Биологическое значение кислорода. Биологическая роль. Нахождение в природе

Кислород входит в состав всех жизненно важных органических веществ - белков, жиров, углеводов. Без кислорода невозможны про­цессы дыхания, окисления аминокислот, жиров, углеводов. У высших животных кислород проникает в кровь, соединяясь с гемоглобином, образуя оксигемоглобин. Оксигемоглобин HbO 2 в капиллярах отдает кислород НЬO 2 ® Hb + O 2 через стенки капилляров. О 2 (кислород) поступает в клетки, где он расходуется на окисление, различных ве­ществ, в результате этих процессов образуются СO 2 и H 2 O, выделяется энергия:

Нb + CO 2 ® HbCO 2 (карбоксигемоглобин)

Аллотропная модификация кислорода озон – О 3 играет определенную роль в образовании радикалов. Эти радикалы инициируют радикально-цепные реакции с биоорганичес­кими молекулами - липидами, белками, ДНК, что приводит к гибели клеток. На этом основано действие озона на микроорганизмы, содер­жащиеся в воздухе, воде. Поэтому O 3 применяется для озонирования воздуха, обеззараживания питьевой воды, воды бассейнов. В атмосфере с избыточным содержанием озона (его источник - выхлопные газы) в организме человека идет образование радикалов (RO 2 · ; OН·), что может инициировать опухолевые заболевания. Кроме того озон играет важную роль в защите биологических объектов Земли от жесткого рентгеновского излучения, т.к. на высоте ~25 км образуется озоновый слой, поглощающий лучи с l £ 260 нм.

Из соединений кислорода очень важны H 2 O 2 и H 2 O. В организме человека около 80% воды. Благодаря своему строению (две sр 3 - гибридные орбитали связаны, две содержат неподеленную пару электронов) вода имеет очень высокий дипольный момент поэтому является универсальным растворителем. В организме человека и животных растворяет органические и неорганические вещества, спо­собствует их ионизации (диссоциации). Вода является одновременно средой, в которой осуществляются биохимические реакции и участником реакций гидролиза жиров, АТФ, АДФ и др.

Биологическая роль пероксида водорода



В митохондриях атомы Н, отщепленные от субстрата в виде Н + под действием дегидрогиназы связываются с кислородом, образуя воду.

4H + + O 2 + 4e - ® 2H 2 O

При этом важно присоединение именно 4-х электронов, т.к. при присоединении 2-х электронов образуется пероксид водорода

2H + + O 2 + 2e - ® H 2 O 2

При присоединении I электрона образуется гипероксид ион

O 2 · + e - ® O 2 -

Пероксид водорода и гипероксидный радикал O 2 -- токсичны для клеток, т.к. они взаимодействуют с липидами клеточных мембран и выводят их из строя, нарушают структуру клетки, в том числе ДНК и ее репаративную функцию. Аэробные клетки при помощи фермента каталазы и супероксидисмутазы (медьсодержащий фермент) превращают H 2 O 2 и O 2 - в O 2

2O 2 - + 2H + 2O - + 2H + H 2 O 2 + O 2

2H 2 O 2 2H 2 O + O 2

Применение в медицине. Лекарственные препараты

Oxygenium (O 2) – кислород. Вводится в организм ингаляционно при сердечно-сосудистой недостаточности, снимает кислородное голодание (гипоксию). Через зонд вводится в жедудочно-кишечный тракт при гельминтозах (аска­риды, власоглавы).

Aqua purificata (H 2 O) – вода очищенная. Используется для приготовления жидких лекарственных форм.

Solutio Hydrogenii peroxydi diluta (3%) – раствор перекиси водорода (3%).

Perhydrolum (33-35%) пергидрол. Раствор водорода перекиси 33-35%.

Magnesii peroxydum, (MgO 2 ´MgO) – магния пероксид.

Hydroperitum (H 2 O 2 ´NH 2 -CO-NH 2) – гидроперит (содержит 0,08% лимонной кислоты).

Препараты водорода пероксида применяют наружно для обработки ран, полосканий полости рта и горла в качестве антисептического и дезодорирующего средства.

