Уравнения Колмогорова для вероятностей состояний. Финальные вероятности состояний. Вероятности состояний СМО. Предельные вероятности состояний Базовые понятия теории вероятностей. События

Рассмотрим математическое описание марковского процесса с дискретными состояниями и непрерывным временем

на примере случайного процесса из задачи 15.1, граф которого изображен на рис. 15.1. Будем полагать, что все переходы системы из состояния 5 в 5 происходят под воздействием простейших потоков событий с интенсивностями λ . (i, j = = 0, 1,2, 3); так, переход системы из состояния S 0 в 5, будет происходить под воздействием потока отказов первого узла, а обратный переход из состояния в S 0 под воздействием потока "окончаний ремонтов" первого узла и т.п.

Граф состояния системы с проставленными у стрелок интенсивностями будем называть размеченным (см. рис. 15.1). Рассматриваемая система S имеет четыре возможных состояния. 5q, iSj, S 2, 5"->-

Вероятностью i-го состояния называется вероятность pit) того, что в момент t система будет находиться в состоянии 5(.. Очевидно, что для любого момента t сумма вероятностей всех состояний равна единице:

Рассмотрим систему в момент t и, задав малый промежуток At, найдем вероятность p 0(t + At) того, что система в момент (ί + Δί) будет находиться в состоянии 50. Это достигается разными способами.

1. Система в момент t с вероятностью p Q(t) находилась в состоянии 50, а за время At не вышла из него.

Вывести систему из этого состояния (см. граф на рис. 15.1) можно суммарным простейшим потоком с интенсивностью (λ01 + λ02), т.е. в соответствии с (15.7) с вероятностью, приближенно равной (λ01 + λ0.,)Δί. Л вероятность того, что система не выйдет из состояния 50, равна [ΐ-(λοι + λ0.,)Δί]. Вероятность того, что система будет находиться в состоянии 50 по первому способу (т.е. того, что находилась в состоянии 50 и не выйдет из него за время Δί), равна по теореме умножения вероятностей

2. Система в момент t с вероятностью p^t) (или p 2(t)) находилась в состоянии 5) или S2 и за время At перешла в состояние 50.

Потоком интенсивностью λ10 (или λ20 – см. рис. 15.1) система перейдет в состояние 50 с вероятностью, приближенно

равной λ,0Δί (или λ20Δί) Вероятность того, что система будет находиться в состоянии 50 по этому способу, равна Ρι(ί)10Δί (или ρ2(ί)λ20Δί).

Применяя теорему сложения вероятностей, получим откуда

Переходя к пределу при At → 0 (приближенные равенства, связанные с применением формулы (15.7), перейдут в точные), получим в левой части уравнения производную р" 0 (ί) (обозначим ее для простоты р "0):

Получили дифференциальное уравнение первого порядка, т.е. уравнение, содержащее как саму неизвестную функцию, так и ее производную первого порядка.

Рассуждая аналогично для других состояний системы 5, можно получить систему дифференциальных уравнений Колмогорова для вероятностей состояний:

(15.9)

Сформулируем правило составления уравнений Колмогорова. В левой части каждого из них стоит производная вероятности i-го состояния. В правой части – сумма произведений вероятностей всех состояний (из которых идут стрелки в данное состояние) на интенсивности соответствующих потоков событий, минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного (i-го состояния).

В системе (15.9) независимых уравнений на единицу меньше общего числа уравнений. Поэтому для решения системы необходимо добавить уравнение (15.8).

Особенность решения дифференциальных уравнений вообще состоит в том, что требуется задать так называемые начальные условия, т.е. в данном случае вероятности состояний системы в начальный момент t = 0. Так, например, систему уравнений (15.9) естественно решать при условии, что в начальный момент оба узла исправны и система находилась в состоянии 50, т.е. при начальных условиях р 0 (0) = 1, р х (о) = р 2 (О) = р 3 (О) = 0.

