Основные способы получения алкенов. Получение алкенов. Физические свойства алкенов

Физические свойства алкенов похожи на свойства алканов, хотя все они имеют несколько более низкие температуры плавления и кипения, чем соответствующие алканы. Например, пентан имеет температуру кипения 36 °С, а пентен-1 - 30 °С. При обычных условиях алкены С 2 — С 4 - газы. С 5 – С 15 - жидкости, начиная с C 16 - твердые вещества. Алкены не растворимы в воде, хорошо растворимы в органических растворителях.

В природе алкены встречаются редко. Поскольку алкены являются ценным сырьем для промышленного органического синтеза, разработаны многие способы их получения.

1. Основным промышленным источником алкенов служит крекинг алканов, входящих в состав нефти:

3. В лабораторных условиях алкены получают по реакциям отщепления (элиминирования), при которых от соседних атомов углерода отщепляются два атома или две группы атомов, и образуется дополнительная p -связь. К таким реакциям относятся следующие.

1) Дегидратация спиртов происходит при их нагревании с водоотнимающими средствами, например с серной кислотой при температуре выше 150 °С:

При отщеплении Н 2 O от спиртов, НВr и HCl от алкилгалогенидов атом водорода преимущественно отщепляется от того из соседних атомов углерода, который связан с наименьшим числом атомов водорода (от наименее гидрогенизированного атома углерода). Эта закономерность носит название правила Зайцева .

3) Дегалогенирование происходит при нагревании дигалогенидов, имеющих атомы галогена у соседних атомов углерода, с активными металлами:

CH 2 Br —CHBr —CH 3 + Mg → СН 2 =СН-СН 3 + Mg Вr 2 .

Химические свойства алкенов определяются наличием в их молекулах двойной связи. Электронная плотность p -связи достаточно подвижна и легко вступает в реакции с электрофильными частицами. Поэтому многие реакции алкенов протекают по механизму электрофильного присоединения , обозначаемому символом A E (от англ, addition electrophilic ). Реакции злектрофильного присоединения это ионные процессы, протекающие в несколько стадий.

На первой стадии электрофильная частица (чаще всего это бывает протон H +) взаимодействует с p -электронами двойной связи и образует p -комплекс, который затем превращается в карбокатион путем образования ковалентной s -связи между электрофильной частицей и одним из атомов углерода:

алкен p -комплекс карбокатион

На второй стадии карбокатион реагирует с анионом X — , образуя вторую s -связь за счет электронной пары аниона:

Ион водорода в реакциях электрофильного присоединения присоединяется к тому из атомов углерода при двойной связи, на котором больше отрицательный заряд. Распределение зарядов определяется смещением p -электронной плотности под влиянием заместителей: .

Электронодонорные заместители, проявляющие +I -эффект, смещают p -электронную плотность к более гидрогенизированному атому углерода и создают на нем частичный отрицательный заряд. Этим объясняется правило Марковникова : при присоединении полярных молекул типа НХ(X = Hal , ОН, CN и т.п.) к несимметричным алкенам водород преимущественно присоединяется к более гидрогенизированному атому углерода при двойной связи.

Рассмотрим конкретные примеры реакций присоединения.

1) Гидрогалогенирование . При взаимодействии алкенов с галогеноводородами (HCl , НВr ) образуются алкилгалогениды:

СН 3 -СН=СН 2 + НВr ® СН 3 -СНВr-СН 3 .

Продукты реакции определяются правилом Марковникова.

Следует, однако, подчеркнуть, что в присутствии какого-либо органического пероксида полярные молекулы НХ реагируют с алкенами не по правилу Марковникова:

R-O-O-R
СН 3 -СН=СН 2 + НВr СН 3 -СН 2 -СН 2 Вr

Это связано с тем, что присутствие перекиси обусловливает радикальный, а не ионный механизм реакции.

2) Гидратация . При взаимодействии алкенов с водой в присутствии минеральных кислот (серной, фосфорной) образуются спирты. Минеральные кислоты выполняют роль катализаторов и являются источниками протонов. Присоединение воды также идет по правилу Марковникова:

СН 3 -СН=СН 2 + НОН ® СН 3 -СН(ОН)-СН 3 .

