Размер видимой вселенной в километрах. Размеры и границы вселенной. Множество Млечных Путей

Вы, наверное, думаете, что вселенная бесконечна? Может быть и так. Вряд ли мы когда-нибудь узнаем об этом точно. Охватить взглядом всю нашу вселенную целиком не получится. Во-первых, данный факт вытекает из концепции «большого взрыва», которая утверждает, что у вселенной имеется свой, так сказать, день рождения, а, во-вторых, из постулата о том, что скорость света — фундаментальная постоянная. К настоящему времени наблюдаемая часть вселенной, возраст которой составляет 13,8 миллиардов лет, расширилась во всех направлениях на расстояние 46,1 миллиардов световых лет. Возникает вопрос: каковы были размеры вселенной тогда, 13,8 миллиардов лет назад? Этот вопрос нам задал некто Джо Маскарелла (Joe Muscarella). Вот что он пишет:

«Мне встречались разные ответы на вопрос о том, каковы были размеры нашей вселенной вскоре после того, как закончился период космической инфляции (космическая инфляция — фаза, предшествовавшая Большому взрыву, — прим. пер.). В одном источнике указано — 0,77 сантиметров, в другом — размер с футбольный мяч, а в третьем — больше, чем размеры наблюдаемой вселенной. Так который же из них? А может быть какой-то промежуточный?»

Контекст

Большой взрыв и «черная дыра»

Die Welt 27.02.2015

Как Вселенная сотворила человека

Nautilus 27.01.2015 Кстати, минувший год как раз дает нам повод, чтобы поговорить и об Эйнштейне, и о сущности пространства-времени, ведь в прошедшем году мы отпраздновали столетний юбилей общей теории относительности. Итак, давайте поговорим о вселенной.

Когда мы через телескоп наблюдаем за отдаленными галактиками, то можем определить некоторые их параметры, например, следующие:

— красное смещение (т.е. насколько испускаемый ими свет сместился по отношению к инерциальной системе отсчета);

— яркость объекта (т.е. измерить количество света, излучаемого удаленным объектом);

— угловой радиус объекта.

Эти параметры очень важны, поскольку если известна скорость света (один из немногих параметров, который нам известен), а также яркость и размеры наблюдаемого объекта (эти параметры нам тоже известны), то можно определить расстояние до самого объекта.

На деле приходится довольствоваться лишь приблизительными характеристиками яркости объекта и его размерами. Если астроном наблюдает в какой-нибудь далекой галактике вспышку сверхновой, то для измерения ее яркости используются соответствующие параметры других сверхновых, расположенных по соседству; мы предполагаем, что условия, в которых эти сверхновые вспыхнули, сходны, а между наблюдателем и космическим объектом нет никаких помех. Астрономы выделяют следующие три вида факторов, обуславливающих наблюдение за звездой: звездная эволюция (различие объектов в зависимости от их возраста и удаленности), экзогенный фактор (если реальные координаты наблюдаемых объектов значительно отличаются от гипотетических) и фактор помех (если, например, на прохождение света оказывают влияние помехи, вроде пыли) — и это все помимо прочих, нам не известных факторов.

Измерив яркость (или размеры) наблюдаемого объекта, с помощью соотношения «яркость/ расстояние» можно определить удаленность объекта от наблюдателя. Более того, по характеристике красного смещения объекта можно определить масштабы расширения вселенной за то время, в течение которого свет от объекта достигает Земли. Используя соотношение между материей-энергией и пространством-временем, о которых говорит общая теория относительности Эйнштейна, можно рассматривать всевозможные комбинации различных форм материи и энергии, имеющиеся на данный момент во вселенной.

Но это еще не все!

Если известно, из каких частей состоит вселенная, то с помощью экстраполяции можно определить ее размеры, а также узнать о том, что происходило на любом из этапов эволюции вселенной, и о том, какова была на тот момент плотность энергии. Как известно, вселенная состоит из следующих составных частей:

— 0,01% — излучение (фотоны);

— 0,1% — нейтрино (более тяжелые, чем фотоны, однако в миллион раз легче электронов);

— 4,9% — обычная материя, включая планеты, звезды, галактики, газ, пыль, плазму и черные дыры;

— 27% — темная материя, т.е. такой ее вид, который участвует в гравитационном взаимодействии, но отличается от всех частиц Стандартной модели;

— 68% — темная энергия, обуславливающая расширение вселенной.

Как видим, темная энергия — штука важная, ее открыли совсем недавно. Первые девять миллиардов лет своей истории вселенная состояла в основном из материи (в виде комбинации материи обычной и материи темной). Однако на протяжении первых нескольких тысячелетий излучение (в виде фотонов и нейтрино) представляло собой еще более важный строительный материал, чем материя!

Обратите внимание, что каждая из этих составных частей вселенной (т.е. излучение, материя и темная энергия) по-разному влияют на скорость ее расширения. Даже если мы знаем, что протяженность вселенной составляет 46,1 миллиардов световых лет, мы должны знать точную комбинацию составляющих ее элементов на каждом этапе ее эволюции для того, чтобы рассчитать размеры вселенной в любой момент времени в прошлом.

— когда вселенной исполнилось примерно три года, диаметр Млечного Пути составлял сто тысяч световых лет;

— когда вселенной исполнился один год, она была намного более горячей и плотной, чем сейчас; средняя температура превышала два миллиона градусов по Кельвину;

— через одну секунду после своего рождения, вселенная была слишком горячей, чтобы в ней могли сформироваться стабильные ядра; в тот момент протоны и нейтроны плавали в море горячей плазмы. Кроме того, в то время радиус вселенной (если в качестве центра круга взять Солнце) был таким, что в описанный круг могли бы поместиться всего лишь семь из всех ныне существующих ближайших к нам звездных систем, самой отдаленной из которых стала бы Ross 154 (Ross 154 — звезда в созвездии Стрельца, расстояние 9,69 световых лет от Солнца — прим. пер.);

— когда возраст вселенной составлял всего одну триллионную секунды, ее радиус не превышал расстояния от Земли до Солнца; в ту эпоху скорость расширения вселенной была в 1029 раз больше, чем сейчас.

