Фундаментальная система решений (конкретный пример). Что такое однородная система линейных уравнений? Пример решения однородной системы линейных уравнений

2.4.1. Определение. Пусть дана неоднородная система линейных уравнений

Рассмотрим однородную систему

у которой матрица коэффициентов совпадает с матрицей коэффициентов системы (2.4.1). Тогда система (2.4.2) называется приведённой однородной системы (2.4.1).

2.4.2. Теорема. Общее решение неоднородной системы равно сумме некоторого частного решения неоднородной системы и общего решения приведённой однородной .

Таким образом, для нахождения общего решения неоднородной системы (2.4.1) достаточно:

1) Исследовать её на совместность. В случае совместности:

2) Найти общее решение приведённой однородной этой системы.

3) Найти какое-либо частное решение исходной (неоднородной).

4) Сложив найденные частное решение и общее решения приведённой, найти общее решение исходной системы.

2.4.3. Упражнение. Исследовать систему на совместность и в случае совместности найти её общее решение в виде суммы частного и общего приведённого.

Решение. а) Для решения задачи применяем вышеуказанную схему:

1) Исследуем систему на совместность (методом окаймления миноров): Ранг основной матрицы равен 3 (см. решение упр. 2.2.5, а), причём ненулевой минор максимального порядка составлен из элементов 1-й, 2-й, 4-й строк и 1-го, 3-го, 4-го столбцов. Для нахождения ранга расширенной матрицы окаймляем его 3-ей строкой и 6-м столбцом расширенной матрицы: =0. Значит, rgA =rg =3, и система совместна. В частности, она равносильна системе

2) Найдём общее решение X 0 приведённой однородной этой системы

X 0 ={(-2a - b ; a ; b ; b ; b ) | a , b ÎR }

(см. решение упр. 2.2.5, а)).

3) Найдём какое-либо частное решение x ч исходной системы . Для этого в системе (2.4.3), равносильной исходной, свободные неизвестные x 2 и x 5 полагаем равными, например, нулю (это наиболее удобные данные):

и решаем полученную систему: x 1 =- , x 3 =- , x 4 =-5. Таким образом, (- ; 0; - ; -5; 0) ¾ частное решение системы.

4) Находим общее решение X н исходной системы :

X н ={x ч }+X 0 ={(- ; 0; - ; -5; 0)} + {(-2a - b ; a ; b ; b ; b )}=

={(- -2a - b ; a ; - + b ; -5+b ; b )}.

Замечание. Сравните полученный ответ со вторым ответом в примере 1.2.1 в). Для получения ответа в первом виде для 1.2.1 в) в качестве базисных неизвестных берутся x 1 , x 3 , x 5 (минор при которых тоже не равен нулю), а в качестве свободных ¾ x 2 и x 4 .

§3. Некоторые приложения.

3.1. К вопросу о матричных уравнениях. Напоминаем, что матричным уравнением над полем F называется уравнение, в котором в качестве неизвестной выступает некоторая матрица над полем F .


Простейшими матричными уравнениями являются уравнения вида

AX =B , XA =B (2.5.1)

где A , B ¾ данные (известные) матрицы над полем F , а X ¾ такие матрицы, при подстановке которых уравнения (2.5.1) обращаются в верные матричные равенства. В частности, матричный метод определённых систем сводится к решению матричного уравнения.

В случае, когда матрицы A в уравнениях (2.5.1) невырожденны, они имеют решения соответственно X =A B и X =BA .

В случае, когда хотя бы одна из матриц в левой части уравнений (2.5.1) является вырожденной, данный метод уже не годится, так как соответствующая обратная матрица A не существует. В этом случае нахождение решений уравнений (2.5.1) сводится к решению систем.

Но прежде введём некоторые понятия.

Множество всех решений системы назовём общим решением . Отдельно взятое решение неопределённой системы назовём её частным решением .

3.1.1. Пример. Решитьматричное уравнение над полем R .