3) Галогенирование . Алкены обесцвечивают бромную воду:

СН 2 =СН 2 + Вr 2 ® ВrСН 2 -СН 2 Вr.

Эта реакция является качественной на двойную связь.

4) Гидрирование . Присоединение водорода происходит под действием металлических катализаторов:

где R = Н, СН 3 , Cl , С 6 Н 5 и т.д. Молекула CH 2 =CHR называется мономером, полученное соединение - полимером , число n-степень полимеризации.

Полимеризация различных производных алкенов дает ценные промышленные продукты: полиэтилен, полипропилен, поливинилхлорид и другие.

Кроме присоединения, для алкенов характерны также реакции окисления. При мягком окислении алкенов водным раствором перманганата калия (реакция Вагнера ) образуются двухатомные спирты:

ЗСН 2 =СН 2 + 2КМn О 4 + 4Н 2 О ® ЗНОСН 2 -СН 2 ОН + 2MnO 2 ↓ + 2KOH .

В результате протекания этой реакции фиолетовый раствор перманганата калия быстро обесцвечивается и выпадает коричневый осадок оксида марганца (IV ). Эта реакция, как и реакция обесцвечивания бромной воды, является качественной на двойную связь. При жестком окислении алкенов кипящим раствором перманганата калия в кислой среде происходит полный разрыв двойной связи с образованием кетонов, карбоновых кислот или СО 2 , например:

[О]
СН 3 -СН=СН-СН 3 2СН 3 -СООН

По продуктам окисления можно установить положение двойной связи в исходном алкене.

Как и все другие углеводороды, алкены горят, и при обильном доступе воздуха образуют диоксид углерода и воду:

С n Н 2 n + Зn /2О 2 ® n СО 2 + n Н 2 О.

При ограниченном доступе воздуха горение алкенов может приводить к образованию монооксида углерода и воды:

С n Н 2n + nО 2 ® nCO + nH 2 O .

Если смешать алкен с кислородом и пропустить эту смесь над нагретым до 200°С серебряным катализатором, то образуется оксид алкена (эпоксиалкан), например:

При любых температурах алкены окисляются озоном (озон более сильный окислитель, чем кислород). Если газообразный озон пропускают через раствор какого-либо алкена в тетрахлор-метане при температурах ниже комнатной, то происходит реакция присоединения, и образуются соответствующие озониды (циклические перекиси). Озониды очень неустойчивы и могут легко взрываться. Поэтому обычно их не выделяют, а сразу после получения разлагают водой - при этом образуются карбонильные соединения (альдегиды или кетоны), строение которых указывает на строение подвергавшегося озонированию алкена.

Низшие алкены - важные исходные вещества для промышленного органического синтеза. Из этилена получают этиловый спирт, полиэтилен, полистирол. Пропен используют для синтеза полипропилена, фенола, ацетона, глицерина.

1. Из алканов . Метан может быть селективно окислен на гетерогенном катализаторе – серебре расчётным количеством кислорода до метанола :

Алканы с большим числом атомов углерода ,такие, например, как пропан и бутан, окисляются до смеси первичных и вторичных спиртов расчётным количеством кислорода в присутствии катализаторов – солей марганца. Реакция малоселективна – получается довольно большое количество примесей : альдегидов и кетонов с тем же числом атомов углерода, альдегидов и спиртов – продуктов деструкции

2. Из алкенов . К любому алкену можно присоединить воду в присутствии кислот

Присоединение идёт по правилу Марковникова.

3. Из алкинов . Ацетилен и терминальные алкины, реагируя с формальдегидом, другими альдегидами и кетонами, дают соответственно первичные, вторичные и третичные спирты

4. Из алкадиенов. Алкадиены аналогично алкенам присоединяют в присутствии кислот воду .

