Дисперсионная среда и дисперсная фаза туман. Степень дисперсности. Дисперсная фаза. Дисперсионная среда. Классификация по агрегатному состоянию дисперсной фазы и дисперсионной среды

.

§ 14. ДИСПЕРСНЫЕ СИСТЕМЫ

Чистые вещества в природе встречаются очень редко. Смеси различных веществ в разных агрегатных состояниях могут образовывать гетерогенные и гомо генные системы – дисперсные системы и растворы.
Дисперсными называют гетерогенные системы , в которых одно вещество в виде очень мелких ча стиц равномерно распределено в объеме другого.

То вещество (или несколько веществ), которое присутствует в дисперсной системе в меньшем коли честве и распределено в объеме, называют дисперс ной фазой . Присутствующее в бόльшем количестве вещество, в объеме которого распределена дисперс ная фаза, называют дисперсионной средой . Между дисперсионной средой и частицами дисперсной фазы существует поверхность раздела, именно поэтомудисперсные системы называют гетерогенными , т.е. неоднородными.
И дисперсионную среду, и дисперсную фазу могут составлять вещества, находящиеся в различных агрегатных состояниях. В зависимости от сочетания состояний дисперсионной среды и дисперсной фазы можно выделить восемь видов таких систем (табл. 2).
Таблица 2

Классификация дисперсных систем
по агрегатному состоянию

Дисперсион-
ная среда
Дисперс-
ная фаза
Примеры некоторых
природных и бытовых
дисперсных систем
Газ
Жидкость
Туман, попутный газ
с капельками нефти,
карбюраторная смесь
в двигателях автомо-
билей (капельки бен-
зина в воздухе)
Твердое
вещество
Пыль в воздухе,
дымы, смог, самумы
(пыльные и песчаные
бури)
Жидкость
Газ
Шипучие напитки,
пена в ванне
Жидкость
Жидкие среды орга-
низма (плазма крови,
лимфа, пищевари-
тельные соки), жидкое
содержимое клеток
(цитоплазма, карио-
плазма)
Твердое
вещество
Кисели, студни, клеи,
взвешенный в воде
речной или морской
ил, строительные рас-
творы
Твердое
вещество
Газ
Снежный наст с пу-
зырьками воздуха в
нем, почва, текстиль-
ные ткани, кирпич и
керамика, поролон,
пористый шоколад,
порошки
Жидкость
Влажная почва, меди-
цинские и косметиче-
ские средства (мази,
тушь, помада и т.д.)
Твердое
вещество
Горные породы, цвет-
ные стекла, некоторые
сплавы

По величине частиц вещества, составляющих дисперсную фазу, дисперсные системы делят на грубодисперсные с размерами частиц более 100 нм и тонкодисперсные с размерами частиц от 1 до 100 нм. Если же вещество раздроблено до молекул или ионов размером менее 1 нм, образуется гомогенная система – раствор. Раствор однороден, поверхности раздела между частицами и средой нет, а потому к дисперсным системам он не относится.

Знакомство с дисперсными системами и растворами показывает, насколько они важны в повседневной жизни и природе. Судите сами: без нильского ила не состоялась бы великая цивилизация Древнего Египта (рис. 15); без воды, воздуха, горных пород, минералов вообще бы не существовала живая планета – наш общий дом – Земля; без клеток не было бы живых организмов.

Рис. 15. Разливы Нила и история цивилизации
Классификация дисперсных систем и растворов в зависимости от размеров частиц фазы дана на схеме 1.
Схема 1
Классификация дисперсных систем и растворов


Грубодисперсные системы. Грубодисперсные системы делятся на три группы: эмульсии, суспензии и аэрозоли.

Эмульсии – это дисперсные системы с жидкой дисперсионной средой и жидкой дисперсной фазой.


Их можно также разделить на две группы:
1) прямые – капли неполярной жидкости в полярной среде (масло в воде);
2) обратные (вода в масле).
Изменение состава эмульсий или внешнее воздействие могут привести к превращению прямой эмульсии в обратную и наоборот. Примерами наиболее известных природных эмульсий являются молоко (прямая эмульсия) и нефть (обратная эмульсия). Типичная биологическая эмульсия – это капельки жира в лимфе.
Л а б о р а т о р н ы й о п ы т. Налейте в тарелку цельное молоко. Капните на поверхность несколько разноцветных капель пищевых красителей. Ватную палочку смочите моющим средством и коснитесь ею центра тарелки. Молоко начинает двигаться, а цвета перемешиваться. Почему?
Из известных в практической деятельности человека эмульсий можно назвать смазочно-охлаждающие жидкости, битумные материалы, пестицидные препараты, лекарственные и косметические средства, пищевые продукты. Например, в медицинской практике широко применяют жировые эмульсии для энергетического обеспечения голодающего или ослабленного организма путем внутривенного вливания. Для получения таких эмульсий используют оливковое, хлопковое и соевое масла.
В химической технологии широко используют эмульсионную полимеризацию как основной метод получения каучуков, полистирола, поливинилацетата и др.
Суспензии – это грубодисперсные системы с твердой дисперсной фазой и жидкой дисперсионной средой.
Обычно частицы дисперсной фазы суспензии настолько велики, что оседают под действием силы тяжести – седиментируют. Системы, в которых седиментация идет очень медленно из-за малой разности в плотности дисперсной фазы и дисперсионной среды, также называют взвесями. Практически значимыми строительными суспен-
зиями являются побелка («известковое молоко»), эмалевые краски, различные строительные взвеси, например те, которые называют «цементным раствором». К суспензиям относят также медицинские препараты, например жидкие мази – линименты.
Особую группу составляют грубодисперсные системы, в которых концентрация дисперсной фазы относительно высока по сравнению с ее небольшой концентрацией в суспензиях. Такие дисперсные системы называют пастами. Например, вам хорошо известные из повседневной жизни зубные, косметические, гигиенические и др.
Аэрозоли – это грубодисперсные системы, в которых дисперсионной средой является воздух, а дисперсной фазой могут быть капельки жидкости (облака, радуга, выпущенный из баллончика лак для волос или дезодорант) или частицы твердого вещества (пылевое облако, смерч) (рис. 16).