При желании можно посмотреть, что происходило на заключительном этапе инфляции, т.е. непосредственно перед Большим взрывом. Для описания состояния вселенной на самой ранней стадии ее рождения можно было бы использовать гипотезу о сингулярности, но благодаря гипотезе об инфляции нужда в сингулярности полностью отпадает. Вместо сингулярности мы говорим об очень быстром расширении вселенной (т.е. об инфляции), происходившем в течение некоторого времени, прежде чем возникло горячее и плотное расширение, которое положило начало нынешней вселенной. Теперь перейдем к заключительному этапу инфляции вселенной (временной интервал между 10 в минус 30 — 10 в минус 35 секундами). Давайте посмотрим, каковы были размеры вселенной в тот момент, когда инфляция прекратилась и произошел большой взрыв.

Здесь мы говорим о наблюдаемой части вселенной. Истинный ее размер, безусловно, намного больше, но мы не знаем, насколько. При самом наилучшем приближении (если судить по данным, содержащимся в Слоановском цифровом небесном обзоре (SDSS), и информации, полученной с борта космической обсерватории Планка), если вселенная искривляется и сворачивается, то ее наблюдаемая часть настолько неотличима от «неискривленной», что весь ее радиус должен быть, по крайней мере, в 250 раз больше радиуса наблюдаемой части.

По правде говоря, протяженность вселенной может оказаться даже бесконечной, поскольку то, как она вела себя на раннем этапе инфляции, нам неизвестно за исключением последних долей секунды. Но если говорить о том, что происходило во время инфляции в наблюдаемой части вселенной в самый последний момент (в промежутке между 10 в минус 30 и 10 в минус 35 секундой) перед Большим взрывом, то здесь размер вселенной нам известен: он варьируется между 17 сантиметрами (на 10 в минус 35 секунде) и 168 метрами (на 10 в минус 30 секунде).

Что такое семнадцать сантиметров? Это почти диаметр футбольного мяча. Так что, если вы хотите знать, какой из указанных размеров вселенной ближе всего к реальному, то придерживайтесь этой цифры. А если предположить размеры меньше сантиметра? Этого слишком мало; однако, если учесть ограничения, налагаемые космическим микроволновым излучением, то получится, что расширение вселенной не могло закончиться при столь высоком уровне энергий, а значит и упомянутый выше размер вселенной в самом начале «Большого взрыва» (т.е. размер, не превышающий сантиметр) исключен. Если размеры вселенной превышали нынешние, то в этом случае имеет смысл говорить о существовании ненаблюдаемой ее части (что, наверное, правильно), но у нас нет никаких способов эту часть измерить.

Итак, каковы же были размеры вселенной в момент ее зарождения? Если верить наиболее авторитетным математическим моделям, описывающим стадию инфляции, то получится, что размеры вселенной на момент возникновения будут колебаться где-то в пределах между размером человеческой головы и городским кварталом, застроенным небоскребами. А там, глядишь, пройдет всего каких-нибудь 13,8 миллиарда лет — и появилась та вселенная, в которой мы живем.

Знаете ли вы о том, что наблюдаемая нами Вселенная имеет довольно определённые границы? Мы привыкли ассоциировать Вселенную с чем-то бесконечным и непостижимым. Однако современная наука на вопрос о «бесконечности» Вселенной предлагает совсем другой ответ на столь «очевидный» вопрос.

Согласно современным представлениям, размер наблюдаемой Вселенной составляет примерно 45,7 миллиардов световых лет (или 14,6 гигапарсек). Но что означают эти цифры?

Первый вопрос, который приходит в голову обычному человеку - как Вселенная вообще не может быть бесконечной? Казалось бы, бесспорным является то, что вместилище всего сущего вокруг нас не должно иметь границ. Если эти границы и существуют, то что они вообще собой представляют?

Допустим, какой-нибудь астронавт долетел до границ Вселенной. Что он увидит перед собой? Твёрдую стену? Огненный барьер? А что за ней - пустота? Другая Вселенная? Но разве пустота или другая Вселенная могут означать, что мы на границе мироздания? Ведь это не означает, что там находится «ничего». Пустота и другая Вселенная - это тоже «что-то». А ведь Вселенная - это то, что содержит абсолютно всё «что-то».

Мы приходим к абсолютному противоречию. Получается, граница Вселенной должна скрывать от нас что-то, чего не должно быть. Или граница Вселенной должна отгораживать «всё» от «чего-то», но ведь это «что-то» должно быть также частью «всего». В общем, полный абсурд. Тогда как учёные могут заявлять о граничном размере, массе и даже возрасте нашей Вселенной? Эти значения хоть и невообразимо велики, но всё же конечны. Наука спорит с очевидным? Чтобы разобраться с этим, давайте для начала проследим, как люди пришли к современному понимаю Вселенной.

Расширяя границы

Человек с незапамятных времён интересовался тем, что представляет собой окружающий их мир. Можно не приводить примеры о трёх китах и прочие попытки древних объяснить мироздание. Как правило, в конечном итоге все сводилось к тому, что основой всего сущего является земная твердь. Даже во времена античности и средневековья, когда астрономы имели обширные познания в закономерностях движения планет по «неподвижной» небесной сфере, Земля оставалась центром Вселенной.

Естественно, ещё в Древней Греции существовали те, кто считал то, что Земля вращается вокруг Солнца. Были те, кто говорил о множестве миров и бесконечности Вселенной. Но конструктивные обоснования этим теориям возникли только на рубеже научной революции.

В 16 веке польский астроном Николай Коперник совершил первый серьёзный прорыв в познании Вселенной. Он твёрдо доказал, что Земля является лишь одной из планет, обращающихся вокруг Солнца. Такая система значительно упрощала объяснение столь сложного и запутанного движения планет по небесной сфере. В случае неподвижной Земли астрономам приходилось выдумывать всевозможные хитроумные теории, объясняющие такое поведение планет. С другой стороны, если Землю принять подвижной, то объяснение столь замысловатым движениям приходит, само собой. Так в астрономии укрепилась новая парадигма под названием «гелиоцентризм».