Уравнения Колмогорова дают возможность найти все вероятности состояний как функции времени. Особый интерес представляют вероятности системы р-(!) в предельном, стационарном режиме, т.е. при t → ∞, которые называются предельными (или финальными) вероятностями состояний.

В теории случайных процессов доказывается, что если число состояний системы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое состояние, то предельные вероятности существуют.

Предельная вероятность состояния S j имеет четкий смысл: она показывает среднее относительное время пребывания системы в этом состоянии. Например, если предельная вероятность состояния 50, т.е. р 0 = 0,5, то это означает, что в среднем половину времени система находится в состоянии 50.

Так как предельные вероятности постоянны, то, заменяя в уравнениях Колмогорова их производные нулевыми значениями, получим систему линейных алгебраических уравнений, описывающих стационарный режим. Для системы S с графом состояний, изображенном на рис. 15.1, такая система уравнений имеет вид:

(15.10)

Систему (15.10) можно составить непосредственно по размеченному графу состояний, если руководствоваться правилом, согласно которому слева в уравнениях стоит предельная вероятность данного состояния р г умноженная на суммарную интенсивность всех потоков, ведущих из данного

состояния, а справа – сумма произведений интенсивностей всех потоков, входящих в i-е состояние, на вероятности тех состояний, из которых эти потоки исходят.

15.2. Найти предельные вероятности для системы S из задачи 15.1, граф состояний которой приведен на рис. 15.1, при

Решение. Система алгебраических уравнений, описывающих стационарный режим для данной системы, имеет вид (15.10) или

(15.11)

Здесь мы вместо одного "лишнего" уравнения системы (15.10) записали нормировочное условие (15.8).

Решив систему (15.11), получим р () = 0,40, p i = 0,20, р 2 = 0,27, р 3 = 0,13, т.е. в предельном, стационарном режиме система S в среднем 40% времени будет находиться в состоянии 5Н (оба узла исправны), 20% – в состоянии 5, (первый узел ремонтируется, второй работает), 27% – в состоянии S 2 (второй узел ремонтируется, первый работает) и 13% времени – в состоянии 53 (оба узла ремонтируются).

15.3. Найти средний чистый доход от эксплуатации в стационарном режиме системы 5 в условиях задач 15.1 и 15.2, если известно, что в единицу времени исправная работа первого и второго узлов приносит доход соответственно в 10 и 6 ден. ед., а их ремонт требует затрат соответственно в 4 и 2 ден. ед. Оценить экономическую эффективность имеющейся возможности уменьшения вдвое среднего времени ремонта каждого из двух узлов, если при этом придется вдвое увеличить затраты на ремонт каждого узла (в единицу времени).

Решение. Из задачи 15.2 следует, что в среднем первый узел исправно работает долю времени, равную р {) + р 2 = = 0,40 + 0,27 = 0,67, а второй узел – р 0 + p = 0,40 + 0,20 = = 0,60. В то же время первый узел находится в ремонте в среднем долю времени, равную р { + р3 = 0,20 + 0,13 = 0,33, а второй узел – р 2 + р 3 = 0,27 + 0,13 = 0,40. Поэтому средний чистый доход в единицу времени от эксплуатации системы, т.е. разность между доходами и затратами, равен

Уменьшение вдвое среднего времени ремонта каждого из узлов в соответствии с (15.6) будет означать увеличение вдвое интенсивностей потока "окончаний ремонтов" каждого узла, т.е. теперь, и система линейных алгебраических уравнений (15.10), описывающая стационарный режим системы У, вместе с нормировочным условием (15.8) примет вид :

Решив систему, получим р 0 = 0,60, р, = 0,15, р 2 = 0,20, р 3 = 0,05.