Рис. 16. Примеры грубодисперсных систем с твердой

Дисперсной фазой: а – суспензия – строительный раствор;
б – аэрозоль – пыльная буря
Коллоидные системы. Коллоидные системы занимают промежуточное положение между грубодисперсными системами и истинными растворами. Они широко распространены в природе. Почва, глина, природные воды, многие минералы, в том числе и некоторые драгоценные камни, – все это коллоидные системы.
Большое значение имеют коллоидные системы для биологии и медицины. В состав любого живого организма входят твердые, жидкие и газообразные вещества, находящиеся в сложном взаимоотношении с окружающей средой. С химической точки зрения организм в целом – это сложнейшая совокупность многих коллоидных систем.
Биологические жидкости (кровь, плазма, лимфа, спинномозговая жидкость и др.) представляют собой коллоидные системы, в которых такие органические соединения, как белки, холестерин, гликоген и многие другие, находятся в коллоидном состоянии. Почему же именно ему природа отдает такое предпочтение? Эта особенность связана, в первую очередь, с тем, что вещество в коллоидном состоянии имеет большую поверхность раздела между фазами, что способствует лучшему протеканию реакций обмена веществ.
Л а б о р а т о р н ы й о п ы т. В пластиковый стакан насыпьте столовую ложку крахмала. Постепенно добавляйте теплой воды и тщательно растирайте смесь ложкой. Нельзя перелить воды, смесь должна быть густой. Столовую ложку полученного коллоидного раствора налейте на ладонь и дотроньтесь пальцем другой руки. Смесь твердеет. Если вы уберете палец, смесь снова становится жидкой.
Коллоиды под давлением могут менять свое состояние. В результате давления пальца на приготовленный коллоид частички крахмала соединяются друг с другом, и смесь становится твердой. Когда давление ослабевает, смесь возвращается в первоначальное жидкое состояние.

Коллоидные системы подразделяют на золи (коллоидные растворы) и гели (студни ).
Большинство биологических жидкостей клетки (уже упомянутые цитоплазма, ядерный сок – кариоплазма, содержимое вакуолей) и живого организма в целом являются коллоидными растворами (золями).
Для золей характерно явление коагуляции, т.е. слипания коллоидных частиц и выпадение их в осадок. При этом коллоидный раствор превращается в суспензию или гель. Некоторые органические коллоиды коагулируют при нагревании (яичный белок, клеи) или при изменении кислотно-основной среды (пищеварительные соки).
Гели – это коллоидные системы, в которых частицы дисперсной фазы образуют пространственную структуру.
Гели – это дисперсные системы, которые встречаются вам в повседневной жизни (схема 2).
Схема 2
Классификация гелей


Со временем структура гелей нарушается – из них выделяется жидкость. Происходит синерезис – самопроизвольное уменьшение объема геля, сопровождающееся отделением жидкости. Синерезис определяет сроки годности пищевых, медицинских и косметических гелей. Очень важен биологический синерезис при приготовлении сыра, творога. У теплокровных животных есть процесс, который называется свертывание крови: под действием специфических факторов растворимый белок крови фибриноген превращается в фибрин, сгусток которого в процессе синерезиса уплотняется и закупоривает ранку. Если свертывание крови затруднено, то говорят о возможности заболевания человека гемофилией. Как вы знаете из курса биологии, носителями гена гемофилии являются женщины, а заболевают ею мужчины. Хорошо известен исторический династический пример: царствующая более 300 лет российская династия Романовых страдала этим заболеванием.
По внешнему виду истинные и коллоидные растворы трудно отличить друг от друга. Чтобы это сделать,используют эффект Тиндаля – образование конуса «светящейся дорожки» при пропускании через коллоидный раствор луча света (рис. 17). Частицы дисперсной фазы золя отражают своей поверхностью свет, а частицы истинного раствора – нет. Аналогичный эффект, но только для аэрозольного, а не жидкого коллоида, вы можете наблюдать в кинотеатре при прохождении луча света от киноаппарата через запыленный воздух зрительного зала.



Рис. 17. Эффект Тиндаля позволяет визуально отличить
истинный раствор (в правом стакане) от коллоидного
(в левом стакане)


? 1. Что такое дисперсные системы? Дисперсионная среда? Дисперсная фаза?
2. Как классифицируют дисперсные системы по агрегатному состоянию среды и фазы? Приведите примеры.
3. Почему воздух, природный газ и истинные растворы не относятся к дисперсным системам?
4. Как подразделяются грубодисперсные системы? Назовите представителей каждой группы и укажите их значение.
5. Как подразделяются тонкодисперсные системы? Назовите представителей каждой группы и укажите их значение.
6. На какие подгруппы можно разделить гели? Чем определяется срок годности косметических, медицинских и пищевых гелей?
7. Что такое коагуляция? Чем она может быть вызвана?
8. Что такое синерезис? Чем он может быть вызван?
9. Почему природа в качестве носителя эволюции избрала именно коллоидные системы?
10. Приготовьте сообщение на тему «Эстетическая, биологическая и культурная роль коллоидных систем в жизни человека» с использованием ресурсов Интернета.
11. О каких дисперсных системах идет речь в небольшом стихотворении М.Цветаевой?
Отнимите жемчуг – останутся слезы,
Отнимите злато – останутся листья
Осеннего клена, отнимите пурпур –
Останется кровь.