Множество Солнц

Однако даже после этого астрономы продолжали ограничивать Вселенную «сферой неподвижных звёзд». Вплоть до 19 века им не удавалось оценить расстояние до светил. Несколько веков астрономы безрезультатно пытались обнаружить отклонения положения звёзд относительно движения Земли по орбите (годичные параллаксы). Инструменты тех времён не позволяли проводить столь точные измерения.

Наконец, в 1837 году русско-немецкий астроном Василий Струве измерил параллакс . Это ознаменовало новый шаг в понимании масштабов космоса. Теперь учёные могли смело говорить о том, что звезды являют собой далекие подобия Солнца. И наше светило отныне не центр всего, а равноправный «житель» бескрайнего звёздного скопления.

Астрономы ещё больше приблизились к пониманию масштабов Вселенной, ведь расстояния до звёзд оказались воистину чудовищными. Даже размеры орбит планет казались по сравнению с этим чем-то ничтожным. Дальше нужно было понять, каким образом звёзды сосредоточены во .

Множество Млечных Путей

Известный философ Иммануил Кант ещё в 1755 предвосхитил основы современного понимания крупномасштабной структуры Вселенной. Он выдвинул гипотезу о том, что Млечный Путь является огромным вращающимся звёздным скоплением. В свою очередь, многие наблюдаемые туманности также являются более удалёнными «млечными путями» — галактиками. Не смотря на это, вплоть до 20 века астрономы придерживались того, что все туманности являются источниками звёздообразования и входят в состав Млечного Пути.

Ситуация изменилась, когда астрономы научились измерять расстояния между галактиками с помощью . Абсолютная светимость звёзд такого типа лежит в строгой зависимости от периода их переменности. Сравнивая их абсолютную светимость с видимой, можно с высокой точностью определить расстояние до них. Этот метод был разработан в начале 20 века Эйнаром Герцшрунгом и Харлоу Шелпи. Благодаря ему советский астроном Эрнст Эпик в 1922 году определил расстояние до Андромеды, которое оказалось на порядок больше размера Млечного Пути.

Эдвин Хаббл продолжил начинание Эпика. Измеряя яркости цефеид в других галактиках, он измерил расстояние до них и сопоставил его с красным смещением в их спектрах. Так в 1929 году он разработал свой знаменитый закон. Его работа окончательно опровергла укрепившееся мнение о том, что Млечный Путь является краем Вселенной. Теперь он был одной из множества галактик, которые ещё когда-то считали его составной частью. Гипотеза Канта подтвердилась почти через два столетия после её разработки.

В дальнейшем, открытая Хабблом связь расстояния галактики от наблюдателя относительно скорости её удаления от него, позволило составить полноценную картину крупномасштабной структуры Вселенной. Оказалось, галактики были лишь её ничтожной частью. Они связывались в скопления, скопления в сверхскопления. В свою очередь, сверхскопления складываются в самые большие из известных структур во Вселенной - нити и стены. Эти структуры, соседствуя с огромными сверхпустотами () и составляют крупномасштабную структуру, известной на данный момент, Вселенной.

Очевидная бесконечность

Из вышесказанного следует то, что всего за несколько веков наука поэтапно перепорхнула от геоцентризма к современному пониманию Вселенной. Однако это не даёт ответа, почему мы ограничиваем Вселенную в наши дни. Ведь до сих пор речь шла лишь о масштабах космоса, а не о самой его природе.

Первым, кто решился обосновать бесконечность Вселенной, был Исаак Ньютон. Открыв закон всемирного тяготения, он полагал, что будь пространство конечно, все её тела рано или поздно сольются в единое целое. До него мысль о бесконечности Вселенной если кто-то и высказывал, то исключительно в философском ключе. Без всяких на то научных обоснований. Примером тому является Джордано Бруно. К слову, он подобно Канту, на много столетий опередил науку. Он первым заявил о том, что звёзды являются далёкими солнцами, и вокруг них тоже вращаются планеты.

Казалось бы, сам факт бесконечности довольно обоснован и очевиден, но переломные тенденции науки 20 века пошатнули эту «истину».

Стационарная Вселенная

Первый существенный шаг на пути к разработке современной модели Вселенной совершил Альберт Эйнштейн. Свою модель стационарной Вселенной знаменитый физик ввёл в 1917 году. Эта модель была основана на общей теории относительности, разработанной им же годом ранее. Согласно его модели, Вселенная является бесконечной во времени и конечной в пространстве. Но ведь, как отмечалось ранее, согласно Ньютону Вселенная с конечным размером должна сколлапсироваться. Для этого Эйнштейн ввёл космологическую постоянную, которая компенсировала гравитационное притяжение далёких объектов.

Как бы это парадоксально не звучало, саму конечность Вселенной Эйнштейн ничем не ограничивал. По его мнению, Вселенная представляет собой замкнутую оболочку гиперсферы. Аналогией служит поверхность обычной трёхмерной сферы, к примеру - глобуса или Земли. Сколько бы путешественник ни путешествовал по Земле, он никогда не достигнет её края. Однако это вовсе не означает, что Земля бесконечна. Путешественник просто-напросто будет возвращаться к тому месту, откуда начал свой путь.

На поверхности гиперсферы

Точно также космический странник, преодолевая Вселенную Эйнштейна на звездолёте, может вернуться обратно на Землю. Только на этот раз странник будет двигаться не по двумерной поверхности сферы, а по трёхмерной поверхности гиперсферы. Это означает, что Вселенная имеет конечный объём, а значит и конечное число звёзд и массу. Однако ни границ, ни какого-либо центра у Вселенной не существует.

К таким выводам Эйнштейн пришёл, связав в своей знаменитой теории пространство, время и гравитацию. До него эти понятия считались обособленными, отчего и пространство Вселенной было сугубо евклидовым. Эйнштейн доказал, что само тяготение является искривлением пространства-времени. Это в корне меняло ранние представления о природе Вселенной, основанной на классической ньютоновской механике и евклидовой геометрии.