Учитывая, что р 0 + р 2 = 0,60 + 0,20 = 0,80, р 0 + р { = 0,60 + + 0,15 = 0,75, р { + р 3 = 0,15 + 0,05 = 0,20, р 2 + р 3 = 0,20 + + 0,05 = 0,25, а затраты на ремонт первого и второго узла составляют теперь соответственно 8 и 4 ден. ед., вычислим средний чистый доход в единицу времени:

Так как Д1 больше Д (примерно на 20%), то экономическая целесообразность ускорения ремонтов узлов очевидна.

  • При записи системы (15.10) одно "лишнее" уравнение мы исключили.

Что будет происходить с вероятностями состояний при .Будут лиP 1 (t), P 2 (t), … стремится к каким-то пределам? Если эти пределы существуют и не зависят от начального состояния системы, то они называются финальными вероятностями состояний. В теории случайных процессов доказывается, что если число n состояний системы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое, то финальные вероятности существуют (это условие достаточно, но не необходимо для существования финальных вероятностей).

Предположим, что это условие выполнено и финальные вероятности существуют:

Будем обозначать их теми же буквами P 1 , P 2 , …, что и сами вероятности состояний, но подразумевая под ними не функции времени, а постоянные числа. Очевидно, они тоже образуют в сумме единицу:

. (4.10)

Как понимать эти финальные вероятности? При
в системеS устанавливается предельный стационарный режим, в ходе которого система случайным образом меняет свои состояния, но их вероятности уже не зависят от времени. Финальную вероятность состояния S i можно понимать как среднее относительное время пребывания системы в этом состоянии.

Например, если система S имеет три состояния S 1 , S 2 , S 3 и их финальные вероятности равны 0,2; 0,3; 0,5, это значит, что в предельном стационарном режиме система в среднем две десятых времени проводит в состоянии S 1 , три десятых – в состоянии S 2 и половину времени – в состоянии S 3 .

Как же вычислить финальные вероятности? Если вероятности P 1 , P 2 , … постоянны, то их производные равны нулю. Значит, чтобы найти финальные вероятности, нужно все левые части в уравнениях Колмогорова положить равными нулю и решить полученную систему уже не дифференциальных, а линейных алгебраических уравнений. Даже можно сразу по графу состояний написать систему алгебраических уравнений. Если перенести отрицательный член каждого уравнения из правой части в левую, то получим сразу систему уравнений, где слева стоит финальная вероятность данного состояния P i , умноженная на суммарную интенсивность всех потоков, ведущих из данного состояния, а справа – сумма произведений интенсивностей всех потоков, входящих в i – е состояние, на вероятности тех состояний, из которых эти потоки исходят.

Пользуясь этим правилом, напишем линейные алгебраические уравнения для финальных вероятностей состояний системы, граф состояний дан на рис. 4.9:

(4.11)

Эту систему 4-х уравнений с 4-мя неизвестными P 0 , P 1 , P 2 , P 3 можно решить воспользовавшись так называемым нормировочным условием:

, (4.12)

при этом одно (любое) из уравнений можно отбросить (оно вытекает как следствие из остальных).

Зададимся численными значениями интенсивностей λ 1 =1, λ 2 =2, μ 1 =2, μ 2 =3 и решим систему (4.11). Отбросим четвертое уравнение, добавив вместо него нормировочное условие (4.12). Уравнения примут вид:

(4.13)

Решая их, получим т.е. в предельном, стационарном режиме системаS в среднем 40% времени будет проводить в состоянии S 0 (оба узла исправны), 20% - в состоянии S 1 (первый узел ремонтируется, второй работает), 27% - в состоянии S 2 (второй узел ремонтируется, первый работает) и 13% - в состоянии S 3 полной негодности (оба узла ремонтируются). Знание этих предельных вероятностей может помочь оценить среднюю эффективность работы системы и загрузку ремонтных органов. Предположим, что система S в состоянии S 0 приносит в единицу времени доход 8 (условных единиц), в состоянии S 1 – доход 3, в состоянии S 2 – доход 5, а в состоянии S 3 – вообще не приносит дохода. Тогда, в предельном стационарном режиме средний доход в единицу времени будет . Теперь оценим загрузку ремонтных органов (рабочих), занятых ремонтов узлов 1 и 2. Узел 1 ремонтируется долю времени, равную. Узел 2 ремонтируется долю времени
.