Присоединение первого моля воды идёт преимущественно в положения 1 – 4. При

присоединении второго моля воды образуются диолы. Ниже представлены примеры обоих

5. Из галоидных алкилов. Галоидные алкилы вступают с водными растворами щелочей в реакцию нуклеофильного замещения галогена на гидроксил:

6. Из дигалоидных производных . При действии щелочей на дигалоидные производные алканов получаются двухатомные спирты (или диолы):

Как показано выше из 1,2-дибромэтана получается 1,2-этандиол (этиленгликоль). Этот диол очень широко применяется для производства антифризов. Например, в незамерзающей жидкости для охлаждения двигателей внутреннего сгорания – «Тосол-А 40» его 40%.

7. Из тригалоидных производных . Из 1,2,3-трихлорпропана, например, получают широко используемый глицерин (1,2,3-пропантриол).

8. Из аминов. При нагревании с парами воды в присутствии катализатора протекает обратимая реакция, в которой конечными продуктами являются спирт с тем же строением углеродного скелета и аммиак.



Первичные амины можно перевести в спирты так же действием нитрита натрия в соляной кислоте при охлаждении до 2 – 5 о С:

9. Из альдегидов и кетонов по реакции Меервейна – Понндорфа – Верлея . На кетон или альдегид действуют каким-либо спиртом в присутствии катализатора – алкоголята алюминия. В качестве алкоксильных групп берут остатки того же спирта, который взят в качестве реагента. Например, в приведённой ниже реакции вместе с нормальным бутиловым спиртом взят трибутилат алюминия. Реакция обратима и равновесие в ней сдвигают по принципу Ле-Шателье избытком спирта-реагента.

Первые публикации об этой реакции появились практически одновременно в двух разных немецких и одном французском химических журналах в 1925 – 1926 годах. Реакция имеет огромное значение, так как позволяет восстановить карбонильную группу в спиртовую, не восстанавливая двойные связи, нитро- и нитрозогруппы, которые водородом и другими восстановителями переводятся соответственно в простые связи и аминогруппы, например:

Как видно двойная связь , присутствовавшая в кетоне, сохранилась и в полученном спирте. Ниже показано, что при гидрировании кетогруппы одновременно гидрируется и двойная связь.

Аналогичная картина наблюдается и при наличии в кетоне нитрогруппы: в реакции Меервейна –Понндорфа-Верлея она сохраняется, а при гидрировании водородом на катализаторе восстанавливается до аминогруппы:

10. Из альдегидов и кетонов путём гидрирования на катализаторах – металлах платиновой группы: Ni, Pd, Pt:

11. Получение спиртов из альдегидов и кетонов путём синтезов Гриньяра .

Реакции, открытые Франсуа Огюстом Виктором Гриньяром в 1900 – 1920 годах имеют колоссальное значение для синтезов многих классов органических веществ. Так, например, с их помощью можно из любого галоидного алкила и формальдегида в три стадии получить первичный спирт:

Для получения вторичного спирта надо вместо формальдегида взять любой другой альдегид:

При гидролизе такой соли получается спирт с числом атомов углерода равным сумме их в магнийорганическом соединении и в альдегиде:

Для получения третичного спирта вместо альдегида в синтезе используют кетон:

12. Из карбоновых кислот спирты можно получить только в две стадии: на первой из карбоновой кислоты действием пентахлорида фосфора или действием оксиддихлорида серы (IV) получают её хлорангидрид:

На второй стадии, полученный хлорангидрид гидрируют на палладии до спирта:

13. Из алкоголятов спирты очень легко получаются путём гидролиза при комнатной температуре:

Борные эфиры гидролизуются труднее – только при нагревании:


Выпадает в осадок если её больше, чем 4г/100г H 2 O

14. Из сложных эфиров спирты наряду с карбоновыми кислотами могут быть получены путём автокаталитического , кислотного или щелочного гидролиза . При автокаталитическом процессе в результате очень медленного гидролиза водой появляется слабая карбоновая кислота, которая в дальнейшем ходе реакции играет роль катализатора, заметно ускоряя расход сложного эфира и появление спирта во времени. Например, для реакции втор -бутилового эфира 2-метилпропановой кислоты кинетические кривые, то есть зависимости изменения молярных концентраций во времени представяют собой сигмоиды или S-образные кривые (смотрите график ниже реакции).