Расширяющаяся Вселенная

Даже сам первооткрыватель «новой Вселенной» не был чужд заблуждений. Эйнштейн хоть и ограничил Вселенную в пространстве, он продолжал считать её статичной. Согласно его модели, Вселенная была и остаётся вечной, и её размер всегда остаётся неизменным. В 1922 году советский физик Александр Фридман существенно дополнил эту модель. Согласно его расчётам, Вселенная вовсе не статична. Она может расширяться или сжиматься со временем. Примечательно то, Фридман пришёл к такой модели, основываясь на всё той же теории относительности. Он сумел более корректно применить эту теорию, минуя космологическую постоянную.

Альберт Эйнштейн не сразу принял такую «поправку». На помощь этой новой модели пришло, упомянутое ранее открытие Хаббла. Разбегание галактик бесспорно доказывало факт расширения Вселенной. Так Эйнштейну пришлось признать свою ошибку. Теперь Вселенная имела определённый возраст, который строго зависит от постоянной Хаббла, характеризующей скорость её расширения.

Дальнейшее развитие космологии

По мере того, как учёные пытались решить этот вопрос, были открыты многие другие важнейшие составляющие Вселенной и разработаны различные её модели. Так в 1948 году Георгий Гамов ввёл гипотезу «о горячей Вселенной», которая в последствие превратится в теорию большого взрыва. Открытие в 1965 году подтвердило его догадки. Теперь астрономы могли наблюдать свет, дошедший с того момента, когда Вселенная стала прозрачна.

Тёмная материя, предсказанная в 1932 году Фрицом Цвикки, получила своё подтверждение в 1975 году. Тёмная материя фактически объясняет само существование галактик, галактических скоплений и самой Вселенской структуры в целом. Так учёные узнали, что большая часть массы Вселенной и вовсе невидима.

Наконец, в 1998 в ходе исследования расстояния до было открыто, что Вселенная расширяется с ускорением. Этот очередной поворотный момент в науке породил современное понимание о природе Вселенной. Введённый Эйнштейном и опровергнутый Фридманом космологический коэффициент снова нашёл своё место в модели Вселенной. Наличие космологического коэффициента (космологической постоянной) объясняет её ускоренное расширение. Для объяснения наличия космологической постоянной было введено понятия - гипотетическое поле, содержащее большую часть массы Вселенной.

Современное представление о размере наблюдаемой Вселенной

Современная модель Вселенной также называется ΛCDM-моделью. Буква «Λ» означает присутствие космологической постоянной, объясняющей ускоренное расширение Вселенной. «CDM» означает то, что Вселенная заполнена холодной тёмной материей. Последние исследования говорят о том, что постоянная Хаббла составляет около 71 (км/с)/Мпк, что соответствует возрасту Вселенной 13,75 млрд. лет. Зная возраст Вселенной, можно оценить размер её наблюдаемой области.

Согласно теории относительности информация о каком-либо объекте не может достигнуть наблюдателя со скоростью большей, чем скорость света (299792458 м/c). Получается, наблюдатель видит не просто объект, а его прошлое. Чем дальше находится от него объект, тем в более далёкое прошлое он смотрит. К примеру, глядя на Луну, мы видим такой, какой он была чуть более секунды назад, Солнце - более восьми минут назад, ближайшие звёзды - годы, галактики - миллионы лет назад и т.д. В стационарной модели Эйнштейна Вселенная не имеет ограничения по возрасту, а значит и её наблюдаемая область также ничем не ограничена. Наблюдатель, вооружаясь всё более совершенными астрономическими приборами, будет наблюдать всё более далёкие и древние объекты.

Другую картину мы имеем с современной моделью Вселенной. Согласно ей Вселенная имеет возраст, а значит и предел наблюдения. То есть, с момента рождения Вселенной никакой фотон не успел бы пройти расстояние большее, чем 13,75 млрд световых лет. Получается, можно заявить о том, что наблюдаемая Вселенная ограничена от наблюдателя шарообразной областью радиусом 13,75 млрд. световых лет. Однако, это не совсем так. Не стоит забывать и о расширении пространства Вселенной. Пока фотон достигнет наблюдателя, объект, который его испустил, будет от нас уже в 45,7 миллиардах св. лет. Этот размер является горизонтом частиц, он и является границей наблюдаемой Вселенной.

За горизонтом

Итак, размер наблюдаемой Вселенной делится на два типа. Видимый размер, называемый также радиусом Хаббла (13,75 млрд. световых лет). И реальный размер, называемый горизонтом частиц (45,7 млрд. св. лет). Принципиально то, что оба эти горизонта совсем не характеризуют реальный размер Вселенной. Во-первых, они зависят от положения наблюдателя в пространстве. Во-вторых, они изменяются со временем. В случае ΛCDM-модели горизонт частиц расширяется со скоростью большей, чем горизонт Хаббла. Вопрос на то, сменится ли такая тенденция в дальнейшем, современная наука ответа не даёт. Но если предположить, что Вселенная продолжит расширяться с ускорением, то все те объекты, которые мы видим сейчас рано или поздно исчезнут из нашего «поля зрения».

На данный момент самым далёким светом, наблюдаемым астрономами, является реликтовое излучение. Вглядываясь в него, учёные видят Вселенную такой, какой она была через 380 тысяч лет после Большого Взрыва. В этот момент Вселенная остыла настолько, что смогла испускать свободные фотоны, которые и улавливают в наши дни с помощью радиотелескопов. В те времена во Вселенной не было ни звёзд, ни галактик, а лишь сплошное облако из водорода, гелия и ничтожного количества других элементов. Из неоднородностей, наблюдаемых в этом облаке, в последствие сформируются галактические скопления. Получается, именно те объекты, которые сформируются из неоднородностей реликтового излучения, расположены ближе всего к горизонту частиц.