Диспе́рсная систе́ма - образования из двух или большего числа фаз (тел) , которые практически не смешиваются и не реагируют друг с другом химически. В типичном случае двухфазной системы первое из веществ (дисперсная фаза ) мелко распределено во втором (дисперсионная среда ). Если фаз несколько, их можно отделить друг от друга физическим способом (центрифугировать, сепарировать и т.д.).

Обычно дисперсные системы - это коллоидные растворы , золи . К дисперсным системам относят также случай твёрдой дисперсной среды, в которой находится дисперсная фаза. Растворы высокомолекулярных соединений также обладают всеми свойствами дисперсных систем.

Классификация дисперсных систем

Наиболее общая классификация дисперсных систем основана на различии в агрегатном состоянии дисперсионной среды и дисперсной фазы (фаз). Сочетания трёх видов агрегатного состояния позволяют выделить девять видов двухфазных дисперсных систем. Для краткости записи их принято обозначать дробью, числитель которой указывает на дисперсную фазу, а знаменатель на дисперсионную среду; например, для системы «газ в жидкости» принято обозначение Г/Ж.

Обозначение Дисперсная фаза Дисперсионная среда Название и пример
Г/Г Газообразная Газообразная Всегда гомогенная смесь (воздух, природный газ)
Ж/Г Жидкая Газообразная Аэрозоли: туманы , облака
Т/Г Твёрдая Газообразная Аэрозоли (пыли, дымы), порошкообразные вещества
Г/Ж Газообразная Жидкая Газовые эмульсии и пены
Ж/Ж Жидкая Жидкая Эмульсии: нефть , крем , молоко
Т/Ж Твёрдая Жидкая Суспензии и золи: пульпа, ил , взвесь , паста
Г/Т Газообразная Твёрдая Пористые тела: пенополимеры , пемза
Ж/Т Жидкая Твёрдая Капиллярные системы (заполненные жидкостью пористые тела): грунт , почва
Т/Т Твёрдая Твёрдая Твёрдые гетерогенные системы: сплавы , бетон , ситаллы , композиционные материалы

По кинетическим свойствам дисперсной фазы двухфазные дисперсные системы можно разделить на два класса:

  • Свободнодисперсные системы , у которых дисперсная фаза подвижна;
  • Связнодисперсные системы , у которых дисперсионная среда твёрдая, а частицы их дисперсной фазы связаны между собой и не могут свободно перемещаться.

В свою очередь, эти системы классифицируются по степени дисперсности .

Системы с одинаковыми по размерам частицами дисперсной фазы называются монодисперсными, а с неодинаковыми по размеру частицами - полидисперсными. Как правило, окружающие нас реальные системы полидисперсны.

Встречаются и дисперсные системы с бо́льшим числом фаз - сложные дисперсные системы. Например, при вскипании жидкой дисперсионной среды с твёрдой дисперсной фазой получается трёхфазная система «пар - капли - твёрдые частицы» .

Другим примером сложной дисперсной системы может служить молоко , основными составными частями которого (не считая воды) являются жир , казеин и молочный сахар . Жир находится в виде эмульсии и при стоянии молока постепенно поднимается кверху (сливки). Казеин содержится в виде коллоидного раствора и самопроизвольно не выделяется, но легко может быть осаждён (в виде творога) при подкислении молока, например, уксусом. В естественных условиях выделение казеина происходит при скисании молока . Наконец, молочный сахар находится в виде молекулярного раствора и выделяется лишь при испарении воды.

Свободнодисперсные системы

Свободнодисперсные системы по размерам частиц подразделяют на:

Ультрамикрогетерогенные системы также называют коллоидными или золями . В зависимости от природы дисперсионной среды, золи подразделяют на твёрдые золи, аэрозоли (золи с газообразной дисперсионной средой) и лиозоли (золи с жидкой дисперсионной средой). К микрогетерогенным системам относят суспензии , эмульсии , пены и порошки. Наиболее распространёнными грубодисперсными системами являются системы «твёрдое тело - газ» (например, песок).

Коллоидные системы играют огромную роль в биологии и человеческой жизни. В биологических жидкостях организма ряд веществ находится в коллоидном состоянии. Биологические объекты (мышечные и нервные клетки , кровь и другие биологические жидкости) можно рассматривать как коллоидные растворы. Дисперсионной средой крови является плазма - водный раствор неорганических солей и белков .

Связнодисперсные системы

Пористые материалы

Пористые материалы по размерам пор подразделяют, согласно классификации М. М. Дубинина , на:

По геометрическим признакам пористые структуры подразделяются на регулярные (у которых в объёме тела наблюдается правильное чередование отдельных пор или полостей и соединяющих их каналов) и стохастические (в которых ориентация, форма, размеры, взаимное расположение и взаимосвязи пор носят случайный характер). Для большинства пористых материалов характерна стохастическая структура. Имеет значение и характер пор: открытые поры сообщаются с поверхностью тела так, что через них возможна фильтрация жидкости или газа; тупиковые поры также сообщаются с поверхностью тела, но их наличие на проницаемости материала не сказывается; закрытые поры .