Здесь уже может возникнуть вопрос об оптимизации решения. Допустим, что мы можем уменьшить среднее время ремонта того или другого узла (а может быть и того, и другого), но это нам обойдется в какую-то сумму. И необходимо оценить, а окупит ли увеличение дохода, связанное с ускорением ремонта, повышенные расходы на ремонт? (для этого надо будет решить систему 4-х уравнений с 4-мя неизвестными).

Рассмотрим математическое описание марковского процесса с дискретными состояниями и непрерывным временем* на примере случайного процесса из примера 1, граф которого изображен на рис. 1. Будем полагать, что все переходы системы из состояния впроисходят под воздействием простейших потоков событий с интенсивностями; так, переход системы из состояниявбудет происходить под воздействием потока отказов первого узла, а обратный переход из состоянияв- под воздействием потока "окончаний ремонтов" первого узла и т.п.

Граф состояний системы с проставленными у стрелок интенсивностями будем называть размеченным (см. рис. 1). Рассматриваемая система имеет четыре возможных состояния:.

Вероятностью i-го состояния называется вероятность того, что в моментсистема будет находиться в состоянии. Очевидно, что для любого моментасумма вероятностей всех состояний равна единице:

Рассмотрим систему в момент и, задав малый промежуток, найдем вероятностьтого, что система в моментбудет находиться в состоянии. Это достигается разными способами.

1. Система в момент с вероятностьюнаходилась в состоянии, а за времяне вышла из него.

Вывести систему из этого состояния (см. граф на рис. 1) можно суммарным простейшим потоком с интенсивностью , т.е. в соответствии с формулой (7), с вероятностью, приближенно равной. А вероятность того, что система не выйдет из состояния, равна. Вероятность того, что система будет находиться в состояниипо первому способу (т.е. того, что находилась в состояниии не выйдет из него за время), равна по теореме умножения вероятностей:

2. Система в момент с вероятностями(или) находилась в состоянииилии за времяперешла в состояние.

Потоком интенсивностью (или- с- рис. 1) система перейдет в состояниес вероятностью, приближенно равной(или). Вероятность того, что система будет находиться в состояниипо этому способу, равна(или).

Применяя теорему сложения вероятностей, получим

Переходя к пределу при (приближенные равенства, связанные с применением формулы (7), перейдут в точные), получим в левой части уравнения производную(обозначим ее для простоты):

Получили дифференциальное уравнение первого порядка, т.е. уравнение, содержащее как саму неизвестную функцию, так и ее производную первого порядка.

Рассуждая аналогично для других состояний системы , можно получить систему дифференциальных уравнений Колмогорова для вероятностей состояний:

Сформулируем правило составления уравнений Колмогорова . В левой части каждого из них стоит производная вероятности i-го состояния. В правой части - сумма произведений вероятностей всех состояний (из которых идут стрелки в данное состояние) на интенсивности соответствующих потоков событий, минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного (i-го состояния).

В системе (9) независимых уравнений на единицу меньше общего числа уравнений. Поэтому для решения системы необходимо добавить уравнение (8).

Особенность решения дифференциальных уравнений вообще состоит в том, что требуется задать так называемые начальные условия, т.е. в данном случае вероятности состояний системы в начальный момент . Так, например, систему уравнений (9) естественно решать при условии, что в начальный момент оба узла исправны и система находилась в состоянии, т.е. при начальных условиях.

Уравнения Колмогорова дают возможность найти все вероятности состояний как функции времени . Особый интерес представляют вероятности системы впредельном стационарном режиме , т.е. при , которые называютсяпредельными (или финальными) вероятностями состояний.

В теории случайных процессов доказывается, что если число состояний системы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое состояние, то предельные вероятности существуют.

