Построить эмпирическую функцию по заданному распределению выборки. Эмпирическая функция распределения, свойства. Примеры задач на нахождение эмпирической функции распределения

Вариационный ряд. Полигон и гистограмма.

Ряд распределения - представляет собой упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку.

В зависимости от признака, положенного в основу образования ряда распределения различают атрибутивные и вариационные ряды распределения:

§ Ряды распределения, построенные в порядке возрастания или убывания значений количественного признака называются вариационными .

Вариационный ряд распределения состоит из двух столбцов:

В первом столбце приводятся количественные значения варьирующегося признака, которые называются вариантами и обозначаются . Дискретная варианта - выражается целым числом. Интервальная варианта находится в пределах от и до. В зависимости от типа варианты можно построить дискретный или интервальный вариационный ряд.
Во втором столбце содержится количество конкретных вариант , выраженное через частоты или частости:

Частоты - это абсолютные числа, показывающие столько раз в совокупности встречается данное значение признака, которые обозначают . Сумма всех частот равна должна быть равна численности единиц всей совокупности.

Частости () - это частоты выраженные в процентах к итогу. Сумма всех частостей выраженных в процентах должна быть равна 100% в долях единице.

Графическое изображение рядов распределения

Наглядно ряды распределения представляются при помощи графических изображений.

Ряды распределения изображаются в виде:

§ Полигона

§ Гистограммы

§ Кумуляты

Полигон

При построении полигона на горизонтальной оси (ось абсцисс) откладывают значения варьирующего признака, а на вертикальной оси (ось ординат) - частоты или частости.

1. Полигон на рис. 6.1 построен по данным микропереписи населения России в 1994 г.


Гистограмма



Для построения гистограммы по оси абсцисс указывают значения границ интервалов и на их основании строят прямоугольники, высота которых пропорциональна частотам (или частостям).

На рис. 6.2. изображена гистограмма распределения населения России в 1997 г. по возрастным группам.

Рис.1. Распределение населения России по возрастным группам

Эмпирическая функция распределения, свойства.

Пусть известно статистическое распределение частот количественного признака X. Обозначим через число наблюдений, при которых наблюдалось значение признака, меньшее x и через n – общее число наблюдений. Очевидно, относительная частота события X

Эмпирической функцией распределения (функцией распределения выборки) называют функцию , определяющую для каждого значения x относительную частоту события X

В отличие от эмпирической функции распределения выборки, функцию распределения генеральной совокупности называют теоретической функцией распределения. Различие между этими функциями состоит в том, что теоретическая функция определяет вероятность события X

При росте n относительная частота события X

Основные свойства

Пусть зафиксирован элементарный исход . Тогда является функцией распределения дискретного распределения, задаваемого следующейфункцией вероятности:

где , а - количество элементов выборки, равных . В частности, если все элементы выборки различны, то .

Математическое ожидание этого распределения имеет вид:

.

Таким образом выборочное среднее - это теоретическое среднее выборочного распределения.

Аналогично, выборочная дисперсия - это теоретическая дисперсия выборочного распределения.

Случайная величина имеет биномиальное распределение:

Выборочная функция распределения является несмещённой оценкой функции распределения :

.

Дисперсия выборочной функции распределения имеет вид:

.

Согласно усиленному закону больших чисел, выборочная функция распределения сходится почти наверное к теоретической функции распределения:

почти наверное при .

Выборочная функция распределения является асимптотически нормальной оценкой теоретической функции распределения. Если , то

По распределению при .

Определение эмпирической функции распределения

Пусть $X$ -- случайная величина. $F(x)$ - функция распределения данной случайной величины. Будем проводить в одних и тех же независимых друг от друга условий $n$ опытов над данной случайной величиной. При этом получим последовательность значений $x_1,\ x_2\ $, ... ,$\ x_n$, которая и называется выборкой.

Определение 1

Каждое значение $x_i$ ($i=1,2\ $, ... ,$ \ n$) называется вариантой.

Одной из оценок теоретической функции распределения является эмпирическая функция распределения.

Определение 3

Эмпирической функцией распределения $F_n(x)$ называется функция, которая определяет для каждого значения $x$ относительную частоту события $X \

где $n_x$ - число вариант, меньших $x$, $n$ -- объем выборки.