Сера (Sulfur)

Сера – элемент главной подгруппы VI группы периодической системы
Д.И. Менделеева. В этой группе, начиная с серы (3-ий период), появляется d-подуровень, поэтому число неспаренных электронов может увеличивать-ся от 2-х до 4-х и 6-ти, за счет распаривания s- и р- электронов и перехода их в d-подуровень:

Таким образом, возможные и проявляемые степени окисления серы равны: -2 , +2 , +4 и +6.

Сверху вниз по подгруппе от кислорода к полонию размеры атомов увеличиваются, а энергия ионизации уменьшается, неметаллические свойства в ряду: O – S – Se – Te - Po ослабевают.

Сера - типичный неметалл, по значению ОЭО (2,5), она усту­пает лишь галогенам, кислороду и азоту.

Сера относится к распространённым элементам. В земной коре её содержание составляет 0,05 вес. %, в морской воде 0,08 - 0,09 %. Она состоит из четырёх стабильных изотопов: 32 S (95,084%), 33 S (0,74%), 34 S (4,16%), и 36 S (0,016%). Получены радиоактивные изотопы серы: 31 S (Т 1/2 = 2,66 сек.), 35 S (Т 1/2 = 86,3 дня) и 37 S (Т 1/2 = 5,07 мин.).

Сера в природе встречается в самородном состоянии (большей частью вблизи вулканов и в горя­чих минеральных источниках, как продукт окисления сероводорода).

Её применяли для приготовления красок, в качестве лечебного средства, а также для других целей.

Сера находится в различных породах: известняке, кальците, гипсе и др.; в серных рудах и минералах, в живых и растительных организмах (0,16% в человеческом организме, является макроэлементом), т.е. во многих неорганических и органических соединениях. Основные минералы серы:

Кислород относится к элементам-органогенам. Его содержание составляет до 65% массы тела человека, то есть более 40 кг у взрослого. Кислород наиболее распространенный окислитель на Земле, в окружающей среде он представлен в двух формах - в виде соединений (земная кора и вода: оксиды, пероксиды, гидроксиды и т.д.) и в свободном виде (атмосфера).

Биологическая роль кислорода

Основной (фактически единственной) функцией кислорода является его участие как окислителя в окислительно-восстановительных реакциях в организме. Благодаря наличию кислорода, организмы всех животных способны утилизировать (фактически «сжигать») различные вещества (углеводы , жиры , белки ) с извлечением определенной энергии «сгорания» для собственных нужд. В покое организм взрослого человека потребляет 1,8-2,4 г кислорода в минуту.

Источники кислорода

Основным источником кислорода для человека является атмосфера Земли, откуда за счет дыхания организм человека способен извлекать необходимое для жизни количество кислорода.

Дефицит кислорода

При дефиците в организме человека развивается так называемая гипоксия.

Причины дефицита кислорода

  • отсутствие или резко сниженное содержание кислорода в атмосфере;
  • сниженное парциальное давление кислорода во вдыхаемом воздухе (при подъеме на большие высоты - в горах, летательных аппаратах);
  • прекращение или снижение поступления кислорода в легкие при асфиксии;
  • нарушения транспорта кислорода (нарушения деятельности сердечнососудистой системы значительное снижение гемоглобина в крови при анемии, неспособность гемоглобина выполнять свои функции - связывать, транспортировать или отдавать тканям кислород, например, при отравлении угарным газом);
  • неспособность тканей утилизировать кислород вследствие нарушения окислительно-восстановительных процессов в тканях (например, при отравлении цианидами)

Последствия дефицита кислорода

При острой гипоксии:

  • потеря сознания;
  • расстройство, необратимые нарушения и быстрая гибель центральной нервной системы (буквально за минуты)
  • При хронической гипоксии:
  • быстрая физическая и умственная утомляемость;
  • нарушения центральной нервной системы;
  • тахикардия и одышка в покое или при незначительной физической нагрузке

Избыток кислорода

Наблюдается крайне редко, как правило, в искусственных условиях (например, гипербарические камеры, неправильно подобранные смеси для дыхания при погружении по воду и т.д.). В этом случае длительное вдыхание чрезмерно обогащенного кислородом воздуха сопровождается кислородным отравлением - в результате чрезмерного его количества в органах и тканях образуется большое количество свободных радикалов, инициируется процесс самопроизвольного окисления органических веществ, в том числе перекисное окисление липидов.