Предельная вероятность состояния имеет четкий смысл: она показываетсреднее относительное время пребывания системы в этом состоянии . Например, если предельная вероятность состояния , т.е., то это означает, что в среднем половину времени система находится в состоянии.

Так как предельные вероятности постоянны, то, заменяя в уравнениях Колмогорова их производные нулевыми значениями, получим систему линейных алгебраических уравнений, описывающих стационарный режим. Для системы с графом состояний, изображенном на рис. 1), такая система уравнений имеет вид:

Систему (10) можно составить непосредственно по размеченному графу состояний, если руководствоваться правилом, согласно которому слева в уравнениях стоит предельная вероятность данного состояния , умноженная на суммарную интенсивность всех потоков, ведущих из данного состояния, а справа - сумма произведений интенсивностей всех потоков, входящих в i-е состояние, на вероятности тех состояний, из которых эти потоки исходят.

Пусть имеется физическая система S с дискретными состояниями:

S 1 ,S 2 ,...,S n ,

в которой протекает марковский случайный процесс с непрерывным временем (непрерывная цепь Маркова). Граф состояний показан на рис. 23.

Предположим, что все интенсивности потоков событий, переводя­щих систему из состояния в состояние, постоянны:

другими словами, все потоки событий – простейшие (стационарные. пуассоновские) потоки.

Записав систему дифференциальных уравнений Колмогорова для вероятностей состояний и проинтегрировав эти уравнения при заданных начальных условиях, мы получим вероятности состояний, как функции времени, т. е. n функций:

p 1 (t), p 2 (t),…,p n (t),

при любом t дающих в сумме единицу: .

Поставим теперь следующий вопрос: что будет происходить с сис­темой S при t®¥? Будут ли функции p 1 (t), p 2 (t),…,p n (t) стремиться к каким-то пределам? Эти пределы, если они существуют, называются предельными (или «финальными») вероятностями состояний.

Можно доказать следующее общее положение. Если число состоя­ний системы S конечно и из каждого состояния можно перейти (за то или иное число шагов) в каждое другое, то предельные вероятности со­стояний существуют и не зависят от начального состояния системы .

На рис. 24 показан граф состояний, удовлетворяющий постав­ленному условию: из любого состояния система может рано или позд­но перейти в любое другое. Напротив, для системы, граф состояний которой показан на рис. 25, условие не выполнено. Очевидно, что если начальное состояние такой системы S 1 то, например, состояние S 6 при t®¥ может быть достигнуто, а если начальное состояние S 2 – не может.

Предположим, что поставленное условие выполнено, и предель­ные вероятности существуют:



(i = 1, 2,..., n). (6.1)

Предельные вероятности мы будем обозначать теми же буквами р 1 , р 2 , … р n , что и сами вероятности состояний, разумея подними на этот раз не переменные величины (функции времени), а постоянные числа.

Очевидно, предельные вероятности состоянии, так же как и допредельные, в сумме должны давать единицу:

Таким образом, при t®¥ в системе S устанавливается некоторый предельный стационарный режим: он состоит в том, что система случайным образом меняет свои состояния, но вероятность каждого из них уже не зависит от времени: каждое из состояний осу­ществляется с некоторой постоянной вероятностью. Каков смысл этой вероятности? Она представляет собой не что иное, как сред­нее относительное время пребывания си­стемы в данном состоянии. Например, если у системы S три возможных состояния: S 1 ,S 2 и S 3 , причем их предельные вероят­ности равны 0,2, 0,3 и 0,5, это означает, что после перехода к устано­вившемуся режиму система S в среднем две десятых времени будет находиться в состоянии S 1 три десятых – в состоянии S 2 и полови­ну времени – в состоянии S 3 . Возникает вопрос: как вычислить пре­дельные вероятности состояний р 1 , р 2 , … р n ?

Оказывается, для этого в системе уравнений Колмогорова, описывающих вероятности состояний, нужно положить все левые час­ти (производные) равными нулю.

