Antiderivativni i neodređeni integralni prikaz. Prezentacija za lekciju "Neodređeni integral. Metode računanja." Ekstremi funkcije dvije varijable

Slajd 1

Slajd 2

Istorijski podaci Integralni račun je proizašao iz potrebe za stvaranjem opšta metoda Pronalaženje površina, zapremina i centara gravitacije. Ovu metodu je u svom embrionalnom obliku koristio Arhimed. Dobio je sistematski razvoj u 17. veku u delima Kavalierija, Toričelija, Fermamea i Paskala. I. Barrow je 1659. godine uspostavio vezu između problema nalaženja površine i problema nalaženja tangente. Newton i Leib-Nitz su 70-ih godina 17. vijeka odvratili ovu vezu od navedenih konkretnih geometrijskih problema. Tako je uspostavljena veza između integralnog i diferencijalnog računa. Ovu vezu su Newton, Leibniz i njihovi učenici koristili da razviju tehniku ​​integracije. Metode integracije su uglavnom dostigle svoje sadašnje stanje u radovima L. Eulera. Radovi M.V. Ostrogradsky-Go i P.L. Chebyshev dovršili su razvoj ovih metoda.

Slajd 3

Koncept integrala. Neka je prava MN data jednačinom I trebamo pronaći površinu F krivolinijskog trapeza aABb. Podijelimo segment ab na n dijelova (jednakih ili nejednakih) i konstruiramo stepenastu figuru, prikazanu šrafiranjem na crtežu 1. Njegova površina, njegova površina je jednaka (1) Ako uvedemo notaciju, tada će formula (1) uzeti oblik (3) Tražena površina je granica zbira (3) za beskonačno veliko n. Leibniz je uveo oznaku za ovu granicu (4) U kojoj je (kurziv s) početno slovo riječi suma (zbir), E izraz označava tipičan oblik pojedinačnih pojmova. Leibniz je izraz počeo zvati integral - od latinske riječi integralis - integral. J.B. Fourier je poboljšao Leibnizovu notaciju, dajući joj oblik Ovdje su eksplicitno naznačene početne i konačne vrijednosti x.

Slajd 4

Veza između integracije i diferencijacije. Smatrat ćemo a konstantom, a b promjenljivom. Tada će integral biti funkcija od b. Diferencijal ove funkcije je jednak

Slajd 5

Antiderivativna funkcija. Neka je funkcija derivacija funkcije, T.S. Postoji diferencijal funkcije: tada se funkcija naziva antiderivatom funkcije

Slajd 6

Primjer pronalaženja antiderivata. Funkcija je antiderivativna iz T.S. Postoji diferencijal funkcije Funkcija je antiderivat funkcije.

Slajd 7

Neodređeni integral. Neodređeni integral dati izraz Najopštiji oblik njegove antiderivativne funkcije se zove. Neodređeni integral izraza se označava. Izraz se naziva integrand izraz, funkcija se naziva integrand funkcija, a varijabla x se naziva varijabla integracije. Pronalaženje neodređenog integrala date funkcije naziva se integracija.

Antiderivativ. Problem diferencijalnog računa: za datu funkciju pronađite njen izvod. Problem integralnog računa: pronaći funkciju znajući njen izvod. Funkcija F(x) naziva se antiderivatom funkcije f(x) na dati interval, ako je za bilo koji x iz ovog intervala tačna jednakost F ʹ (x)=f(x).








Teorema. Ako je funkcija F(x) antiderivat za funkciju f(x) na određenom intervalu, tada skup svih antiderivata ove funkcije ima oblik F(x)+C, gdje je C R. y x 0 Geometrijski: F (x)+C je familija krivulja dobijena iz svake od njih paralelnim prijenosom duž ose op-amp. C integralna kriva


Primjer 2. Pronađite sve antiderivativne funkcije f(x)=2x i oslikajte ih geometrijski. y x




Integrand funkcija - integrand izraz - znak neodređenog integrala x - varijabla integracije F(x) + C - skup svih antiderivata C - konstanta integracije Proces pronalaženja antiderivata funkcije naziva se integracija, a grana matematike naziva se integralni račun.


Svojstva neodređenog integrala Diferencijal neodređenog integrala jednak je integrandu, a derivacija neodređenog integrala jednaka je integrandu:













Osnovne metode integracije. Metoda direktne integracije. Direktna integracija je metoda izračunavanja integrala u kojoj se oni svode na tablične primjenom osnovnih svojstava neodređenog integrala. U ovom slučaju, funkcija integranda se obično transformira u skladu s tim.


Anoshina O.V.

Glavna literatura

1. Šipačev V. S. Viša matematika. Osnovni kurs: udžbenik i
radionica za prvostupnike [Državna oznaka Ministarstva obrazovanja Ruske Federacije] / V.S.
Shipachev; uređeno od A. N. Tikhonova. - 8. izd., revidirano. i dodatne Moskva: Jurajt, 2015. - 447 str.
2. Shipachev V. S. Viša matematika. Puni kurs: udžbenik
za akademika Bachelor's Degree [Griff UMO] / V. S. Shipachev; uređeno od A.
N. Tikhonova. - 4. izdanje, rev. i dodatne - Moskva: Jurajt, 2015. - 608
With
3. Danko P.E., Popov A.G., Kozhevnikova T..Ya. Viša matematika
u vežbama i zadacima. [Tekst] / P.E. Danko, A.G. Popov, T.Ya.
Kozhevnikova. U 2 sata - M.: postdiplomske škole, 2007. – 304+415c.