Отличие эмпирической функции от теоретической состоит том, что теоретическая функция определяет вероятность события $X

Свойства эмпирической функции распределения

Рассмотрим теперь несколько основных свойств функции распределения.

    Область значений функции $F_n\left(x\right)$ -- отрезок $$.

    $F_n\left(x\right)$ неубывающая функция.

    $F_n\left(x\right)$ непрерывная слева функция.

    $F_n\left(x\right)$ кусочно-постоянная функция и возрастает только в точках значений случайной величины $X$

    Пусть $X_1$ -- наименьшая, а $X_n$ -- наибольшая варианта. Тогда $F_n\left(x\right)=0$ при ${x\le X}_1$и $F_n\left(x\right)=1$ при $x\ge X_n$.

Введем теорему, которая связывает между собой теоретическую и эмпирическую функции.

Теорема 1

Пусть $F_n\left(x\right)$ -- эмпирическая функция распределения, а $F\left(x\right)$ -- теоретическая функция распределения генеральной выборки. Тогда выполняется равенство:

\[{\mathop{lim}_{n\to \infty } {|F}_n\left(x\right)-F\left(x\right)|=0\ }\]

Примеры задач на нахождение эмпирической функции распределения

Пример 1

Пусть распределение выборки имеет следующие данные, записанные с помощью таблицы:

Рисунок 1.

Найти объем выборки, составить эмпирическую функцию распределения и построить её график.

Объем выборки: $n=5+10+15+20=50$.

По свойству 5, имеем, что при $x\le 1$ $F_n\left(x\right)=0$, а при $x>4$ $F_n\left(x\right)=1$.

Значение $x

Значение $x

Значение $x

Таким образом, получаем:

Рисунок 2.

Рисунок 3.

Пример 2

Из городов центральной части России случайным образом выбрано 20 городов, для которых получены следующие данные по стоимости проезда в общественном транспорте: 14, 15, 12, 12, 13, 15, 15, 13, 15, 12, 15, 14, 15, 13, 13, 12, 12, 15, 14, 14.

Составить эмпирическую функцию распределения данной выборки и построить её график.

Запишем значения выборки в порядке возрастания и посчитаем частоту каждого значения. Получаем следующую таблицу:

Рисунок 4.

Объем выборки: $n=20$.

По свойству 5, имеем, что при $x\le 12$ $F_n\left(x\right)=0$, а при $x>15$ $F_n\left(x\right)=1$.

Значение $x

Значение $x

Значение $x

Таким образом, получаем:

Рисунок 5.

Построим график эмпирического распределения:

Рисунок 6.

Оригинальность: $92,12\%$.

Как известно, закон распределения случайной величины можно задавать различными способами. Дискретную случайную величину можно задать с помощью ряда распределения или интегральной функции, а непрерывную случайную величину – с помощью или интегральной, или дифференциальной функции. Рассмотрим выборочные аналоги этих двух функций.

Пусть имеется выборочная совокупность значений некоторой случайной величины объемаи каждому варианту из этой совокупности поставлена в соответствие его частость. Пусть далее,– некоторое действительное число, а– число выборочных значений случайной величины
, меньших.Тогда числоявляется частостью наблюдаемых в выборке значений величиныX , меньших , т.е. частостью появления события
. При измененииx в общем случае будет изменяться и величина . Это означает, что относительная частотаявляется функцией аргумента. А так как эта функция находится по выборочным данным, полученным в результате опытов, то ее называют выборочной илиэмпирической .

Определение 10.15. Эмпирической функцией распределения (функцией распределения выборки) называют функцию
, определяющую для каждого значенияx относительную частоту события
.

(10.19)

В отличие от эмпирической функции распределения выборки функцию распределения F (x ) генеральной совокупности называют теоретической функцией распределения . Различие между ними состоит в том, что теоретическая функция F (x ) определяет вероятность события
, а эмпирическая – относительную частоту этого же события. Из теоремы Бернулли следует

,
(10.20)

т.е. при больших вероятность
и относительная частота события
, т.е.
мало отличаются одно от другого. Уже отсюда следует целесообразность использования эмпирической функции распределения выборки для приближенного представления теоретической (интегральной) функции распределения генеральной совокупности.