а) X = ; б) X = ; в) X = .

Решение. а) Так как =0, то формула X =A B для решения этого уравнения не годится. Если в произведении XA =B матрица A имеет 2 строки, то матрица X имеет 2 столбца. Число строк X должно совпасть с числом строк B . Поэтому X имеет 2 строки. Таким образом, X ¾ некоторая квадратная матрица второго порядка: X = . Подставим X в исходное уравнение:

Перемножая матрицы в левой части (2.5.2), приходим к равенству

Две матрицы равны тогда и только тогда, когда они одинаковых размерностей и равны их соответствующие элементы. Поэтому (2.5.3) равносильно системе

Эта система равносильна системе

Решая её, например, методом Гаусса, приходим к множеству решений (5-2b , b , -2d , d ), где b , d независимо друг от друга пробегают R . Таким образом, X = .

б) Аналогично а) имеем X = и.

Эта система несовместна (убедитесь в этом!). Поэтому данное матричное уравнение решений не имеет.

в) Обозначим это уравнение через AX =B . Так как A имеет 3 столбца, а B имеет 2 столбца, то X ¾ некоторая матрица размерности 3´2: X = . Поэтому имеем следующую цепочку равносильностей:

Решаем последнюю систему методом Гаусса (комментарии опускаем)

Таким образом, приходим к системе

решением которой является (11+8z , 14+10z , z , -49+8w , -58+10w , w ) где z , w пробегают независимо друг от друга R .

Ответ: а) X = , b , d ÎR .

б) Решений нет.

в) X = z , w ÎR .

3.2. К вопросу о перестановочности матриц. В общем случае произведение матриц неперестановочно, то есть если A и B такие, что AB и BA определены, то, вообще говоря, AB ¹BA . Но пример единичной матрицы E показывает, что возможна и перестановочность AE =EA для любой матрицы A , лишь бы AE и EA были определены.

В этом пункте мы рассмотрим задачи на нахождение множества всех матриц, перестановочных с данной. Таким образом,

Неизвестные x 1 , y 2 и z 3 могут принимать любые значения: x 1 =a , y 2 =b , z 3 =g . Тогда

Таким образом, X = .

Ответ. а) X d ¾ любое число.

б) X ¾ множество матриц вида , где a , b и g ¾ любые числа.

Вы можете заказать подробное решение вашей задачи !!!

Чтобы понять, что такое фундаментальная система решений вы можете посмотреть видео-урок для этого же примера кликнув . Теперь перейдем собственно к описанию всей необходимой работы. Это поможет вам более детально разобраться в сути данного вопроса.

Как найти фундаментальную систему решений линейного уравнения?

Возьмём для примера такую систему линейных уравнений:

Найдём решение этой линейной системы уравнений . Для начала нам надо выписать матрицу коэффициентов системы.

Преобразуем эту матрицу к треугольной. Первую строку переписываем без изменений. И все элементы, что стоят под $a_{11}$, надо сделать нулями. Что бы сделать ноль в место элемента $a_{21}$, надо от второй строки вычесть первую, и разность записать во второй строке. Что бы сделать ноль в место элемента $a_{31}$, надо от третьей строки вычесть первую и разность записать в третьей строке. Что бы сделать ноль в место элемента $a_{41}$, надо от четвёртой строки вычесть первую умноженную на 2 и разность записать в четвёртой строке. Что бы сделать ноль в место элемента $a_{31}$, надо от пятой строки вычесть первую умноженную на 2 и разность записать в пятой строке.

Первую и вторую строку переписываем без изменений. И все элементы, что стоят под $a_{22}$, надо сделать нулями. Что бы сделать ноль в место элемента $a_{32}$, надо от третьей строки вычесть вторую умноженную на 2 и разность записать в третьей строке. Что бы сделать ноль в место элемента $a_{42}$, надо от четвёртой строки вычесть вторую умноженную на 2 и разность записать в четвёртой строке. Что бы сделать ноль в место элемента $a_{52}$, надо от пятой строки вычесть вторую умноженную на 3 и разность записать в пятой строке.