15. Если добавить к сложному эфиру сильную кислоту , которая является катализатором, то в

реакции не будет индукционного периода, когда гидролиз почти не идёт (от 0 до 1 времени).

Кинетические кривые в этом случае будут представлять собой экспоненты: нисходящую

для сложного эфира и восходящую для спирта. Процесс называется кислотным гидролизом :

16. Если добавить к сложному эфиру щёлочь (моль на моль или избыток) , то реакция так же описывается экспоненциальными кинетическими кривыми, но в отличие от кислотного гидролиза, где концентрации веществ стремятся к равновесным значениям, здесь конечная концентрация спирта практически равна исходной концентрации эфира. Ниже приведена реакция щелочного гидролиза того же сложного эфира и график с кинетическими кривыми. Как видно щёлочь здесь не катализатор, а реагент, и реакция необратима:

17. Из сложных эфиров спирты можно получить также по Буво и Блану . Этот способ был впервые опубликован авторами в двух разных французских химических журналах в 1903 и 1906 годах и заключается в восстановлении сложных эфиров натрием в спирте, например:

Как видно в реакции получаются два спирта: один из кислотной части сложного эфира и он всегда первичный, второй из спиртовой части и он может быть любым – первичным, вторичным или третичным.

18. Более современный способ получения спиртов из сложных эфиров заключается в восстановлении их комплексными гидридами до алкоголятов (реакция (1)), которые затем легко переводятся в спирты путём гидролиза (реакции (2а) и (2b)), например.

Алкины, галогенопроизводные, спирты, полимеры и другие. Главная проблема ненасыщенных углеводородов - почти полное отсутствие их в природе, по большей части вещества конкретно этого ряда добывают в лаборатории путем химического синтеза. Для того чтобы понять особенности реакций получения алкенов, нужно разобраться в их строении.

Что такое алкены?

Алкены - органические вещества, которые состоят из атомов углерода и водорода. Особенностью этого ряда являются двойные ковалентные связи: сигма и пи. Они обуславливают химические и физические свойства веществ. Температура плавления у них ниже, чем у соответствующих алканов. Также от этого "базового" ряда углеводородов алкены отличаются наличием реакции присоединения, которая происходит путем разрыва пи-связи. Для них характерны четыре вида изомерии:

  • по положению двойной связи;
  • по изменениям углеродного скелета;
  • межклассовая (с циклоалканами);
  • геометрическая (цис- и транс-).

Другое название этого ряда веществ - олефины. Это обусловлено их схожестью с многоатомными карбоновыми кислотами, которые в своем составе имеют двойную связь. Номенклатура алкенов отличается тем, что определение первого атома в карбоновой цепи ведется по размещению кратной связи, положение которой также указывается в названии вещества.

Крекинг - основной способ добывания алкенов

Крекинг - вид переработки нефти при высоких температурных режимах. Главная цель этого процесса - добывание веществ с меньшей молекулярной массой. Крекинг для получения алкенов происходит во время расщепления алканов, которые входят в состав нефтепродуктов. Это происходит при температурах от 400 до 700 °С. В ходе этой реакции получения алкенов, помимо вещества, которое было целью ее проведения, образуется алкан. Общее количество атомов углерода до и после реакции - одинаковое.

Другие промышленные способы получения алкенов

Нельзя продолжать разговор об алкенах без упоминания о реакции дегидрирования. Для ее проведения берется алкан, в котором может образоваться двойная связь после отщепления двух атомов водорода. То есть метан в эту реакцию вступать не будет. Поэтому ряд алкенов начитается с этилена. Особенными условиями к проведению реакции являются повышенная температура и катализатор. В роли последнего может выступать никель или оксид хрома (III). Результатом реакции будет получение алкена с соответствующим количеством атомов углерода и бесцветного газа (водорода).

Другим промышленным способом добывания веществ этого ряда является гидрирование алкинов. Эта реакция получения алкенов проходит при повышенных температурах и при участии катализатора (никеля или платины). Механизм гидрирования строится на разрывании одной из двух пи связей предоставленного алкина, после чего по местам разрушения присоединяются атомы водорода.