Твёрдые гетерогенные системы

Характерным примером твёрдых гетерогенных систем являются получившие в последнее время широкое распространение композиционные материалы (композиты) - искусственно созданные сплошные, но неоднородные, материалы, которые состоят из двух или более компонентов с чёткими границами раздела между ними. В большинстве таких материалов (за исключением слоистых) компоненты можно разделить на матрицу и включённые в неё армирующие элементы ; при этом армирующие элементы обычно отвечают за механические характеристики материала, а матрица обеспечивает совместную работу армирующих элементов. К числу старейших композиционных материалов относятся саман , железобетон , булат , папье-маше . Ныне широко распространены

В природе не существует элементов, которые были бы чистыми. В основе своей все они представляют собой различные смеси. Они, в свою очередь, могут быть гетерогенными или гомогенными. Образовываются от веществ в агрегатном состоянии, создавая при этом определенную дисперсионную систему, в которой присутствуют различные фазы. Помимо этого, в смесях обычно присутствует дисперсионная среда. Ее сущность заключается в том, что она считается элементом с большим объемом, в котором распределено какое-либо вещество. В дисперсной системе фаза и среда расположены таким образом, чтобы между ними были частицы поверхности раздела. Поэтому она имеет название гетерогенной или неоднородной. Ввиду этого огромным значением обладает действие поверхности, а не частиц в целом.

Классификация дисперсной системы

Фазу, как известно, представляют вещества, имеющие различное состояние. А эти элементы подразделены на несколько видов. Агрегатное состояние дисперсной фазы зависит от сочетания в ней среды, в результате выходит 9 типов систем:

  1. Газ. Жидкость, твердое вещество и рассматриваемый элемент. Гомогенная смесь, туман, пыли, аэрозоли.
  2. Жидкая дисперсная фаза. Газ, твердое вещество, вода. Пены, эмульсии, золи.
  3. Твердая дисперсная фаза. Жидкость, газ и рассматриваемое в этом случае вещество. Почва, средства в медицине или косметике, горные породы.

Как правило, размеры дисперсной системы определяются по величине частиц фазы. Существует следующая классификация:

  • грубые (взвеси);
  • тонкие и истинные).

Частицы дисперсионной системы

Разбирая грубые смеси, можно пронаблюдать, что частицы этих соединений в структуре могут быть заметны невооруженным глазом, ввиду того что их размер составляет более 100 нм. Взвеси, как правило, относятся к системе, в которой дисперсная фаза является разделимой от среды. Это происходит потому, что они считаются непрозрачными. Взвеси делятся на эмульсии (нерастворимые жидкости), аэрозоли (мелкие частицы и твердые вещества), суспензии (твердое вещество в воде).

Коллоидным веществом является любое, у которого есть качество того, чтобы другой элемент равномерно рассеивался по нему. То есть оно присутствует, а точнее входит в состав дисперсной фазы. Это состояние, когда один материал полностью распределяется в другом, а точнее в его объеме. В примере с молоком происходит рассеивание жидкого жира в водном растворе. В этом случае меньшая молекула находится в пределах 1 нанометра и 1 микрометра, что делает его невидимым для оптического микроскопа, когда смесь становится гомогенной.

То есть ни одна часть раствора не имеет большей или меньшей концентрации дисперсной фазы, чем любая другая. Можно сказать, что он является коллоидным по своей природе. Более крупный называется сплошной фазой или дисперсионной средой. Поскольку ее размер и распределение не изменяются, а рассматриваемый элемент распространяется по ней. Типы коллоидов включают аэрозоли, эмульсии, пены, дисперсии и смеси, называемые гидрозолями. Каждая подобная система имеет две фазы: дисперсную и непрерывную фазу.

Коллоиды по истории

Интенсивный интерес к таким веществам присутствовал во всех науках в начале 20-го века. Эйнштейн и другие ученые внимательно изучили их характеристики и приложения. В то время, эта новая область науки была ведущей областью исследований для теоретиков, исследователей и производителей. После пика интереса до 1950 года исследование коллоидов значительно уменьшилось. Интересно отметить, что с недавнего зарождения более высокомощных микроскопов и «нанотехнологий» (исследование объектов определенной крошечной шкалы) вновь возрастает научный интерес к исследованию новых материалов.

Подробнее об этих веществах

Существуют элементы, наблюдаемые как в природе, так и в искусственных растворах, обладающих коллоидными свойствами. Например, майонез, косметический лосьон и смазочные материалы являются типами искусственных эмульсий, а молоко представляет собой подобную смесь, которая встречается в природе. Коллоидные пены включают взбитые сливки и пену для бритья, в то время как съедобные элементы включают масло, зефир и желе. В дополнение к пище эти вещества существуют в виде некоторых сплавов, красок, чернил, детергентов, инсектицидов, аэрозолей, пенополистирола и резины. Даже красивые природные объекты, такие как облака, жемчуг и опалы, обладают коллоидными свойствами, потому что у них есть другое вещество, равномерно распределенное через них.