Действительно, в предельном (установившемся) режиме все вероят­ности состояний постоянны, значит, их производные равны нулю.

Если все левые части уравнений Колмогорова для вероятностей состояний положить разными нулю, то система дифференциальных уравнений превратится в систему линейных алгеб­раических уравнений. Совместно с условием

(так называемым «нормировочным условием») эти уравнения дают возможность вычислить все предельные вероятности

р 1 , р 2 , … р n

Пример 1 . Физическая система S имеет возможные состояния: S l , S 2 , S 3 , S 4 , размеченный граф которых дан на рис. 26 (у каждой стрелки поставлено численное значение соответствующей интенсивности). Вычислить предельные ве­роятности состояний: р 1 , р 2 , р 3 , р 4 .

Решение . Пишем уравнения Колмогорова для вероятностей состояний:

(6.3)

Полагая левые части равными нулю, получим систему алгебраических уравнений для предельных вероятностей состояний:

(6.4)

Уравнения (6.4) – так называемые однородные уравнения (без свободного члена). Как известно из алгебры, эти уравнения определяют величины р 1 , р 2 , р 3 , р 4 только с точностью до постоянного множителя. К счастью, у нас есть нор­мировочное условие:

p 1 + p 2 + p 3 + p 4 = 1, (6.5)

которое, совместно с уравнениями (64), дает возможность найти все неизвест­ные вероятности.

Действительно, выразим из (6.4) все неизвестные вероятности через одну из них, например, через p 1 . Из первого уравнения:

p 3 = 5p 1

Подставляя во второе уравнение, получим:

р 2 = 2 p 1 + 2р 3 = 12 p 1 .

Четвертое уравнение дает:

p 4 = 1/2p 2 = 6 p 1 .

Подставляя все эти выражения вместо р 2 , р 3 , р 4 в нормировочное условие (6.5), получим

p 1 + 12p 1 + 5 p 1 + 6 p 1 = 1.

24 p 1 = 1, p 1 = 1/24, p 2 =12p 1 = 1/2.

p 3 = 5p 1 = 5/24. p 4 = 6 p 1 = 1/4.

Таким образом, предельные вероятности состояний получены, они равны;

p 1 = 1/24, p 2 = 1/2, p 3 = 5/24, p 4 = 1/4 (6.6)

Это значит, что в предельном, установившемся режиме система S будет проводить в состоянии S 1 в среднем одну двадцать четвертую часть времени, в состоянии S 2 – половину времени, в состоянии S 3 – пять двадцать четвертых и в состоянии S 4 – одну четверть времени.

Заметим, что решая эту задачу, мы совсем не пользовались одним из уравнений (6.4) – третьим. Нетрудно убедиться, что оно является следствием трех остальных: складывая все четыре уравнения, мы получим тождественный нуль. С равным успехом, решая систему, мы могли бы отбросить любое из четырех уравнений (6.4).

Примененный нами способ составления алгебраических уравнений для предельных вероятностей состояний сводился к следующему: сперва написать дифференциальные уравнения, а затем положить в них левые части равными ну­лю Однако можно записать алгебраические уравнения для предельных вероят­ностей и непосредственно, не проходя через этап дифференциальных. Проиллюстрируем это на примере.

Пример 2 . Граф состоянии системы показан на рис. 27. Написать ал­гебраические уравнения для предельных вероятностей состояний.

Решение . Не записывая дифференциальных уравнений, прямо пишем соот­ветствующие правые части и приравниваем их нулю; чтобы не иметь дела с от­рицательными членами, сразу переносим их в другую часть, меняя знак:

(6.7)

Чтобы в дальнейшем сразу же писать такие уравнения, полезно запом­нить следующее мнемоническое правило: «что втекает, то и вытекает», то есть для каждого состояния сумма членов, соответствующих входящим стрелкам, рав­на сумме членов, соответствующих выходящим; каждый член равен интенсивнос­ти потока событий, переводящего систему по данной стрелке, умноженной на вероятность того состояния, из которого выходит стрелка.