Функция
и
обладают одинаковыми свойствами. Это вытекает из определения функции.

Свойства
:


Пример 10.4. Построить эмпирическую функцию по данному распределению выборки:

Варианты

Частоты

Решение: Найдем объем выборки n = 12+18+30=60. Наименьшая варианта
, следовательно,
при
. Значение
, а именно
наблюдалось 12 раз, следовательно:

=
при
.

Значение x < 10, а именно
и
наблюдались 12+18=30 раз, следовательно,
=
при
. При

.

Искомая эмпирическая функция распределения:

=

График
представлен на рис. 10.2

Р
ис. 10.2

Контрольные вопросы

1. Какие основные задачи решает математическая статистика? 2. Генеральная и выборочная совокупность? 3. Дайте определение объема выборки. 4. Какие выборки называются репрезентативными? 5. Ошибки репрезентативности. 6. Основные способы образования выборки. 7. Понятия частоты, относительной частоты. 8. Понятие статистического ряда. 9. Запишите формулу Стэрджеса. 10. Сформулируйте понятия размаха выборки, медианы и моды. 11. Полигон частот, гистограмма. 12. Понятие точечной оценки выборочной совокупности. 13. Смещенная и несмещенная точечная оценка. 14. Сформулируйте понятие выборочной средней. 15. Сформулируйте понятие выборочной дисперсии. 16. Сформулируйте понятие выборочного среднеквадратического отклонения. 17. Сформулируйте понятие выборочного коэффициента вариации. 18. Сформулируйте понятие выборочной средней геометрической.

Узнайте, что такое эмпирическая формула. В химии ЭФ – это самый простой способ описания соединения – по сути это список элементов, образующих соединение с учетом их процентного содержания. Нужно обратить внимание, что эта простейшая формула не описывает порядок атомов в соединении, она просто указывает, из каких элементов оно состоит. For example:

  • Соединение, состоящее из 40,92% углерода; 4,58% водорода и 54,5% кислорода, будет иметь эмпирическую формулу C 3 H 4 O 3 (пример того, как найти ЭФ этого соединения будет рассмотрен во второй части).
  • Усвойте термин "процентный состав". "Процентным составом" называется процентное содержание каждого отдельного атома во всем рассматриваемом соединении. Чтобы найти эмпирическую формулу соединения, необходимо знать процентный состав соединения. Если вы находите эмпирическую формулу в качестве домашнего задания, то проценты, скорее всего, будут даны.

    • Чтобы найти процентный состав химического соединения в лаборатории, его подвергают некоторым физическим экспериментам, а затем – количественному анализу. Если вы не находитесь в лаборатории, вам не нужно делать эти эксперименты.
  • Имейте в виду, что вам придется иметь дело с грамм-атомами. Грамм-атом – это определенное количество вещества, масса которого равна его атомной массе. Чтобы найти грамм-атом, нужно воспользоваться следующим уравнением: Процентное содержание элемента в соединении делится на атомную массу элемента.

    • Допустим, к примеру, что у нас есть соединение, содержащее 40,92% углерода. Атомная масса углерода равна 12, поэтому наше уравнение будет иметь 40,92 / 12 = 3,41.
  • Знайте, как находить атомное соотношение. Работая с соединением, у вас будет получаться больше одного грамм-атома. После нахождения всех грамм-атомов вашего соединения, посмотрите на них. Для того, чтобы найти атомное соотношение, вам нужно будет выбрать наименьшее значение грамм-атома, которые вы вычислили. Затем нужно будет разделить все грамм-атомы на наименьший грамм-атом. Например:

    • Допустим вы работаете с соединением, содержащим три грамм-атома: 1,5; 2 и 2,5. Наименьшее из этих чисел – 1,5. Поэтому, чтобы найти соотношение атомов, вы должны разделить все числа на 1,5 и поставить между ними знак отношения : .
    • 1,5 / 1,5 = 1. 2 / 1,5 = 1,33. 2,5 / 1,5 = 1,66. Следовательно, соотношение атомов равно 1: 1,33: 1,66 .
  • Разберитесь, как переводить значения отношений атомов в целые числа. Записывая эмпирическую формулу, вы должны использовать целые числа. Это значит, что вы не можете использовать числа вроде 1,33. После того, как вы найдете отношение атомов, вам нужно перевести дробные числа (вроде 1,33) в целые (например, 3). Для этого вам нужно найти целое число, умножив на которое каждое число атомного соотношения, вы получите целые числа. Например:

    • Попробуйте 2. Умножьте числа атомного соотношения (1, 1,33 и 1,66) на 2. Вы получите 2, 2,66 и 3,32. Это не целые числа, поэтому 2 не подходит.
    • Попробуйте 3. Если вы умножите 1, 1,33 и 1,66 на 3, у вас получится 3, 4 и 5 соответственно. Следовательно, атомное соотношение целых чисел имеет вид 3: 4: 5 .
  • Определение эмпирической функции распределения

    Пусть $X$ -- случайная величина. $F(x)$ - функция распределения данной случайной величины. Будем проводить в одних и тех же независимых друг от друга условий $n$ опытов над данной случайной величиной. При этом получим последовательность значений $x_1,\ x_2\ $, ... ,$\ x_n$, которая и называется выборкой.

    Определение 1

    Каждое значение $x_i$ ($i=1,2\ $, ... ,$ \ n$) называется вариантой.

    Одной из оценок теоретической функции распределения является эмпирическая функция распределения.

    Определение 3

    Эмпирической функцией распределения $F_n(x)$ называется функция, которая определяет для каждого значения $x$ относительную частоту события $X \

    где $n_x$ - число вариант, меньших $x$, $n$ -- объем выборки.

    Отличие эмпирической функции от теоретической состоит том, что теоретическая функция определяет вероятность события $X

    Свойства эмпирической функции распределения

    Рассмотрим теперь несколько основных свойств функции распределения.

      Область значений функции $F_n\left(x\right)$ -- отрезок $$.

      $F_n\left(x\right)$ неубывающая функция.

      $F_n\left(x\right)$ непрерывная слева функция.

      $F_n\left(x\right)$ кусочно-постоянная функция и возрастает только в точках значений случайной величины $X$

      Пусть $X_1$ -- наименьшая, а $X_n$ -- наибольшая варианта. Тогда $F_n\left(x\right)=0$ при ${x\le X}_1$и $F_n\left(x\right)=1$ при $x\ge X_n$.

    Введем теорему, которая связывает между собой теоретическую и эмпирическую функции.

    Теорема 1

    Пусть $F_n\left(x\right)$ -- эмпирическая функция распределения, а $F\left(x\right)$ -- теоретическая функция распределения генеральной выборки. Тогда выполняется равенство:

    \[{\mathop{lim}_{n\to \infty } {|F}_n\left(x\right)-F\left(x\right)|=0\ }\]

    Примеры задач на нахождение эмпирической функции распределения

    Пример 1

    Пусть распределение выборки имеет следующие данные, записанные с помощью таблицы:

    Рисунок 1.

    Найти объем выборки, составить эмпирическую функцию распределения и построить её график.

    Объем выборки: $n=5+10+15+20=50$.

    По свойству 5, имеем, что при $x\le 1$ $F_n\left(x\right)=0$, а при $x>4$ $F_n\left(x\right)=1$.

    Значение $x

    Значение $x

    Значение $x

    Таким образом, получаем:

    Рисунок 2.

    Рисунок 3.

    Пример 2

    Из городов центральной части России случайным образом выбрано 20 городов, для которых получены следующие данные по стоимости проезда в общественном транспорте: 14, 15, 12, 12, 13, 15, 15, 13, 15, 12, 15, 14, 15, 13, 13, 12, 12, 15, 14, 14.

    Составить эмпирическую функцию распределения данной выборки и построить её график.

    Запишем значения выборки в порядке возрастания и посчитаем частоту каждого значения. Получаем следующую таблицу:

    Рисунок 4.

    Объем выборки: $n=20$.

    По свойству 5, имеем, что при $x\le 12$ $F_n\left(x\right)=0$, а при $x>15$ $F_n\left(x\right)=1$.

    Значение $x

    Значение $x

    Значение $x

    Таким образом, получаем:

    Рисунок 5.

    Построим график эмпирического распределения:

    Рисунок 6.

    Оригинальность: $92,12\%$.

    mob_info