Лабораторный способ с использованием спирта

Одним из самых простых и не затратных способов является внутримолекулярная дегидратация, то есть отщепление воды. При написании уравнения реакции стоит помнить, что она будет осуществляться по правилу Зайцева: водород отщепится от наименее гидрированного атома углерода. Температура при этом должна быть выше 150 °С. В качестве катализатора нужно использовать вещества с гигроскопическими свойствами (способными натягивать влагу), например, серную кислоту. По месту отрыва гидроксильной группы и водорода будет образовываться двойная связь. Результатом реакции будут соответствующий алкен и одна молекула воды.

Добывание в лаборатории на основе галогенопроизводных

Существует еще два лабораторных способа. Первый - действие раствором щелочи на производные алканов, которые в свое составе имеют один атом галогена. Такой способ называют дегидрогалогенированием, то есть отщеплением соединений водорода с неметаллическими элементами седьмой группы (фтор, бром, хлор, йод). Осуществление механизма реакции, так же как и в предыдущем случае, проходит по правилу Зайцева. Катализирующим условиями являются спиртовой раствор и повышенная температура. После проведения реакции образуются алкен, соль металлического элемента щелочи и галогена, вода.

Второй способ очень напоминает предшествующий. Он осуществляется с помощью алкана, который имеет в составе два галогена. На такое вещество действуют активным металлом (цинком или магнием) в присутствии раствора спирта и повышенной температуры. Реакция будет проходить только в том случае, если водород замещен на галоген у двух соседних атомов углерода, если условие не соблюдено, то двойная связь не образуется.

Почему нужно брать именно цинк и магний? В ходе реакции происходит окисление металла, который может отдать два электрона, и отщепление двух галогенов. Если взять щелочные элементы, они будут реагировать с водой, которая есть в составе раствора спирта. Что же касается металлов, которые в ряду Бекетова стоят после магния и цинка, то они будут слишком слабыми.

Тема урока: Алкены. Получение, химические свойства и применение алкенов.

Цели и задачи урока:

  • рассмотреть конкретные химические свойства этилена и общие свойства алкенов;
  • углубить и конкретизировать понятия о?-связи, о механизмах химических реакций;
  • дать первоначальные представления о реакциях полимеризации и строении полимеров;
  • разобрать лабораторные и общие промышленные способы получения алкенов;
  • продолжить формирование умения работать с учебником.

Оборудование: прибор для получения газов, раствор КМnO 4 , этиловый спирт, концентрированная серная кислота, спички, спиртовка, песок, таблицы «Строение молекулы этилена», «Основные химические свойства алкенов», демонстрационные образцы «Полимеры».

ХОД УРОКА

I. Организационный момент

Мы продолжаем изучение гомологического ряда алкенов. Сегодня нам предстоит рассмотреть способы получения, химические свойства и применение алкенов. Мы должны охарактеризовать химические свойства, обусловленные двойной связью, получить первоначальные представления о реакциях полимеризации, рассмотреть лабораторные и промышленные способы получения алкенов.

II. Активизация знаний учащихся

  1. Какие углеводороды называются алкенами?
  1. Каковы особенности их строения?
  1. В каком гибридном состоянии находятся атомы углерода, образующие двойную связь в молекуле алкена?

Итог: алкены отличаются от алканов наличием в молекулах одной двойной связи, которая обуславливает особенности химических свойств алкенов, способов их получения и применения.

III. Изучение нового материала

1. Способы получения алкенов

Составить уравнения реакций, подтверждающих способы получения алкенов

– крекинг алканов C 8 H 18 ––> C 4 H 8 + C 4 H 10 ; (термический крекинг при 400-700 o С)
октан бутен бутан
– дегидрирование алканов C 4 H 10 ––> C 4 H 8 + H 2 ; (t, Ni)
бутан бутен водород
– дегидрогалогенирование галогеналканов C 4 H 9 Cl + KOH ––> C 4 H 8 + KCl + H 2 O;
хлорбутан гидроксид бутен хлорид вода
калия калия
– дегидрогалогенирование дигалогеналканов
– дегидратация спиртов С 2 Н 5 ОН ––> С 2 Н 4 + Н 2 О (при нагревании в присутствии концентрированной серной кислоты)
Запомните! При реакиях дегидрирования, дегидратации, дегидрогалогенирования и дегалогенирования нужно помнить, что водород преимущественно отрывается от менее гидрогенизированных атомов углерода (правило Зайцева, 1875 г.)