Истинные границы

То, имеет ли Вселенная истинные, не наблюдаемые границы, до сих пор остаётся предметом псевдонаучных догадок. Так или иначе, все сходятся на бесконечности Вселенной, но интерпретируют эту бесконечность совсем по-разному. Одни считают Вселенную многомерной, где наша «местная» трёхмерная Вселенная является лишь одним из её слоёв. Другие говорят, что Вселенная фрактальна - а это означает, что наша местная Вселенная может оказаться частицей другой. Не стоит забывать и о различных моделях Мультивселенной с её закрытыми, открытыми, параллельными Вселенными, червоточинами. И ещё много-много различных версий, число которых ограничено лишь человеческой фантазией.

Но если включить холодный реализм или просто отстраниться от всех этих гипотез, то можно предположить, что наша Вселенная является бесконечным однородным вместилищем всех звёзд и галактик. Причем, в любой очень далёкой точке, будь она в миллиардах гигапарсек от нас, всё условия будут точно такими же. В этой точке будут точно такими же горизонт частиц и сфера Хаббла с таким же реликтовым излучением у их кромки. Вокруг будут такие же звёзды и галактики. Что интересно, это не противоречит расширению Вселенной. Ведь расширяется не просто Вселенная, а само её пространство. То, что в момент большого взрыва Вселенная возникла из одной точки говорит только о том, что бесконечно мелкие (практические нулевые) размеры, что были тогда, сейчас превратились в невообразимо большие. В дальнейшем будем пользоваться именно этой гипотезой для того, что наглядно осознать масштабы наблюдаемой Вселенной.

Наглядное представление

В различных источниках приводятся всевозможные наглядные модели, позволяющие людям осознать масштабы Вселенной. Однако нам мало осознать, насколько велик космос. Важно представлять, каким образом проявляют такие понятия, как горизонт Хаббла и горизонт частиц на самом деле. Для этого давайте поэтапно вообразим свою модель.

Забудем о том, что современная наука не знает о «заграничной» области Вселенной. Отбросив версии о мультивселенных, фрактальной Вселенной и прочих её «разновидностях», представим, что она просто бесконечна. Как отмечалось ранее, это не противоречит расширению её пространства. Разумеется, учтём то, что её сфера Хаббла и сфера частиц соответственно равны 13,75 и 45,7 млрд световых лет.

Масштабы Вселенной

Нажмите кнопку СТАРТ и откройте для себя новый, неизведанный мир!
Для начала попробуем осознать, насколько велики Вселенские масштабы. Если вы путешествовали по нашей планете, то вполне можете представить, насколько для нас велика Земля. Теперь представим нашу планету как гречневую крупицу, которая движется по орбите вокруг арбуза-Солнца размером с половину футбольного поля. В таком случае орбита Нептуна будет соответствовать размеру небольшого города, область - Луне, область границы воздействия Солнца - Марсу. Получается, наша Солнечная Система настолько же больше Земли, насколько Марс больше гречневой крупы! Но это только начало.

Теперь представим, что этой гречневой крупой будет наша система, размер которой примерно равен одному парсеку. Тогда Млечный Путь будет размером с два футбольных стадиона. Однако и этого нам будет не достаточно. Придётся и Млечный Путь уменьшить до сантиметрового размера. Она чем-то будет напоминать завёрнутую в водовороте кофейную пенку посреди кофейно-чёрного межгалактическое пространства. В двадцати сантиметрах от неё расположиться такая же спиральная «кроха» — Туманность Андромеды. Вокруг них будет рой малых галактик нашего Местного Скопления. Видимый же размер нашей Вселенной будет составлять 9,2 километра. Мы подошли к понимаю Вселенских размеров.

Внутри вселенского пузыря

Однако нам мало понять сам масштаб. Важно осознать Вселенную в динамике. Представим себя гигантами, для которых Млечный Путь имеет сантиметровым диаметр. Как отмечалось только что, мы окажемся внутри шара радиусом 4,57 и диаметром 9,24 километров. Представим, что мы способны парить внутри этого шара, путешествовать, преодолевая за секунду целые мегапарсеки. Что мы увидим в том случае, если наша Вселенная будет бесконечна?

Разумеется, пред нами предстанет бесчисленное множество всевозможных галактик. Эллиптические, спиральные, иррегулярные. Некоторые области будут кишить ими, другие - пустовать. Главная особенность будет в том, что визуально все они будут неподвижны, пока неподвижными будем мы. Но стоит нам сделать шаг, как и сами галактики придут в движение. К примеру, если мы будем способны разглядеть в сантиметровом Млечном Пути микроскопическую Солнечную Систему, то сможем пронаблюдать её развитие. Отдалившись от нашей галактики на 600 метров, мы увидим протозвезду Солнце и протопланетный диск в момент формирования. Приближаясь к ней, мы увидим, как появляется Земля, зарождается жизнь и появляется человек. Точно также мы будем видеть, как видоизменяются и перемещаются галактики по мере того, как мы будем удаляться или приближаться к ним.

Следовательно, чем в более далёкие галактики мы будем вглядываться, тем более древними они будут для нас. Так самые далёкие галактики будут расположены от нас дальше 1300 метров, а на рубеже 1380 метров мы будем видеть уже реликтовое излучение. Правда, это расстояние для нас будет мнимым. Однако, по мере того, как будем приближаться к реликтовому излучению, мы будем видеть интересную картину. Естественно, мы будем наблюдать то, как из первоначального облака водорода будут образовываться и развиваться галактики. Когда же мы достигнем одну из этих образовавшихся галактик, то поймем, что преодолели вовсе не 1,375 километров, а все 4,57.

Уменьшая масштабы

В качестве итога мы ещё больше увеличимся в размерах. Теперь мы можем разместить в кулаке целые войды и стены. Так мы окажемся в довольно небольшом пузыре, из которого невозможно выбраться. Мало того, что расстояние до объектов на краю пузыря будет увеличиваться по мере их приближения, так ещё и сам край будет бесконечно смещаться. В этом и заключается вся суть размера наблюдаемой Вселенной.