Видим, что последние три строки – одинаковые , поэтому если от четвёртой и пятой вычесть третью, то они станут нулевыми.

По этой матрице записываем новую систему уравнений .

Видим, что линейно независимых уравнений у нас, только три, а неизвестных пять, поэтому фундаментальная система решений будет состоять из двух векторов . Значит, нам надо перенести две последние неизвестные вправо .

Теперь, начинаем выражать те неизвестные, что стоят в левой части через те, что стоят в правой части. Начинаем с последнего уравнения, сначала выразим $x_3$, потом полученный результат подставим во второе уравнение и выразим $x_2$, а потом в первое уравнение и тут выразим $x_1$. Таким образом мы все неизвестные, что стоят в левой части, выразили через неизвестные, что стоят в правой части.

После чего вы вместо $x_4$ и $x_5$, можем подставлять любые числа и находить $x_1$, $x_2$ и $x_3$. Каждая такая пятёрка чисел будет корнями нашей изначальной системы уравнений. Что бы найти векторы, что входят в ФСР нам надо вместо $x_4$ подставить 1, а вместо $x_5$ подставить 0, найти $x_1$, $x_2$ и $x_3$, а потом наоборот $x_4=0$ и $x_5=1$.

Системы линейных однородных уравнений - имеет вид ∑a k i x i = 0. где m > n или m Однородная система линейных уравнений всегда совместна, так как rangA = rangB . Она заведомо имеет решение, состоящее из нулей, которое называется тривиальным .

Назначение сервиса . Онлайн-калькулятор предназначен для нахождения нетривиального и фундаментального решения СЛАУ. Полученное решение сохраняется в файле Word (см. пример решения).

Инструкция . Выберите размерность матрицы:

Свойства систем линейных однородных уравнений

Для того чтобы система имела нетривиальные решения , необходимо и достаточно, чтобы ранг ее матрицы был меньше числа неизвестных.

Теорема . Система в случае m=n имеет нетривиальное решение тогда и только тогда, когда определитель этой системы равен нулю.

Теорема . Любая линейная комбинация решений системы также является решением этой системы.
Определение . Совокупность решений системы линейных однородных уравнений называется фундаментальной системой решений , если эта совокупность состоит из линейно независимых решений и любое решение системы является линейной комбинацией этих решений.

Теорема. Если ранг r матрицы системы меньше числа n неизвестных, то существует фундаментальная система решений, состоящая из (n-r) решений.

Алгоритм решения систем линейных однородных уравнений

  1. Находим ранг матрицы.
  2. Выделяем базисный минор. Выделяем зависимые (базисные) и свободные неизвестные.
  3. Вычеркиваем те уравнения системы, коэффициенты которых не вошли в состав базисного минора, так как они являются следствиями остальных (по теореме о базисном миноре).
  4. Члены уравнений, содержащие свободные неизвестные, перенесем в правую часть. В результате получим систему из r уравнений с r неизвестными, эквивалентную данной, определитель которой отличен от нуля.
  5. Решаем полученную систему методом исключения неизвестных. Находим соотношения, выражающие зависимые переменные через свободные.
  6. Если ранг матрицы не равен количеству переменных, то находим фундаментальное решение системы.
  7. В случае rang = n имеем тривиальное решение.