2. Химические свойства алкенов

Характер углерод – углеродной связи определяет тип химических реакций, в которые вступают органические вещества. Наличие в молекулах этиленовых углеводородов двойной углерод – углеродной связи обуславливает следующие особенности этих соединений:
– наличие двойной связи позволяет отнести алкены к ненасыщенным соединениям. Превращение их в насыщенные возможно только в результате реакций присоединения, что является основной чертой химического поведения олефинов;
– двойная связь представляет собой значительную концентрацию электронной плотности, поэтому реакции присоединения носят электрофильный характер;
– двойная связь состоит из одной - и одной -связи, которая достаточно легко поляризуется.

Уравнения реакций, характеризующих химические свойства алкенов

а) Реакции присоединения

Запомните! Реакции замещения свойственны алканам и высшим циклоалканам, имеющим только одинарные связи, реакции присоединения – алкенам, диенам и алкинам, имеющим двойные и тройные связи.

Запомни! Возможны следующие механизмы разрыва -связи:

а) если алкены и реагент – неполярные соединения, то -связь разрывается с образованием свободного радикала:

H 2 C = CH 2 + H: H ––> + +

б) если алкен и реагент – полярные соединения, то разрыв -связи приводит к образование ионов:

в) при соединении по месту разрыва -связи реагентов, содержащих в составе молекулы атомы водорода, водород всегда присоединяется к более гидрированному атому углерода (правило Морковникова, 1869 г.).

– реакция полимеризации nCH 2 = CH 2 ––> n – CH 2 – CH 2 –– > (– CH 2 – CH 2 –)n
этен полиэтилен

б) реакция окисления

Лабораторный опыт. Получить этилен и изучить его свойства (инструкция на столах учащихся)

Инструкция по получению этилена и опытов с ним

1. Поместите в пробирку 2 мл концентрированной серной кислоты, 1 мл спирта и небольшое количество песка.
2. Закройте пробирку пробкой с газоотводной трубкой и нагрейте в пламени спиртовки.
3. Выделяющийся газ пропустите через раствор с перманганатом калия. Обратите внимание на изменение цвета раствора.
4. Подожгите газ у конца газоотводной трубки. Обратите внимание на цвет пламени.

– алкены горят светящимся пламенем. (Почему?)

C 2 H 4 + 3O 2 ––> 2CO 2 + 2H 2 O (при полном окислении продуктами реакции являются углекислый газ и вода)

Качественная реакция: «мягкое окисление (в водном растворе)»

– алкены обесцвечивают раствор перманганата калия (реакция Вагнера)

При более жёстких условиях в кислой среде продуктами реакции могут быть карбоновые кислоты, например (в присутствии кислот):

CH 3 – CH = CH 2 + 4 [O] ––> CH 3 COOH + HCOOH

– каталичесикое окисление

Запомните главное!

1. Непредельные углеводороды активно вступают в реакции присоединения.
2. Реакционная активность алкенов связана с тем, что - связь под действием реагентов легко разрывается.
3. В результате присоединения происходит переход атомов углерода из sp 2 – в sp 3 - гибридное состояние. Продукт реакции имеет предельный характер.
4. При нагревании этилена, пропилена и других алкенов под давление или в присутствии катализатора их отдельные молекулы соединяются в длинные цепочки – полимеры. Полимеры (полиэтилен, полипропилен) имеют большое практическое значение.

3. Применение алкенов (сообщение учащегося по следующему плану).

1 – получение горючего с высоким октановым числом;
2 – пластмасс;
3 – взрывчатых веществ;
4 – антифризов;
5 – растворителей;
6 – для ускорения созревания плодов;
7 – получение ацетальдегида;
8 – синтетического каучука.

III. Закрепление изученного материала

Домашнее задание: §§ 15, 16, упр. 1, 2, 3 стр. 90, упр. 4, 5 стр. 95.