В дальнейшем мы во всех случаях будем пользоваться именно этим кратчай­шим способом записи уравнений для предельных вероятностей.

Пример 3 . Написать алгебраические уравнения для предельных вероят­ностей состояний системы S , граф состояний которой дан на рис. 28. Решить эти уравнения.

Решение. Пишем алгебраические уравнения для предельных вероятно­стей состояний;

Нормировочное условие;

p 1 + p 2 + p 3 = 1 . (6.9)

Выразим с помощью первых двух уравнений (6.8) р 2 и р 3 через р 1:

Подставим их в нормировочное условие (6.9):

,

откуда .

; .

Асимптотические оценки в соответствии с известной теоремой А.А. Маркова могут быть получены для марковских цепей, обладающих эргодическим свойством.

Определение 1. Если число состояний системы конечно и из каждого состояния можно перейти в любое другое за произвольное число шагов, то говорят, что такая система обладает эргодическим свойством.

Определение 2. Пусть марковский процесс характеризуется ве­роятностями перехода из состоянияiв состояниеjза времяt

p ij (t) (0?i?n; 0?j?n).

Процесс называется транзитивным, если существует такое t>0, что p ij (t)>0 (0?i?n; 0?j?n). Из определений 1 и 2 следует, что процессы в марковских цепях с эргодическим свойством являются транзитивными.

Теорема Маркова . Для любого транзитивного марковского процесса пределсуществует и не зависит от начального состоянияi.

Это означает, что при t?? в системе устанавливается неко­торый предельный стационарный режим, характеризующийся постоян­ной, не зависящей от времени, вероятностью каждого из состояний системы. При этом данная вероятность представляет собой среднее относительное время пребывания системы в данном состоянии. Это значит, что если время работы всей системы 100 ч, а вероятность состояния S 1 равна p 1 =0,15, то система будет находиться в состоянии S 1 в среднем 15 ч.

Пределы, к которым стремятся вероятности каждого из состоя­ний марковской цепи с эргодическим свойством при t??, называ­ются предельными вероятностями. При рассмотрении СМО мы будем иметь дело только с эргодическими марковскими цепями. Пусть V - некоторое подмножество множества состояний системы S , а V’ - его дополнение до S . Если множество V обладает эргодическим свойс­твом и ни из одного состояния множества V нельзя перейти ни в од­но из состояний множества V’, то множество называется замкнутым или эргодическим множеством. Эргодические системы состоят из од­ного единственного эргодического множества (S=V, V’=?) и называются поэтому неразложимыми. Если в системе S множество V"?? или в этой системе можно выделить несколько эргодических множеств S = V 1 ?V 2 ?…?V n , то такая система называется разложимой. Примеры таких систем приведены на рис.1.3.

На рис.1.3,а представлена сис­тема с двумя эргодическими множест­вами V 1 =(S 2 ,S 3 ,S 4) иV 2 (S 5 ,S 6). На рис.1.3,б эргодическое множество состоит лишь из одного состояния (S 4). Если эргодическое множест­во состоит лишь из одного состоя­ния, то это состояние называется поглощающим, так как попав в не­го однажды, процесс остается нав­сегда в поглощающем состоянии. Ха­рактерная особенность графа состо­яний неразложимой эргодической мар­ковской системы заключается в том, что каждой вершине этого графа ин­цидентны дуги как с положительной, так и с отрицательной инцидент­ностью (т.е. у каждой вершины име­ются дуги, направленные как к вер­шине, так и от нее, см., например, рис. 1.1 и 1.2).