Суточная потребность: не нормируется

План:

    История открытия

    Происхождение названия

    Нахождение в природе

    Получение

    Физические свойства

    Химические свойства

    Применение

    Биологическая роль кислорода

    Токсические производные кислорода

10. Изотопы

Кислород

Кислоро́д - элемент 16-й группы (по устаревшей классификации - главной подгруппы VI группы), второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 8. Обозначается символом O(лат. Oxygenium). Кислород - химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород (CAS-номер: 7782-44-7) при нормальных условиях - газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O 2), в связи с чем его также называют дикислород.Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.

Существуют и другие аллотропные формы кислорода, например, озон (CAS-номер: 10028-15-6) - при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода (формула O 3).

  1. История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье. В 1775 году А. Лавуазье установил, что кислород является составной частью воздуха, кислот и содержится во многих веществах.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория. Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

  1. Происхождение названия

Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (фр. oxygène), предложенного А. Лавуазье (от др.-греч. ὀξύς - «кислый» и γεννάω - «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его - «кислота», ранее подразумевавшим вещества, именуемые по современной международной номенклатуре оксидами.

  1. Нахождение в природе

Кислород - самый распространённый на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47,4 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода - 88,8 % (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,12 % по массе. Более 1500 соединений земной коры в своём составе содержат кислород.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле - около 65 %.

Открытие кислорода произошло дважды, во второй половине XVIII столетия с разницей в несколько лет. В 1771 году кислород получил швед Карл Шееле, нагревая селитру и серную кислоту. Полученный газ был назван «огненным воздухом». В 1774 английский химик Джозеф Пристли проводил процесс разложения оксида ртути в полностью закрытом сосуде и открыл кислород, но принял его за ингредиент воздуха. Только после того, как Пристли поделился своей находкой с французом Антуаном Лавуазье, стало понятно, что открыт новый элемент (calorizator). Пальма первенства данного открытия принадлежит Пристли потому, что Шееле опубликовал свой научный труд с описанием открытия лишь в 1777 году.

Кислород является элементом XVI группы II периода периодической системы химических элементов Д.И. Менделеева, имеет атомный номер 8 и атомную массу 15,9994. Принято обозначать кислород символом О (от латинского Oxygenium - порождающий кислоту). В русском языке название кислород стало производным от кислоты , термина, который был введён М.В. Ломоносовым.

Нахождение в природе

Кислород является самым распространённым элементом по нахождению в земной коре и Мировом океане. Соединения кислорода (в основном - силикаты) составляют не менее 47% массы земной коры, кислород вырабатывается в процессе фотосинтеза лесами и всеми зелёными растениями, большая часть приходится на фитопланктон морских и пресных вод. Кислород - обязательная составная часть любых живых клеток, также находится в большинстве веществ органического происхождения.

Физические и химические свойства

Кислород - лёгкий неметалл, состоит в группе халькогенов, имеет высокую химическую активность. Кислород, как простое вещество, представляет собой газ без цвета, запаха и вкуса, имеет жидкое состояние - светло-голубая прозрачная жидкость и твёрдое - светло-синие кристаллы. Состоит из двух атомов кислорода (обозначается формулой О₂).

Кислород участвует в окислительно-восстановительных реакциях. Живые существа дышат кислородом воздуха. Широко используется кислород в медицине. При сердечнососудистых заболеваниях, для улучшения обменных процессов, в желудок вводят кислородную пену («кислородный коктейль»). Подкожное введение кислорода используют при трофических язвах, слоновости, гангрене. Для обеззараживания и дезодорации воздуха и очистки питьевой воды применяют искусственное обогащение озоном.