Пример . Найти базис системы векторов (а 1 , а 2 ,...,а m), ранг и выразить векторы по базе. Если а 1 =(0,0,1,-1), а 2 =(1,1,2,0), а 3 =(1,1,1,1), а 4 =(3,2,1,4), а 5 =(2,1,0,3).
Выпишем основную матрицу системы:


Умножим 3-ую строку на (-3). Добавим 4-ую строку к 3-ой:
0 0 1 -1
0 0 -1 1
0 -1 -2 1
3 2 1 4
2 1 0 3

Умножим 4-ую строку на (-2). Умножим 5-ую строку на (3). Добавим 5-ую строку к 4-ой:
Добавим 2-ую строку к 1-ой:
Найдем ранг матрицы.
Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид:
- x 3 = - x 4
- x 2 - 2x 3 = - x 4
2x 1 + x 2 = - 3x 4
Методом исключения неизвестных находим нетривиальное решение:
Получили соотношения, выражающие зависимые переменные x 1 ,x 2 ,x 3 через свободные x 4 , то есть нашли общее решение:
x 3 = x 4
x 2 = - x 4
x 1 = - x 4

Метод Гаусса имеет ряд недостатков: нельзя узнать, совместна система или нет, пока не будут проведены все преобразования, необходимые в методе Гаусса; метод Гаусса не пригоден для систем с буквенными коэффициентами.

Рассмотрим другие методы решения систем линейных уравнений. Эти методы используют понятие ранга матрицы и сводят решение любой совместной системы к решению системы, к которой применимо правило Крамера.

Пример 1. Найти общее решение следующей системы линейных уравнений с помощью фундаментальной системы решений приведенной однородной системы и частного решения неоднородной системы.

1. Составляем матрицу A и расширенную матрицу системы (1)

2. Исследуем систему (1) на совместность. Для этого находим ранги матриц A и https://pandia.ru/text/78/176/images/image006_90.gif" width="17" height="26 src=">). Если окажется, что , то система (1) несовместна. Если же получим, что , то эта система совместна и мы ее будем решать. (Исследование на совместность основано на теореме Кронекера-Капелли).

a. Находим rA .

Чтобы найти rA , будем рассматривать последовательно отличные от нуля миноры первого, второго и т. д. порядков матрицы A и окаймляющие их миноры.

М1 =1≠0 (1 берем из левого верхнего угла матрицы А ).

Окаймляем М1 второй строкой и вторым столбцом этой матрицы. . Продолжаем окаймлять М1 второй строкой и третьим столбцом..gif" width="37" height="20 src=">. Теперь окаймляем отличный от нуля минор М2′ второго порядка.

Имеем: (т. к. два первых столбца одинаковые)

(т. к. вторая и третья строки пропорциональны).

Мы видим, что rA=2 , а - базисный минор матрицы A .

b. Находим .

Достаточно базисный минор М2′ матрицы A окаймить столбцом свободных членов и всеми строками (у нас только последней строкой).


. Отсюда следует, что и М3′′ остается базисным минором матрицы https://pandia.ru/text/78/176/images/image019_33.gif" width="168 height=75" height="75">(2)

Так как М2′ - базисный минор матрицы A системы (2) , то эта система эквивалентна системе (3) , состоящей из первых двух уравнений системы (2) (ибо М2′ находится в первых двух строках матрицы A).

(3)

Так как базисный минор https://pandia.ru/text/78/176/images/image021_29.gif" width="153" height="51">(4)

В этой системе два свободных неизвестных (x2 и x4 ). Поэтому ФСР системы (4) состоит из двух решений. Чтобы их найти, придадим свободным неизвестным в (4) сначала значения x2=1 , x4=0 , а затем – x2=0 , x4=1 .

При x2=1 , x4=0 получим:

.

Эта система уже имеет единственное решение (его можно найти по правилу Крамера или любым другим способом). Вычитая из второго уравнения первое, получим:

Ее решением будет x1= -1 , x3=0 . Учитывая значения x2 и x4 , которые мы придали, получаем первое фундаментальное решение системы (2) : .

Теперь полагаем в (4) x2=0 , x4=1 . Получим:

.

Решаем эту систему по теореме Крамера:

.

Получаем второе фундаментальное решение системы (2) : .

Решения β1 , β2 и составляют ФСР системы (2) . Тогда ее общим решением будет

γ= С1β1+С2β2=С1(‑1, 1, 0, 0)+С2(5, 0, 4, 1)=(‑С1+5С2, С1, 4С2, С2)

Здесь С1 , С2 – произвольные постоянные.