Какой бы Вселенная не была большой, для наблюдателя она всегда останется ограниченным пузырём. Наблюдатель всегда будет в центре этого пузыря, фактически он и есть его центр. Пытаясь добраться до какого-либо объекта на краю пузыря, наблюдатель будет смещать его центр. По мере приближения к объекту, этот объект всё дальше будет отходить от края пузыря и в тоже время видоизменяться. К примеру - от бесформенного водородного облачка он превратится в полноценную галактику или дальше галактическое скопление. Ко всему прочему, путь до этого объекта будет увеличиваться по мере приближения к нему, так как будет меняться само окружающее пространство. Добравшись до этого объекта, мы лишь сместим его с края пузыря в его центр. На краю Вселенной всё также будет мерцать реликтовое излучение.

Если предположить, что Вселенная и дальше будет расширяться ускоренно, то находясь в центре пузыря и мотая время на миллиарды, триллионы и даже более высокие порядки лет вперёд, мы заметим ещё более интересную картину. Хотя наш пузырь будет также увеличиваться в размерах, его видоизменяющиеся составляющие будут отдаляться от нас ещё быстрее, покидая край этого пузыря, пока каждая частица Вселенной не будет разрозненно блуждать в своём одиноком пузыре без возможности взаимодействовать с другими частицами.

Итак, современная наука не располагает сведениями о том, каковы реальные размеры Вселенной и имеет ли она границы. Но мы точно знаем о том, что наблюдаемая Вселенная имеет видимую и истинную границу, называемую соответственно радиусом Хаббла (13,75 млрд св. лет) и радиусом частиц (45,7 млрд. световых лет). Эти границы полностью зависят от положения наблюдателя в пространстве и расширяются со временем. Если радиус Хаббла расширяется строго со скоростью света, то расширение горизонта частиц носит ускоренный характер. Вопрос о том, будет ли его ускорение горизонта частиц продолжаться дальше и не сменится ли на сжатие, остаётся открытым.

Вселенная представляет собой огромное пространство, заполненное туманностями, звездными скоплениями, отдельными звездами, планетами с их спутниками, различными кометами, астероидами и, в конце концов, вакуумом, а также темной материей. Она настолько огромна, что полнота ответа на вопрос о том, насколько именно она большая, к сожалению, ограничена нашим нынешним уровнем развития технологий. Как бы там ни было, понимание размера Вселенной подразумевает понимание нескольких ключевых факторов. Одним из этих факторов, например, является понимание того, как ведет себя космос, а также понимание того, что то, что мы видим, является всего лишь так называемой «наблюдаемой Вселенной». Выяснить истинные размеры Вселенной мы не можем, потому что наши возможности не позволяют нам увидеть ее «край».

Все, что находится за пределами видимой Вселенной, по-прежнему остается для нас загадкой и является предметом бесконечных споров и дискуссий среди астрофизиков всех мастей. Сегодня постараемся простыми словами объяснить то, к чему пришла наука к настоящему моменту времени в вопросах понимания размеров Вселенной, и постараемся ответить на один из самых животрепещущих и сложных вопросов о ее природе. Но сперва давайте рассмотрим базовые принципы того, как ученые определяют расстояние в космосе.

Самым простейшим методом определения расстояния в космосе является использование света. Однако если учесть то, каким образом свет распространяется в пространстве, то следует понимать, что те объекты, которые мы видим с Земли, в космосе необязательно будут выглядеть так же. Ведь для того, чтобы свет от далеких объектов достиг нашей планеты может потребоваться десятки, сотни, тысячи, а то и десятки тысяч лет.

Составляет 300 000 километров в секунду, но для космоса, для такого гигантского пространства, понятие секунды не является идеальной величиной для измерения. В астрономии принято для определения расстояния использовать термин световой год. Один световой год приблизительно эквивалентен расстоянию 9 460 730 472 580 800 метров и дает нам не только представление о расстоянии, но также может говорить о том, какое количество времени потребуется свету объекта для того, чтобы нас достигнуть.

Самым простым примером разницы времени и расстояний является свет Солнца. Среднее расстояние от нас до Солнца составляет около 150 000 000 километров. Допустим, у вас есть подходящий телескоп и защита для глаз, позволяющие вести за Солнцем наблюдение. Суть в том, что все, что вы будете видеть в телескоп, на самом деле происходило с Солнцем 8 минут назад (именно столько требуется свету, чтобы добрать до Земли). Свет Проксимы Центавра? Дойдет до нас только через четыре года. Или взять хотя бы такую крупную звезду, как Бетельгейзе, собирающуюся стать в скором времени сверхновой. Даже если бы это событие произошло сейчас, мы узнали бы о нем не раньше середины 27 века!

Свет и его свойства сыграли ключевую роль в понимании нами того, насколько огромна Вселенная. В настоящий момент наши возможности позволяют нам заглянуть примерно на 46 миллиардов световых лет наблюдаемой Вселенной. Каким образом? Все благодаря используемой физиками и астрономами шкалы расстояний в астрономии.

Шкала расстояний

Телескопы являются лишь одним из инструментов для измерения космических расстояний и не всегда способны справится с этим заданием: чем дальше находится объект, расстояние до которого мы хотим измерить, тем сложнее это сделать. Радиотелескопы отлично подходят для измерения расстояний и проведения наблюдений лишь внутри нашей Солнечной системы. Они действительно способны предоставлять очень точные данные. Но стоит только направить их взор за пределы Солнечной системы, как их эффективность резко сокращается. Ввиду всех этих проблем астрономы решили прибегнуть к другому методу измерения расстояния — параллаксу.

Что такое параллакс? Объясним на простом примере. Закройте сначала один глаз и посмотрите на какой-нибудь объект, а затем закройте другой глаз и посмотрите снова на этот же объект. Заметили небольшое «изменение в положении» объекта? Этот «сдвиг» и называется параллаксом, методом, который используется для определения расстояния в космосе. Метод отлично работает, когда речь идет о звездах, находящихся в относительной близости от нас — примерно в радиусе 100 световых лет. Но когда и этот метод становится малоэффективным, ученые прибегают к другим.