Кислород - основа основ жизнедеятельности всех живых организмов на Земле, является основным биогенным элементом. Находится в составе молекул всех важнейших веществ, которые отвечают за структуру и функции клеток (липиды, белки, углеводы, нуклеиновые кислоты). Каждый живой организм содержит гораздо больше кислорода, чем какого-либо элемента (до 70%). Для примера, организм взрослого среднестатического человека массой 70 кг содержит 43 кг кислорода.

Кислород поступает в живые организмы (растения, животные и человек) благодаря органам дыхания и поступлению воды. Помня о том, что в организме человека самый главный орган дыхания - это кожа, становится понятно, сколько кислорода может получать человек, особенно летом на берегу водоёма. Определить потребность человека в кислороде достаточно сложно, ведь она зависит от многих факторов - возраст, пол, масса и поверхность тела, система питания, внешняя среда и т.д.

Применение кислорода в жизни

Кислород применяется практически повсеместно - от металлургии до производства ракетного топлива и взрывчатых веществ, применяемых для дорожных работах в горах; от медицины до пищевой промышленности.

В пищевой промышленности кислород зарегистрирован в качестве пищевой добавки , как пропеллент и упаковочный газ.

Кислород является наиболее распространенным элементом на Земле. В морской воде содержится 85,82% кислорода, в атмосферном воздухе 23,15% по весу или 20,93% по объему, а в земной коре 47,2% по весу. Такая концентрация кислорода в атмосфере поддерживается постоянной благодаря процессу фотосинтеза. В этом процессе зеленые растения под действием солнечного света превращают диоксид углерода и воду в углеводы и кислород. Главная масса кислорода находится в связанном состоянии; количество молекулярного кислорода в атмосфере составляет всего лишь 0,01% от общего содержания кислорода в земной коре. В жизни природы кислород имеет исключительное значение. Кислород и его соединения незаменимы для поддержания жизни. Они играют важнейшую роль в процессах обмена веществ и дыхании. Кислород входит в состав белков, жиров, углеводов, из которых «построены» организмы; в человеческом организме, например, содержится около 65% кислорода. Большинство организмов получают энергию, необходимую для выполнения их жизненных функций, за счет окисления тех или иных веществ с помощью кислорода. Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе. Вырубка лесов, эрозия почв, различные горные выработки на поверхности уменьшают общую массу фотосинтеза и снижают круговорот на значительных территориях.

Кислород не всегда входил в состав земной атмосферы. Он появился в результате жизнедеятельности фотосинтезирующих организмов. Под действием ультрафиолетовых лучей он превращался в озон. По мере накопления озона произошло образование озонного слоя в верхних слоях атмосферы. Озоновый слой, как экран, надежно защищает поверхность Земли от ультрафиолетовой радиации, гибельной для живых организмов.

Геохимический круговорот кислорода связывает газовую и жидкую оболочки с земной корой. Его основные моменты: выделение свободного кислорода при фотосинтезе, окисление химических элементов, поступление предельно окисленных соединений в глубокие зоны земной коры и их частичное восстановление, в том числе за счет соединений углерода, вынос оксида углерода и воды на поверхность земной коры и вовлечение их в реакцию фотосинтеза.

Кроме описанного выше круговорота кислорода в несвязанном виде, этот элемент совершает еще и важнейший круговорот, входя в состав воды (рис. 3). В процессе круговорота вода испаряется с поверхности океана, водяные пары перемещаются вместе с воздушными течениями, конденсируются, и вода возвращается в виде атмосферных осадков на поверхность суши и моря. Различают большой круговорот воды, при котором вода, выпавшая в виде осадков на сушу, возвращается в моря путем поверхностного и подземного стоков; и малый круговорот воды, при котором осадки выпадают на поверхность океана.

Круговорот кислорода сопровождается его приходом и расходом.

Приход кислорода включает: 1) выделение при фотосинтезе; 2) образование в озоновом слое под воздействием УФ-излучения (в незначительном количестве); 3) диссоциацию молекул воды в верхних слоях атмосферы под воздействием УФ-излучения; 4) образование озона – О3.

Расход кислорода включает: 1) потребление животными при дыхании; 2) окислительные процессы в земной коре; 3) окисление окиси углерода (СО), выделяющегося при извержении вулканов.

mob_info