Получение коллоидных смесей

Увеличивая малые молекулы до диапазона от 1 до 1 микрометра, или путем уменьшения больших частиц до того же размера. Могут быть получены коллоидные вещества. Дальнейшее производство зависит от типа элементов, используемых в дисперсных и непрерывных фазах. Коллоиды ведут себя иначе, чем обычные жидкости. И это наблюдается в транспортных и физико-химических свойствах. Например, мембрана может позволить истинному раствору с твердыми молекулами, присоединенными к жидким, пройти через него. В то время как коллоидное вещество, которое имеет твердое тело, диспергированное через жидкость, будет растягиваться мембраной. Четность распределения является однородной до точки микроскопического равенства в промежутке по всему второму элементу.

Истинные растворы

Коллоидная дисперсия имеет представление в виде гомогенной смеси. Элемент состоит из двух систем: непрерывной и дисперсной фазы. Это указывает на то, что этот случай связан с ибо они напрямую связаны с указанной выше смесью, состоящей из нескольких веществ. В коллоиде вторая имеет структуру мельчайших частиц или капель, которые равномерно распределены в первой. От 1 нм до 100 нм - это размер, составляющий дисперсную фазу, а точнее частиц, по меньшей мере в одном измерении. В таком диапазоне дисперсная фаза - это с указанными размерами можно назвать примерные элементы, подходящие под описание: коллоидные аэрозоли, эмульсии, пены, гидрозоли. Подвержены воздействию химического состава поверхности в значительной степени частицы или капли, присутствующие в рассматриваемых составах.

Коллоидные растворы и системы

Следует учитывать факт того, что размеры дисперсной фазы - это трудноизмеримая переменная в системе. Растворы иногда характеризуются собственными свойствами. Чтобы было легче воспринимать показатели составов, коллоиды их напоминают и выглядят почти так же. Например, если имеет диспергированную в жидкости, твердую форму. В результате через мембрану не будут проходить частицы. В то время когда иные компоненты вроде растворенных ионов или молекул способны пройти сквозь нее. Если анализировать проще, то получается, что растворенные компоненты проходят через мембрану, а с рассматриваемой фазой коллоидные частицы не смогут.

Появление и исчезновение цветовых характеристик

Из-за эффекта Тиндалля некоторые подобные вещества полупрозрачны. В структуре элемента он является рассеянием света. Другие системы и составы бывают с каким-то оттенком или вовсе быть непрозрачными, с определенным цветом, пусть некоторые даже с неярким. Многие знакомые вещества, в том числе масло, молоко, сливки, аэрозоли (туман, смог, дым), асфальт, краски, краски, клей и морская пена, являются коллоидами. Эта область исследования была введена в 1861 году шотландским ученым Томасом Грэмом. В некоторых случаях коллоид можно рассматривать как однородную (не гетерогенную) смесь. Это связано с тем, что различие между «растворенным» и «зернистым» веществом иногда может быть предметом подхода.

Гидроколлоидные типы веществ

Данный компонент определяется как коллоидная система, в которой частицы диспергируются в воде. Гидроколлоидные элементы в зависимости от количества жидкости могут принимать различные состояния, например, гель или золь. Бывают необратимыми (односоставными) или обратимыми. Например, агар, второй тип гидроколлоида. Может существовать в состоянии геля и золя, и чередуются между состояниями с добавлением или удалением тепла.

Многие гидроколлоиды получены из природных источников. Например, карраген экстрагируется из водорослей, желатин имеет бычий жир, а пектин из кожуры цитрусовых и яблочного жмыха. Гидроколлоиды используются в пищевых продуктах главным образом для воздействия на текстуру или вязкость (соус). Также применяются для ухода за кожей или как заживляющее средство после ранения.

Сущностные характеристики коллоидных систем

Из этой информации видно, что коллоидные системы - это подраздел дисперсной сферы. Они, в свою очередь, могут быть растворами (золями) или гелями (студни). Первые в большинстве случаев создаются на основе живой химии. Вторые формируются под осадками, которые возникают в процессе коагуляции золей. Растворы могут быть водными с органическими веществами, со слабыми или сильными электролитами. Размеры частиц дисперсной фазы коллоидов от 100 до 1 нм. Их невозможно увидеть невооруженным глазом. В результате отстаивания фазу и среду сложно разделить.

Классификация по типам частиц дисперсной фазы

Многомолекулярные коллоиды. Когда при растворении атомы или более мелкие молекулы веществ (имеющих диаметр менее 1 нм) объединяются вместе для образования частиц подобных размеров. В этих золях дисперсная фаза - это структура, которая состоит из агрегатов атомов или молекул с молекулярным размером менее 1 нм. Например, золото и сера. В этих удерживаются вместе силами Ван-дер-Ваальса. Они обычно имеют лиофильный характер. Это значит значительное взаимодействие частиц.

Высокомолекулярные коллоиды. Это вещества, имеющие молекулы большого размера (так называемые макромолекулы), которые при растворении образуют определенный диаметр. Такие вещества называются макромолекулярными коллоидами. Эти элементы, образующие диспергированную фазу, обычно представляют собой полимеры, имеющие очень высокие молекулярные массы. Естественные макромолекулы представляют собой крахмал, целлюлозу, белки, ферменты, желатин и т. д. Искусственные включают в себя синтетические полимеры, такие как нейлон, полиэтилен, пластмассы, полистирол и т. д. Они обычно лиофобны, что значит в этом случае слабое взаимодействие частиц.

Связанные коллоиды. Это вещества, которые при растворении в среде ведут себя как нормальные электролиты при низкой концентрации. Но представляют из себя коллоидные частицы с большей ферментной составляющей компонентов из-за образования агрегированных элементов. Образующиеся таким образом частицы заполнителей называются мицеллами. Их молекулы содержат как лиофильные, так и лиофобные группы.