4. Найдем одно частное решение неоднородной системы (1) . Как и в пункте 3 , вместо системы (1) рассмотрим эквивалентную ей систему (5) , состоящую из первых двух уравнений системы (1) .

(5)

Перенесем в правые части свободные неизвестные x2 и x4 .

(6)

Придадим свободным неизвестным x2 и x4 произвольные значения, например, x2=2 , x4=1 и подставим их в (6) . Получим систему

Эта система имеет единственное решение (т. к. ее определитель М2′0 ). Решая ее (по теореме Крамера или методом Гаусса), получим x1=3 , x3=3 . Учитывая значения свободных неизвестных x2 и x4 , получим частное решение неоднородной системы (1) α1=(3,2,3,1).

5. Теперь осталось записать общее решение α неоднородной системы (1) : оно равно сумме частного решения этой системы и общего решения ее приведенной однородной системы (2) :

α=α1+γ=(3, 2, 3, 1)+(‑С1+5С2, С1, 4С2, С2).

Это значит: (7)

6. Проверка. Чтобы проверить, правильно ли вы решили систему (1) , надо общее решение (7) подставить в (1) . Если каждое уравнение обратится в тождество (С1 и С2 должны уничтожиться), то решение найдено верно.

Мы подставим (7) для примера только в последнее уравнение системы (1) (x 1 + x 2 + x 3 ‑9 x 4 =‑1) .

Получим: (3–С1+5С2)+(2+С1)+(3+4С2)–9(1+С2)=–1

(С1–С1)+(5С2+4С2–9С2)+(3+2+3–9)=–1

Откуда –1=–1. Получили тождество. Так поступаем со всеми остальными уравнениями системы (1) .


Замечание. Проверка обычно довольно громоздкая. Можно рекомендовать следующую «частичную проверку»: в общем решении системы (1) произвольным постоянным придать некоторые значения и подставить полученное частное решение только в отброшенные уравнения (т. е. в те уравнения из (1) , которые не вошли в (5) ). Если получите тождества, то, скорее всего , решение системы (1) найдено правильно (но полной гарантии правильности такая проверка не дает!). Например, если в (7) положить С2= - 1 , С1=1 , то получим: x1=-3, x2=3, x3=-1, x4=0. Подставляя в последнее уравнение системы (1), имеем: - 3+3 - 1 - 9∙0= - 1 , т. е. –1=–1. Получили тождество.

Пример 2. Найти общее решение системы линейных уравнений (1) , выразив основные неизвестные через свободные.

Решение. Как и в примере 1 , составляем матрицы A и https://pandia.ru/text/78/176/images/image010_57.gif" width="156" height="50"> этих матриц. Оставляем теперь только те уравнения системы (1) , коэффициенты из которых входят в этот базисный минор (т. е. у нас – первые два уравнения) и рассматриваем состоящую из них систему, эквивалентную системе (1).

Перенесем в правые части этих уравнений свободные неизвестные.

Систему (9) решаем методом Гаусса, считая правые части свободными членами.

https://pandia.ru/text/78/176/images/image035_21.gif" width="202 height=106" height="106">

Вариант 2.

https://pandia.ru/text/78/176/images/image039_16.gif" width="192" height="106 src=">

Вариант 4.

https://pandia.ru/text/78/176/images/image042_14.gif" width="172" height="80">

Вариант 5.

https://pandia.ru/text/78/176/images/image044_12.gif" width="179 height=106" height="106">

Вариант 6.

https://pandia.ru/text/78/176/images/image046_11.gif" width="195" height="106">

Однородные системы линейных алгебраических уравнений

В рамках уроков метод Гаусса и Несовместные системы/системы с общим решением мы рассматривали неоднородные системы линейных уравнений , где свободный член (который обычно находится справа) хотя бы одного из уравнений был отличен от нуля.
И сейчас, после хорошей разминки с рангом матрицы , мы продолжим шлифовать техникуэлементарных преобразований на однородной системе линейных уравнений .
По первым абзацам материал может показаться скучным и заурядным, однако данное впечатление обманчиво. Помимо дальнейшей отработки технических приёмов будет много новой информации, поэтому, пожалуйста, постарайтесь не пренебрегать примерами данной статьи.