Следующий способ определения расстояния носит название «метод главной последовательности». Он основан на наших знаниях о том, как со временем изменяются звезды определенных размеров. Сначала ученые определяют яркость и цвет звезды, а затем сравнивают показатели с ближайшими звездами, обладающими аналогичными характеристиками, выводя на основе этих данных приблизительное расстояние. Опять же, данный метод весьма ограничен и работает только в случае звезд, принадлежащих нашей галактике, или тех, которые находятся в радиусе 100 000 световых лет.

Чтобы заглянуть дальше, астрономы полагаются на метод измерения по цефеидам. Он основан на открытии американского астронома Генриетты Суон Ливитт, которая обнаружила зависимость между периодом изменения блеска и светимостью звезды. Благодаря этому методы многие астрономы смогли высчитать расстояния до звезд не только внутри нашей галактики, но и за ее пределами. В некоторых случаях речь идет о дистанциях в 10 миллионов световых лет.

И все же к вопросу размеров Вселенной мы пока не приблизились ни на йоту. Поэтому переходим к ультимативному средству измерений, основанному на принципе красного сдвига (или красного смещения). Суть красного смещения аналогична принципу работы эффекта Доплера. Вспомните железнодорожный переезд. Никогда не замечали, как звучание гудка поезда изменяется в зависимости от расстояния, усиливаясь при приближении и становясь тише при отдалении?

Свет работает примерно так же. Посмотрите на спектрограмму выше, видите черные линии? Они указывают на границы поглощения цвета химическими элементами, находящимися внутри и вокруг источника света. Чем больше сдвинуты линии к красной части спектра — тем дальше объект находится от нас. На основе подобных спектрограмм ученые также определяют то, насколько быстро объект двигается от нас.

Так мы плавно и подобрались к нашему ответу. Большая часть света, подвергшаяся красному смещению, принадлежит галактикам, возраст которых около 13,8 миллиарда лет.

Возраст — не главное

Если после прочтенного вы пришли к выводу, что радиус наблюдаемой нами Вселенной составляет всего 13,8 миллиарда световых лет, то вы не учли одной важной детали. Все дело в том, что на протяжении этих 13,8 миллиарда лет после Большого взрыва Вселенная продолжала расширяться. Другими словами, это означает, что реальный размер нашей Вселенной гораздо больше, чем указано в наших изначальных измерениях.

Поэтому для того, чтобы узнать реальный размер Вселенной, необходимо принять во внимание еще один показатель, а именно то, насколько быстро Вселенная расширялась со времен Большого взрыва. Физики говорят, что наконец смогли вывести нужные цифры и уверены в том, что радиус видимой Вселенной в настоящий момент составляет около 46,5 миллиарда световых лет.

Правда, стоит также отметить, что эти подсчеты основаны лишь на том, что мы сами можем видеть. Точнее способны разглядеть в глубине космоса. Эти подсчеты не отвечают на вопрос истинного размера Вселенной. Кроме того, ученых заставляет задуматься некоторое несоответствие, согласно которому более удаленные от нас галактики в нашей Вселенной слишком хорошо сформированы, чтобы можно было считать, что они появились сразу после Большого взрыва. Для такого уровня развития потребовалось гораздо больше времени.

Возможно, мы просто не все видим?

Необъяснимый факт, указанный выше, открывает целый ряд новых проблем. Некоторые ученые постарались посчитать, сколько потребовалось бы времени для развития этих полностью сформированных галактик. Например, оксфордские ученые пришли к выводу, что размер всей Вселенной может быть в 250 раз больше наблюдаемой.

Мы действительно способны измерить расстояния до объектов в пределах наблюдаемой Вселенной, но то, что находится за этой гранью, нам не известно. Конечно же, никто не говорит, что ученые не пытаются это выяснить, но, как уже говорилось выше, наши возможности ограничены нашим уровнем технического прогресса. Кроме того, не стоит также сразу отбрасывать предположение о том, что ученые, возможно, так никогда и не узнают настоящих размеров всей Вселенной, если учесть все факторы, находящиеся на пути решения этого вопроса.

Диаметр Луны 3000 км, Земли - 12800 км., Солнца 1,4 млн. километров, при этом расстояние от Солнца до Земли 150 млн. км. Диаметр Юпитера, самой большой планеты нашей солнечной системы - 150 тыс. км. Не зря говорят, что Юпитер мог бы быть звездой, в видео рядом с Юпитером расположена работающая звезда, ее размеры () даже меньше Юпитера. Кстати, раз уж коснулись Юпитера, то возможно вы не слышали, но Юпитер не вращается вокруг Солнца. Дело в том, что масса Юпитера настолько велика, что центр вращения Юпитера и Солнца находится за пределами Солнца, таким образом и Солнце и Юпитер вращаются совместно вокруг общего центра вращения.

По некоторым расчетам в нашей галактике, которая называется "Млечный путь" (Milky Way), находится 400 млрд. звезд. Это далеко не самая крупная галактика, в соседней Андромеде звезд больше триллиона.

Как указано в видео на 4:35 через несколько миллиардов лет наш Млечный путь столкнется с Андромедой. Согласно некоторых расчетов, используя любые известные нам технологии, даже усовершенствованные в будущем, мы не сможем долететь до других галактик, так как они постоянно удаляются от нас. Помочь нам может только телепортация. Это плохая новость.

Хорошая новость - мы с вами родились в удачное время, когда ученые видят другие галактики и могут теоретизировать на тему Большого взрыва и других явлений. Если бы мы родились намного позже, когда все галактики разлетелись бы далеко друг от друга, то скорее всего мы не смогли бы узнать, как возникла вселенная, были ли другие галактики, был ли Большой взрыв и т.п. Мы бы считали, что наш Млечный путь (объединенный к тому времени с Андромедой) - единственный и уникальный во всем космосе. Но нам повезло, и мы что-то знаем. Наверное.