Мицеллы. Представляют собой кластерные или агрегированные частицы, образованные ассоциацией коллоида в растворе. Обычными примерами являются мыла и моющие средства. Образование происходит выше определенной температуры Крафта, и выше определенной критической концентрации мицеллизации. Они способны образовывать ионы. Мицеллы могут содержать до 100 молекул и более, например, стеарат натрия является типичным примером. Когда он растворяется в воде, то дает ионы.

Дисперсными называют системы, состоящие из множества малых частиц, распре­деленных в жидкой, твердой или газообразной среде.

Понятие «дисперсный» происходит от лат. dispersus - раздробленный, рассеянный.

Для всех дисперсных систем характерны два основных признака: высокая раздробленность (дисперсность) и гетерогенность.

Гетерогенность дисперсных систем проявляется в том, что эти системы состоят из двух (или более) фаз: дисперсной фазы и диспер­сионной среды. Дисперсная фаза - это раздробленная фаза. Она состоит из частиц нерастворимого тонкоизмельченного вещества, распределенных по всему объему дисперсионной среды.

Высокая дисперсность придает веществам новые качественные признаки: повышенную реакционную способность и растворимость, интенсив­ность окраски, светорассеяние и т. п. Большая поверхность раздела создает в этих системах боль­шой запас поверхностной энергии, которая делает их термодинамически неустойчивыми, чрезвычайно реакционноспособными. В них легко протекают самопроиз­вольные процессы, приводящие к снижению запаса поверхностной энергии: адсорбция, коагуляция (слипание дисперсных частиц), образование макроструктур и т. п. Таким образом, самые важные и неотъемлемые черты всякой дисперсной системы - гегетрогенность и высокая дисперсность - полностью определяют свойства и поведе­ние этих систем.

Классификацию дисперсных систем проводят на основе различных признаков, а именно: по размеру частиц, по агрегатному состоянию дисперсной фазы и дисперсионной среды, по характеру взаимо­действия частиц дисперсной фазы между собой и со средой.

2.2. Классификация дисперсных систем

Классификация по размеру частиц (дисперсности)

Дисперсность D является основной характеристикой дисперс­ной системы и мерой раздробленности вещества. Математически дисперсность определяют как величину, обратную размеру частицы:

D = 1/а ,

где а - размер частицы (диаметр или длина ребра), м -1 .

С другой стороны, для характеристики степени раздроблен­ности служит величина удельной поверхности S уд . Удельную поверх­ность находят как отношение поверхности S частицы к ее объему V или массе т: S уд = S / V или S уд = S / m . Если удельную поверх­ность определяют по отношению к массе частицы раздробленного вещества, то ее размерность м 2 /кг, если же по отношению к объему, то размерность совпадает с размерностью дисперсности (м -1).

Физический смысл понятия «удельная поверхность» заключа­ется в том, что это суммарная поверхность всех частиц, общий объем которых составляет 1м 3 или общая масса которых равна 1 кг.

По дисперсности системы подразделяют на типы:

1) грубо-дисперсные (грубые взвеси, суспензии, эмульсии, порошки) с радиусом частиц 10 -4 - 10 -7 м;

2) коллоидно-дисперсные (золи) с размером частиц 10 -7 - 10 -9 м;

3) молекулярные и ионные растворы с размером частиц менее 10 -9 м.

В коллоидных системах дости­гается высшая степень раздробления вещества, при которой еще сохраняются понятия «фаза» и «гетерогенность». Уменьшение раз­мера частиц еще на порядок переводит системы в гомогенные моле­кулярные или ионные растворы.

Дисперсность влияет на все основные свойства дисперсных систем: кинетические, оптические, каталитические и т. д.

Свойства дисперсных систем сопоставлены в табл. 1.2.

Т а б л и ц а 1.2.Свойства дисперсных систем разных типов

Грубодисперсные

Коллоидно-дисперсные

Молекулярные и ионные (истинные) растворы

Непрозрачные - отражают свет

Прозрачные опалесцирующие - рассеивают свет, да­ют конус Тиндаля

Прозрачные неопалесцирующие, конус Тиндаля не на­блюдается

Частицы не проходят че­рез фильтр

Частицы проходят через бу­мажный фильтр

Частицы проходят через бу­мажный фильтр

Частицы задерживаются ультрафильтрами

Частицы проходят через льтрафильтры

Гетерогенные

Гетерогенные

Гомогенные

Неустойчивы кинетически и термодинамически

Относительно устойчивы ки­нетически

Устойчивы кинет. и термодинамич.ки

Стареют во времени

Стареют во времени

Не стареют

Частицы видны в оптиче­ский микроскоп

Частицы видны в электрон. Микроскоп и ультрамикроскоп

Частицы не видны в совре­менные микроскопы

Помимо размера частиц большое значение для свойств дисперсных систем имеет геометрическая форма частиц. В зависимости от условий дробления вещества форма частиц дисперсной фазы может быть очень разнообразной. Один м 3 исходного вещества принципиаль­но возможно раздробить на кубики с длиной ребра l = 10 -8 м, вы­тянуть в нить с сечением 10 -8 х 10 -8 м или расплющить в пластину (пленку) толщиной 10 -8 м. В каждом из этих случаев система будет дисперсной со всеми присущими признаками.