Что такое однородная система линейных уравнений?

Ответ напрашивается сам собой. Система линейных уравнений является однородной, если свободный член каждого уравнения системы равен нулю. Например:

Совершенно ясно, что однородная система всегда совместна , то есть всегда имеет решение. И, прежде всего, в глаза бросается так называемое тривиальное решение . Тривиальное, для тех, кто совсем не понял смысл прилагательного, значит, беспонтовое. Не академично, конечно, но зато доходчиво =) …Чего ходить вокруг да около, давайте выясним, нет ли у данной системы каких-нибудь других решений:

Пример 1

Решение : чтобы решить однородную систему необходимо записать матрицу системы и с помощью элементарных преобразований привести её к ступенчатому виду. Обратите внимание, что здесь отпадает необходимость записывать вертикальную черту и нулевой столбец свободных членов – ведь что ни делай с нулями, они так и останутся нулями:

(1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –3.

(2) К третьей строке прибавили вторую строку, умноженную на –1.

Делить третью строку на 3 не имеет особого смысла.

В результате элементарных преобразований получена эквивалентная однородная система , и, применяя обратный ход метода Гаусса, легко убедиться, что решение единственно.



Ответ :

Сформулируем очевидный критерий : однородная система линейных уравнений имееттолько тривиальное решение , если ранг матрицы системы (в данном случае 3) равен количеству переменных (в данном случае – 3 шт.).

Разогреваемся и настраиваем свой радиоприёмник на волну элементарных преобразований:

Пример 2

Решить однородную систему линейных уравнений

Из статьи Как найти ранг матрицы? вспоминаем рациональный приём попутного уменьшения чисел матрицы. В противном случае вам придётся разделывать крупную, а частенько и кусачую рыбу. Примерный образец оформления задания в конце урока.

Нули – это хорошо и удобно, однако на практике гораздо более распространен случай, когда строки матрицы системы линейно зависимы . И тогда неизбежно появление общего решения:

Пример 3

Решить однородную систему линейных уравнений

Решение : запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду. Первое действие направлено не только на получение единичного значения, но и на уменьшение чисел в первом столбце:

(1) К первой строке прибавили третью строку, умноженную на –1. Ко второй строке прибавили третью строку, умноженную на –2. Слева вверху я получил единицу с «минусом», что зачастую намного удобнее для дальнейших преобразований.

(2) Первые две строки одинаковы, одну из них удалили. Честное слово, не подгонял решение – так получилось. Если выполнять преобразования шаблонно, то линейная зависимость строк обнаружилась бы чуть позже.

(3) К третьей строке прибавили вторую строку, умноженную на 3.

(4) У первой строки сменили знак.

В результате элементарных преобразований получена эквивалентная система:

Алгоритм работает точно так же, как и для неоднородных систем . Переменные , «сидящие на ступеньках» – главные, переменная , которой не досталось «ступеньки» – свободная.

Выразим базисные переменные через свободную переменную:

Ответ : общее решение:

Тривиальное решение входит в общую формулу, и записывать его отдельно излишне.

Проверка выполняется тоже по обычной схеме: полученное общее решение необходимо подставить в левую часть каждого уравнения системы и получить законный ноль при всех подстановках.

На этом можно было бы тихо-мирно закончить, но решение однородной системы уравнений часто требуется представить в векторной форме с помощьюфундаментальной системы решений . Пожалуйста, временно забудьте обаналитической геометрии , поскольку сейчас речь пойдёт о векторах в общем алгебраическом смысле, который я немного приоткрыл в статье про ранг матрицы . Терминологии тушеваться не нужно, всё довольно просто.

mob_info