Вернемся к цифрам. Наш небольшой Млечный путь содержит до 400 млрд. звезд, соседняя Андромеда более триллиона, а всего таких галактик в наблюдаемой вселенной насчитывается более 100 млрд. И во многих из них содержат по несколько триллионов звезд. Это может показаться невероятным, что в космосе такое количество звезд, но как то американцы взяли и навели свой могучий телескоп Хаббл на совершенно пустое пространство в нашем небе. Понаблюдав за ним несколько дней, они получили вот такую фотографию:

На совершенно пустом участке нашего неба они нашли 10 тыс. галактик (не звезд), каждая из которых содержит миллиарды и триллионы звезд. Вот этот квадратик в нашем небе, для масштаба.

А что творится за пределами наблюдаемой вселенной мы не знаем. Размеры вселенной, которую мы видим порядка 91,5 млрд. световых лет. Что за дальше - неизвестною. Возможно вся наша вселенная всего лишь пузырек в бурлящем океане мультивселенных. В которых может быть даже действуют другие законы физики, например не работает закон Архимеда и сумма углов не равна 360 гр.

Наслаждайтесь. Размеры вселенной на видео:

Каждый из нас хотя бы раз задумывался, в каком огромном мире мы живем. Наша планета — это безумное количество городов, сел, дорог, лесов, рек. Большинство за свою жизнь не успевает увидеть и половины. Представить грандиозные масштабы планеты сложно, но есть задача еще тяжелее. Размеры Вселенной — вот что, пожалуй, не под силу вообразить даже самому развитому уму. Попробуем разобраться, что думает на этот счет современная наука.

Основное понятие

Вселенная — это все, что нас окружает, о чем мы знаем и догадываемся, что было, есть и будет. Если снизить накал романтизма, то этим понятием определяется в науке все, существующее физически, с учетом временного аспекта и законов, регулирующих функционирование, взаимосвязь всех элементов и так далее.

Естественно, представить себе реальные размеры Вселенной достаточно трудно. В науке этот вопрос является широко обсуждаемым и единого мнения пока нет. В своих предположениях астрономы опираются на существующие теории формирования мира, каким мы его знаем, а также на полученные в результате наблюдения данные.

Метагалактика

Различные гипотезы определяют Вселенную как безразмерное или невыразимо огромное пространство, о большей части которого мы мало что знаем. Для внесения ясности и возможности обсуждения области, доступной для изучения, было введено понятие Метагалактика. Этот термин обозначает часть Вселенной, доступной для наблюдения астрономическими методами. Благодаря совершенствованию техники и знаний она постоянно увеличивается. Метагалактика является частью так называемой наблюдаемой Вселенной — пространства, в котором материя за период своего существования успела достигнуть современного положения. Когда речь заходит о понимании того, каковы размеры Вселенной, в большинстве случаев говорят о Метагалактике. Современный уровень развития техники позволяет наблюдать объекты, расположенные на расстоянии до 15 млрд световых лет от Земли. Время в определении этого параметра играет, как видно, не меньшую роль, чем пространство.

Возраст и размеры

Согласно некоторым моделям Вселенной, она никогда не появлялась, а существует вечно. Однако главенствующая сегодня теория Большого взрыва задает нашему миру «отправную точку». По представлениям астрономов, возраст Вселенной — примерно 13,7 млрд лет. Если переместиться назад во времени, то можно вернуться к Большому взрыву. Независимо от того, бесконечны ли размеры Вселенной, наблюдаемая ее часть имеет границы, поскольку конечна скорость света. В нее входят все те местоположения, которые могут оказывать воздействие на земного наблюдателя со времени Большого взрыва. Размеры наблюдаемой Вселенной увеличиваются благодаря ее постоянному расширению. По последним оценкам, она занимает пространство в 93 миллиарда световых лет.

Множество

Посмотрим, что представляет собой Вселенная. Размеры космического пространства, выраженные в сухих цифрах, конечно, поражают, но трудны для понимания. Для многих будет проще осознать масштабы окружающего мира, если они узнают, сколько систем, подобных Солнечной, умещается в нем.

Наша звезда и окружающие ее планеты лишь крохотная часть Млечного пути. По данным астрономов, Галактика насчитывает примерно 100 миллиардов звезд. У некоторых из них уже обнаружены экзопланеты. Поражают не только размеры Вселенной — уже пространство, занимаемое ее ничтожной частью, Млечным Путем, внушает уважение. Свету для того чтобы пройти нашу галактику, требуется сто тысяч лет!

Местная группа

Внегалактическая астрономия, которая начала развиваться после открытий Эдвина Хаббла, описывает множество структур, схожих с Млечным путем. Ближайшие его соседи — это Туманность Андромеды и Большое и Малое Магеллановы Облака. Вместе с еще несколькими «спутниками» они составляют местную группу галактик. От соседнего аналогичного формирования ее отделяет приблизительно 3 млн световых лет. Даже страшно представить, сколько потребовалось бы современному самолету времени, чтобы преодолеть такое расстояние!

Наблюдаемые

Все местные группы разделены обширным пространством. Метагалактика включает несколько миллиардов структур, аналогичных Млечному пути. Размеры Вселенной действительно поражают. Световому лучу для преодоления расстояния от Млечного пути до Туманности Андромеды требуется 2 млн лет.

Чем дальше от нас расположен участок космоса, тем меньше мы знаем о его современном состоянии. Из-за конечности скорости света ученые могут получить информацию только о прошлом таких объектов. По тем же причинам, как уже было сказано, область Вселенной, доступной для астрономических изысканий, ограничена.

Другие миры

Однако это еще не все поражающее воображения сведения, которыми характеризуется Вселенная. Размеры космического пространства, по-видимому, значительно превосходят Метагалактику и наблюдаемую часть. Теория инфляции вводит такое понятие, как Мультивселенная. Она состоит из множества миров, вероятно, образовавшихся одновременно, не пересекающихся друг с другом и развивающихся независимо. Современный уровень развития техники не дает надежды на познание подобных соседних Вселенных. Одна из причин — все та же конечность скорости света.

Быстрое развитие науки о космосе меняет наше представление о том, каких размеров Вселенная. Современное состояние астрономии, составляющие ее теории и выкладки ученых трудны для понимания непосвященного человека. Однако даже поверхностное изучение вопроса показывает, насколько огромен мир, частью которого мы являемся, и как мало о нем мы еще знаем.

mob_info