Удельная поверхность частиц кубической формы возрастает от исходного значения в 6 м 2 до значения, определяемого по формуле

S уд = S / V = 6l 2 / l 3 = 6 . 10 8 м -1

Для нитей S уд = 4-10 8 м -1 ; для пленки S уд = 2 . 10 8 м -1 .

Частицы кубической, шарообразной или близкой к ним непра­вильной формы характерны для многих коллоидных растворов - золей и более грубодисперсных систем – эмульсий.

Классификация по агрегатному состоянию фаз

Наиболее распространена классификация дисперсных систем по агрегатному состоянию дисперсной фазы и дисперсионной среды. Каждая из этих фаз может быть в трех агрегатных состояниях: газообразном, жидком и твердом. Поэтому возможно существо­вание восьми типов коллоидных систем (табл. 1.3). Система «газ в газе» не входит в это число, так как является гомогенной молекуляр­ной, в ней отсутствуют границы раздела. Высокодисперсные коллоидные растворы, относящиеся к типу систем т/ж, носят название золей (от лат. solutio - раствор). Золи, у которых дисперсионной средой является вода, называют гидрозо­лями. Если дисперсионной средой служит органическая жидкость, коллоидный раствор носит название органозоля. Эти последние, в свою очередь, подразделяют на алкозоли, бензозоли, этерозоли и т.п., в которых дисперсионной средой являются соответственно спирт, бензол, эфир и т. д. В зависимости от агрегатного состояния дисперсионной среды различают лиозоли - золи с жидкой дисперсионной средой (от греч. lios - жидкость), аэрозоли - золи с газообразной дисперсионной средой, твердые золи - системы типа т/т. Грубодисперсные системы типа т/ж называют суспензиями, типа ж/ж – эмульсиями.

Таблица 2..2. Основные типы дисперсных систем

Дисп фаза

Дисп.среда

Не существ.

Жидкость

Туман, облака, аэрозоли жидких лекарств

Твердое тело

Дым, пыль, порошки, аэрозоли твердых лекарств

Жидкость

Пены, газовые эмульсии

Жидкость

Эмульсии (молоко, лекарственные эмульсии)

Твердое тело

Суспензии, коллоидные растворы

Твердое тело

Твердые пены, хлеб, пемза, силикагель, активные угли

Жидкость

Жемчуг, капиллярные системы, цементный камень, гели

Твердое тело

Цветные стекла, минералы, сплавы

Классификация по отсутствию или наличию взаимодей­ствия между частицами дисперсной фазы

По кинетическим свойствам дисперсной фазы все дисперсные системы можно подразделить на два класса: свободно-дисперсные, в которых частицы дисперсной фазы не связаны между собой и мо­гут свободно перемещаться (лиозоли, аэрозоли, суспензии, эмуль­сии), и связно-дисперсные, в которых одна из фаз структурно закре­плена и не может перемещаться свободно. К этому классу относят гели и студни, пены, капиллярно-пористые тела (диафрагмы), твердые растворы и др.

Классификация по степени взаимодействия дисперсной фазы с дисперсионной средой

Для характеристики взаимодействия между веществом дисперс­ной фазы и жидкой дисперсионной средой служат понятия «лиофильность» и «лиофобность». Под взаимодействием фаз дисперсных систем подразумевают процессы сольватации (гидратации), т. е. образова­ние сольватных (гидратных) оболочек из молекул дисперсионной среды вокруг частиц дисперсной фазы. Системы, в которых сильно выражено взаимодействие частиц дисперсной фазы с растворителем, называют лиофильными (по отношению к воде - гидрофильными). Если частицы дисперсной фазы состоят из вещества, слабо взаимо­действующего со средой, системы являются лиофобными (по отно­шению к воде - гидрофобными) . Термин «лиофильный» происходит от греч. 1уо - растворяю и philia - любовь; «лиофобный» от 1уо - растворяю и phobia - ненависть, что означает «не любящий растворения». Хорошо сольватирующиеся лиофильные дисперсные системы образуются путем самопроизвольного диспергирования. Такие си­стемы термодинамически устойчивы. Приме­рами таких систем являются дисперсии некоторых глин и поверх­ностно-активных веществ (ПАВ), растворы высокомолекулярных веществ (ВМВ).

У гидрофобных золей частицы состоят из труднорастворимых соединений, отсутствует или слабо выражено сродство дисперсной фазы к растворителю. Такие частицы плохо сольватированы. Гидрофобные золи являются основным классом коллоидных растворов, у которых ярко выражены гетерогенность и высокая удельная поверхность.

Диспе́рсная систе́ма - образования из двух или большего числа фаз (тел) , которые практически не смешиваются и не реагируют друг с другом химически. В типичном случае двухфазной системы первое из веществ (дисперсная фаза ) мелко распределено во втором (дисперсионная среда ). Если фаз несколько, их можно отделить друг от друга физическим способом (центрифугировать, сепарировать и т.д.).

Обычно дисперсные системы - это коллоидные растворы , золи . К дисперсным системам относят также случай твёрдой дисперсной среды, в которой находится дисперсная фаза. Растворы высокомолекулярных соединений вами

Классификация дисперсных систем

Наиболее общая классификация дисперсных систем основана на различии в агрегатном состоянии дисперсионной среды и дисперсной фазы (фаз). Сочетания трёх видов агрегатного состояния позволяют выделить девять видов двухфазных дисперсных систем. Для краткости записи их принято обозначать дробью, числитель которой указывает на дисперсную фазу, а знаменатель на дисперсионную среду; например, для системы «газ в жидкости» принято обозначение Г/Ж.

