетках которых кроссинговер в норме не происходит (напр., половые клетки самцов дрозофилы). Таким образом, полное сцепление генов является скорее исключением из правила неполного сцепление генов. Кроме того, полное сцепление генов может имитироваться явлением плейотропии.

Кроссинго́вер (другое название в биологии перекрёст) - процесс обмена участками гомологичных хромосом во время конъюгации в профазе I мейоза.

Конец работы -

Эта тема принадлежит разделу:

Основные понятия генетики наследственность, наследование, доминантность, рецессивность, аллельные гены, гомои гетерозиготность

Генетика наука о законах наследственности и изменчивости организмов и методах управления ими.. наследственность свойство организмов обеспечивать материальную и.. наследование передача генетической информации генетических признаков от одного поколения организмов к другому..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие о фенотипе и генотипе. Важнейшие свойства генов
Обычно Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям: 1. По источнику информации (генотип определяется при изучении ДНК особи,

Свойства гена
1. дискретность - несмешиваемость генов; 2. стабильность - способность сохранять структуру; 3. лабильность - способность многократно мутировать; 4. множественный аллелизм

Законы Г.Менделя, их цитологические основы
Закон единообразия гибридов первого поколения (первый закон Менделя) - при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга

Кодоминирование и неполное доминирование
Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования

Основные положения теории наследственности Менделя
В современной интерпретации эти положения следующие: · За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы - гены (термин «ген» предложен в

Статистический характер законов Менделя. Правила вероятности
В опытах с горохом при моногибридном скрещивании Г.Мендель получил соотношение по изучаемому признаку 3,0095: 1,0, т.е. близкое к теоретически ожидаемому 3:1. Учёный оперировал сравнительно крупны

Менделирующие признаки человека
Менделирующими признаками называются те, наследование которых про исходит по закономерностям, установленным Г. Менделем. Менделирующие признаки определяются одним геном моногенно (от греч.monos-оди

Типы взаимодействия аллельных генов
Взаимодействие между аллельными генами осуществляется в виде трех форм: полное доминирование, неполное доминирование и независимое проявление (кодоминирование). Полное дом

Закономерности наследования групп крови у человека в системе АВО и резус-фактор
Система групп крови ABO - это основная система групп крови, которая используется при переливании крови у людей. Ассоциированные анти-А и анти-В-антитела (иммуноглобулины

Типы взаимодействия генов из разных аллельных пар (комплементарность, полимерия, эпистаз)
Комплементарность - вид взаимодействия неаллельных генов, при котором признак формируется в результате суммарного сочетания продуктов их доминантных аллелей. Эпист

Генетический механизм, лежащий в основе наследования признаков при взаимодействии генов
Под действием генов (экспрессией, выражением генов) понимают способность их контролировать свойства или, точнее, синтез белков. Для действия генов характерен ряд особенностей, важнейшей из которых

Роль наследственности и среды в формировании фенотипа. Понятие экспрессивности и пенетрантности
Важной задачей генетики является уточнение роли наследственных и внешнесредовых факторов в формировании того или иного признака. Фактически необходимо оценить степень обусловленности ко-лич

Хромосомная теория наследственности
Хромосомная теория наследственности - теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основ

Особенности наследования признаков, сцепленных с полом
Наследование, сцепленное с полом - наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола, но не определяемых генами, на

Биологическое значение явления сцепления генов и кроссинговера
Благодаря сцепленному наследованию удачные сочетания аллелей оказываются относительно устойчивыми. В результате образуются группы генов, каждая из которых функционирует как единый суперген, контрол

Основные направления генетики человека
Основополагающие законы генетики были вскрыты чешским естествоиспытателем Г. Менделем при скрещивании различных рас гороха (1865). Однако принципиальные результаты его опытов были поняты и оценены

Генетика человека и евгенические программы
Евге́ника (от греч. ευγενες - «хорошего рода», «породистый») - учение о селекции применительно к человеку, а также о путях улучшения его нас

Методы изучения наследственности человека
Генеалогический методЭтот метод основан на прослеживании какого-либо нормального или патологического признака в ряде поколений с указанием родственных связей между членами родослов

Популяционно-статистический метод. Его возможности и значение
Этот метод позволяет изучить распространение отдельных генов в человеческих популяциях. Обычно производится непосредственное выборочное исследование части популяции либо изучают архивы больниц, род

Закон Харди-Вайберга и возможности его применения в медицинской генетике
Закон Харди - Вайнберга - это закон популяционной генетики - в популяции бесконечно большого размера, в которой не действует отбор, не идет мутационный процесс, отсутствует обмен особями с другими

Изменчивость, ее формы
Изменчивость организмов проявляется в разнообразии особей (одного вида, породы или сорта), отличающихся друг от друга по комплексу признаков, свойств и качеств. Причины тому могут быть разными. В о

Наследственная (генотипическая) изменчивость
В данном случае происходит изменение генотипа и как результат меняются признаки (или их комбинации). Новые признаки наследуются, т. е. передаются последующим поколениям организмов.

Генные мутации и их последствия для человека. Механизмы возникновения генных мутаций
Мутации это изменения генетического материала особи. Они происходят случайно и могут привести к появлению белков с иным аминокислотным составом и возникновению совершенно новых признаков или свойст

Виды хромосомных мутаций и их последствия для человека
Хромосомные мутации -- значительное изменение структуры хромосомы, обычно затрагивающее несколько генов этой хромосомы. Хромосомные мутации приводят к изменению числа, размеров и организации хромос

Виды геномных мутаций и их последствия для человека
Геномные мутации - это мутации, которые приводят к добавлению либо утрате одной, нескольких или полного гаплоидного набора хромосом (рис. 118 , Б). Разные виды геномных мутаций называют гетероплои

Основные механизмы возникновения хромосомных и геномных мутаций
Механизм возникновения геномных мутаций связан с патологией нарушения нормального расхождения хромосом в мейозе, в результате чего образуются аномальные гаметы, что и ведет к мутации. Изменения в о

Значение соматических мутаций для человека
Соматические мутации- мутации, возникающие в клетках тела и обусловливающие мозаичность организма, т. е. образование в нём отдельных участков тела, тканей или клеток с отличным от остальных набором

Медико-генетический аспект брака. Понятие инбридинга, аутбридинга, инцестных браков
Медико-генетическое консультирование - специализированная медицинская помощь - наиболее распространенная форма профилактики наследственных болезней. Генетическое консультирование - состоит из

Принципы медико-генетического консультирования
Медико-генетическое консультирование - специализированный вид медицинской помощи - является наиболее распространенным видом профилактики наследственных болезней. Суть его заключается в определении

Понятие о фенокопиях и генокопиях
Генокопия - миметические гены, возникноваение сходных фенотипического признаков под влиянием генов, расположенных в разных участках хромосомы или в разных хромосомах (т. н. мутантные аллели)

mob_info