Вычисление предельных вероят­ностей состояний для таких систем упрощается в связи с тем, что, поскольку все эти вероятности яв­ляются постоянными величинами, то их производные по времени рав­ны 0 (dp i /dt=0 для всехi). Поэтому левые части системы уравнений Колмогорова (1.7) приравниваются нулю и она превращается в систе­му линейных алгебраических уравнений

Нетривиальное решение системы (1.8) может быть получено только в случае вырожденности матрицы?. Выше было доказано, что матрица плотностей вероятностей? является вырожденной. Система (1.8) без одного из своих уравнений дополняется условием нормировки

Соотношения (1.8) и (1.9) позволяют определить предельные вероят­ности состояний. Поскольку часть слагаемых, соответствующая дугам с отрицательной инцидентностью, положительна, а другая часть, со­ответствующая дугам с положительной инцидентностью, отрицательна, то каждое уравнение системы (1.8) может быть составлено с учетом мнемонического правила: для каждого состояния сумма членов, соот­ветствующих входящим дугам, равна сумме членов, соответствующих выходящим дугам.

Пример . Для системы, изображенной на рис.1.2, из уравнений Колмогорова (1.7) следует

  • (? 12 +? 13)p 1 =? 41 p 4 (? 41 +? 45)p 4 =? 34 p 3
  • ? 25 p 1 =? 12 p 1 +? 32 p 3 ? 53 p 3 =? 52 p 2 +? 45 p 4
  • (? 3 2 +? 3 4)p 4 =? 13 p 1 +? 5 3 p 5 (1.10)

Для решения (1.10) нужно исключить любое из первых пяти уравнений (например, пятое, как содержащее наибольшее число членов).

Предельные вероятности состояний используются в ТМО значи­тельно чаще, чем решения уравнений Колмогорова, причем, зная ре­шение системы уравнений Колмогорова, можно определить момент окончания переходного процесса изменения вероятностей состояний во времени. Это дает возможность рассчитать, промежуток времени начиная от включения системы в работу, по истечении которого ве­роятности состояний достигнут своих предельных значений и будут справедливы оценки, использующие эти значения. В заключение этого параграфа рассмотрим один частный, но практически очень важный класс марковских процессов, широко применяемых при исследовании СМО. Это - процессы "размножения и гибели". К ним относятся мар­ковские цепи, представимые размеченным графом, который состоит из вытянутой цепочки состояний, изображенной на рис.1.4.

Матрица плотностей вероятностей переходов такой системы яв­ляется якобиевой (тридиагональной):


Рассматривая начальное состояние S 0 , получим в соответствии с (1.8)

01 p 0 =? 10 p 1 (1.11)

Для состояния S 1 имеем

01 p 0 +? 21 p 2 =? 10 p 1 +? 12 p 1 (1.12)

Вычитая из (1.12) равенство (1.11), получим

21 p 2 = ? 12 p 1 (1.13)

Продолжая этот процесс до n-гoсостояния включительно, получим

N , n -1 p n =? n -1, n p n -1

Из (1.11) теперь можно выразить p 1 через р 0:

p 1 =p 0 (? 01 /? 10) (1.14)

Подставляя (1.14) в (1.13), получим

p 2 =p 0 (? 01 ? 12 /? 10 ? 21)

Очевидно, что для произвольного k (1?k?n) будет справедливо вы­ражение

В соответствии с (1.15) и размеченным графом состояний, представленным на рис.1.4, можно сформулировать правило, с по­мощью которого можно выразить предельные вероятности состояний процесса "размножения и гибели" через вероятность начального сос­тояния р 0 . Это правило гласит: вероятность произвольного состоя­ния p k (l?k?n) равна вероятности начального состояния р 0 , умно­женной на дробь, числитель которой равен произведению плотностей вероятностей перехода для дуг, переводящих состояние системы сле­ва направо, а знаменатель - произведение плотностей вероятностей перехода справа налево от начального до k-гo состояний включи­тельно.

Вероятность р 0 находится из условия нормировки и выражений (1.15) следующим образом:

Выражения (1.15) и (1.16) полностью определяют предельные вероят­ности процесса "размножения и гибели".

mob_info