Обозначение Дисперсная фаза Дисперсионная среда Название и пример
Г/Г Газообразная Газообразная Всегда гомогенная смесь (воздух, природный газ)
Ж/Г Жидкая Газообразная Аэрозоли: туманы , облака
Т/Г Твёрдая Газообразная Аэрозоли (пыли, дымы), порошкообразные вещества
Г/Ж Газообразная Жидкая Газовые эмульсии и пены
Ж/Ж Жидкая Жидкая Эмульсии: нефть , крем , молоко
Т/Ж Твёрдая Жидкая Суспензии и золи: пульпа, ил , взвесь , паста
Г/Т Газообразная Твёрдая Пористые тела: пенополимеры , пемза
Ж/Т Жидкая Твёрдая Капиллярные системы (заполненные жидкостью пористые тела): грунт , почва
Т/Т Твёрдая Твёрдая Твёрдые гетерогенные системы: сплавы , бетон , ситаллы , композиционные материалы

По кинетическим свойствам дисперсной фазы двухфазные дисперсные системы можно разделить на два класса:

  • Свободнодисперсные системы , у которых дисперсная фаза подвижна;
  • Связнодисперсные системы , у которых дисперсионная среда твёрдая, а частицы их дисперсной фазы связаны между собой и не могут свободно перемещаться.

В свою очередь, эти системы классифицируются по степени дисперсности .

Системы с одинаковыми по размерам частицами дисперсной фазы называются монодисперсными, а с неодинаковыми по размеру частицами - полидисперсными. Как правило, окружающие нас реальные системы полидисперсны.

Встречаются и дисперсные системы с бо́льшим числом фаз - сложные дисперсные системы. Например, при вскипании жидкой дисперсионной среды с твёрдой дисперсной фазой получается трёхфазная система «пар - капли - твёрдые частицы» .

Другим примером сложной дисперсной системы может служить молоко , основными составными частями которого (не считая воды) являются жир , казеин и молочный сахар . Жир находится в виде эмульсии и при стоянии молока постепенно поднимается кверху (сливки). Казеин содержится в виде коллоидного раствора и самопроизвольно не выделяется, но легко может быть осаждён (в виде творога) при подкислении молока, например, уксусом. В естественных условиях выделение казеина происходит при скисании молока . Наконец, молочный сахар находится в виде молекулярного раствора и выделяется лишь при испарении воды.

Свободнодисперсные системы

Свободнодисперсные системы по размерам частиц подразделяют на:

Ультрамикрогетерогенные системы также называют коллоидными или золями . В зависимости от природы дисперсионной среды, золи подразделяют на твёрдые золи, аэрозоли (золи с газообразной дисперсионной средой) и лиозоли (золи с жидкой дисперсионной средой). К микрогетерогенным системам относят суспензии , эмульсии , пены и порошки. Наиболее распространёнными грубодисперсными системами являются системы «твёрдое тело - газ» (например, песок).

Коллоидные системы играют огромную роль в биологии и человеческой жизни. В биологических жидкостях организма ряд веществ находится в коллоидном состоянии. Биологические объекты (мышечные и нервные клетки , кровь и другие биологические жидкости) можно рассматривать как коллоидные растворы. Дисперсионной средой крови является плазма - водный раствор неорганических солей и белков .

Связнодисперсные системы

Пористые материалы

Пористые материалы по размерам пор подразделяют, согласно классификации М. М. Дубинина , на:

По геометрическим признакам пористые структуры подразделяются на регулярные (у которых в объёме тела наблюдается правильное чередование отдельных пор или полостей и соединяющих их каналов) и стохастические (в которых ориентация, форма, размеры, взаимное расположение и взаимосвязи пор носят случайный характер). Для большинства пористых материалов характерна стохастическая структура. Имеет значение и характер пор: открытые поры сообщаются с поверхностью тела так, что через них возможна фильтрация жидкости или газа; тупиковые поры также сообщаются с поверхностью тела, но их наличие на проницаемости материала не сказывается; закрытые поры .

Твёрдые гетерогенные системы

Характерным примером твёрдых гетерогенных систем являются получившие в последнее время широкое распространение композиционные материалы (композиты) - искусственно созданные сплошные, но неоднородные, материалы, которые состоят из двух или более компонентов с чёткими границами раздела между ними. В большинстве таких материалов (за исключением слоистых) компоненты можно разделить на матрицу и включённые в неё армирующие элементы ; при этом армирующие элементы обычно отвечают за механические характеристики материала, а матрица обеспечивает совместную работу армирующих элементов. К числу старейших композиционных материалов относятся саман , железобетон , булат , папье-маше . Ныне широко распространены фиброармированные пластики , стеклопластик , металлокерамика , нашедшие применение в самых различных областях техники.

Движение дисперсных систем

Изучением движения дисперсных систем занимается механика многофазных сред . В частности, задачи оптимизации различных теплоэнергетических устройств (паротурбинных установок , теплообменников и др.), а также разработки технологий нанесения различных покрытий делают актуальной проблему математического моделирования пристеночных течений смеси «газ - жидкие капли». В свою очередь, значительное разнообразие структуры пристеночных течений многофазных сред, необходимость учёта различных факторов (инерционность капель, образование жидкой плёнки, фазовые переходы и др.) требуют построения специальных математических моделей многофазных сред, активно разрабатываемых в настоящее время

mob_info