Алкены или олефины (C n H 2n) - класс органических веществ, активно вступающих в реакции с другими соединениями. Поэтому в природе алкены в чистом виде встречаются редко. Получением алкенов занимается промышленная химия. Существует несколько способов выделения олефинов из природного сырья.

Получение

В современной химии алкены получают промышленными и лабораторными методами. Сырьём для выделения олефинов являются нефть, газ, алканы и их производные. Основные способы получения алкенов приведены в таблице.

Вид получения

Способ

Пример

Промышленный

Крекинг и пиролиз нефтепродуктов, коксование угля - высокотемпературная (400-700°С) переработка полезных ископаемых. С помощью крекинга и пиролиза нефтепродуктов получают четыре первых алкена в гомологическом ряду - этилен, пропилен, бутилен, пентен. Коксование угля выделяет этилен и пропилен

C n H 2n+2 (алканы) → C n H 2n (алкены) + C n H 2n+2:

C 8 H 18 → CH 2 =CH 2 -CH 2 -CH 2 + C 4 H 10 ;

C 7 H 16 → CH 3 -CH=CH 2 + C 4 H 10

Дегидрирование алканов - отщепление атомов водорода за счёт разрыва связи С-Н. Происходит при высокой температуре под действием катализатора

C n H 2n+2 → C n H 2n + H 2:

CH 3 -CH 3 → CH 2 =CH 2 + H 2 ;

CH 3 -CH 2 -CH 2 -CH 3 → CH 3 -CH=CH-CH 3 + H 2

Гидрирование алкинов - присоединение водорода в присутствии малоактивного катализатора (Pb(CH 3 COO) 2). Длительность реакции превращает алкины в алканы

C n H 2n-2 + H 2 → C n H 2n:

2HC ≡CH + 2H 2 → CH 3 -C(CH 3)=CH 2 (изобутилен)

Лабораторный

Дегидратация спиртов - отщепление молекулы воды под действием температуры выше 150°C и в присутствии реагентов, способных отнимать воду. Например, в присутствии концентрированной серной кислоты

R-CH 2 -CH 2 -OH → R-CH=CH 2 + H 2 O:

CH 3 -CH-H-CH 2 -OH → CH 3 -CH=CH 2 + H 2 O

Дегидрогенирование моногалогеналканов - отщепление атомов галогенов и водорода под действием спиртового раствора щёлочи

CH 3 -CH 2 -CH 2 -Br + NaOH (спирт. р -р) → CH 3 -CH=CH 2 + NaBr + H 2 O

Дегалогенирование дигалогеналканов - отщепление атомов галогенов под действием металлов

CH 2 -Br-CH-Br-CH 3 + Mg → CH 2 =CH-CH 3 + MgBr 2

Рис. 1. Крекинг.

Также существуют другие способы синтеза алкенов из карбонильных соединений, альдегидов, кетонов, спиртов, аммониевых оснований и других соединений.

Реакции дегидратации и дегидрогенирования при получении алкенов протекают по правилу Александра Зайцева. В 1875 году химик Зайцев определил опытным путём, что водород отщепляется от менее гидрогенизированного атома углерода.

Рис. 2. Александр Зайцев.

Применение

Алкены используются в качестве промышленного сырья. Из них производят:

  • тефлон;
  • пластмассы;
  • каучук;
  • полиэтилен;
  • этиловый спирт;
  • уксусную кислоту;
  • масла;
  • растворители.

Рис. 3. Материалы, которые изготавливают из алкенов.

Широкое применение имеет этилен, поэтому в мире производят более 100 млн. тонн этилена в год.

Что мы узнали?

Алкены синтезируют для химических нужд промышленными и лабораторными методами. В промышленности для производства алкенов используются нефтепродукты и каменный уголь. При нагревании, дегидрировании, гидрировании алканов выделяются алкены. В лабораториях алкены получают с помощью дегидратации спиртов, дегидрогенирования моногалогеналканов, дегалогенирования дигалогеналканов. Существуют и другие способы синтеза олефинов. Алкены применяются для изготовления прочных материалов, растворителей, масел.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 222.

mob_info