Izvještavanje

1.
Test. Izvedeno u skladu sa:
Zadaci i smjernice za ispunjavanje testova
u disciplini "PRIMIJENJENA MATEMATIKA", Ekaterinburg, Savezna državna autonomna obrazovna ustanova
VO „Ruski državni stručni pedagoški
Univerzitet", 2016. - 30 str.
Opcija testni rad izaberite po poslednjoj cifri broja
knjiga razreda.
2.
Ispit

Neodređeni integral, njegova svojstva i izračunavanje Antiderivativni i neodređeni integral

Definicija. Poziva se funkcija Fx
antiderivativna funkcija fx definirana na
neki interval, ako je F x f x for
svaki x iz ovog intervala.
Na primjer, funkcija cos x je
antiderivativ funkcije sin x , pošto
cos x sin x .

Očigledno, ako je F x antiderivat
funkcija f x , tada je i F x C , gdje je C neka konstanta
antiderivat funkcije f x .
Ako je F x bilo koji antiderivat
funkcije f x , zatim bilo koja funkcija oblika
F x F x C je također
antiderivativna funkcija f x i bilo koja
antiderivat se može predstaviti u ovom obliku.

Definicija. Totalnost svega
antiderivati ​​funkcije f x ,
definisano na nekima
interval se zove
neodređeni integral od
funkcije fx na ovom intervalu i
označeno sa f x dx.

Ako je F x neki antiderivat funkcije
f x , onda pišu f x dx F x C , iako
ispravnije bi bilo napisati f x dx F x C .
Po ustaljenoj tradiciji, pisaćemo
f x dx F x C .
Dakle, isti simbol
f x dx će označavati cjelinu
skup antiderivata funkcije fx ,
i bilo koji element ovog skupa.

Svojstva integrala

Izvod neodređenog integrala je jednak
integrand funkcija, i njen diferencijalni izraz integranda. stvarno:
1.(f (x)dx) (F (x) C) F (x) f (x);
2.d f (x)dx (f (x)dx) dx f (x)dx.

Svojstva integrala

3. Neodređeni integral od
diferencijal kontinuirano (x)
diferencijabilna funkcija jednaka je samoj sebi
ovu funkciju do konstante:
d (x) (x) dx (x) C,
pošto je (x) antiderivat od (x).

Svojstva integrala

4. Ako funkcije f1 x i f 2 x imaju
su antiderivati, onda je funkcija f1 x f 2 x
takođe ima antiderivativ, i
f1 x f 2 x dx f1 x dx f 2 x dx ;
5. Kf x dx K f x dx ;
6. f x dx f x C ;
7. f x x dx F x C .

1. dx x C .
a 1
x
2. xa dx
C, (a 1) .
a 1
dx
3. ln x C .
x
x
a
4.a x dx
C.
ln a
5. e x dx e x C .
6. sin xdx cos x C .
7. cos xdx sin x C .
dx
8. 2 ctgx C .
sin x
dx
9. 2 tgx C .
cos x
dx
arctgx C .
10.
2
1 x

Tabela neodređenih integrala

11.
dx
arcsin x C .
1 x 2
dx
1
x
12. 2 2 arctg C .
a
a
sjekira
13.
14.
15.
dx
a2 x2
x
arcsin C..
a
dx
1
xa
ln
C
2
2
2a x a
xa
dx
1
sjekira
a 2 x 2 2a ln a x C .
dx
16.
x2 a
ln x x 2 a C .
17. shxdx chx C .
18. chxdx shx C .
19.
20.
dx
ch 2 x thx C .
dx
cthx C .
2
sh x

Svojstva diferencijala

Pogodan za korištenje prilikom integracije
svojstva: 1
1. dx d (sjekira)
a
1
2. dx d (ax b),
a
1 2
3. xdx dx,
2
1 3
2
4. x dx dx .
3

Primjeri

Primjer. Izračunajte cos 5xdx.
Rješenje. U tabeli integrala nalazimo
cos xdx sin x C .
Pretvorimo ovaj integral u tabelarni,
koristeći prednost činjenice da je d ax adx .
onda:
d 5 x 1
= cos 5 xd 5 x =
cos 5xdx cos 5 x
5
5
1
= sin 5 x C .
5

Primjeri

Primjer. Izračunajte x
3x x 1 dx.
Rješenje. Pošto je pod znakom integrala
je onda zbir četiri člana
proširimo integral na zbir četiri
integrali:
2
3
2
3
2
3
x
3
x
x
1
dx
x
dx
3
x
dx xdx dx .
x3
x4 x2
3
x C
3
4
2

Nezavisnost tipa varijable

Prilikom izračunavanja integrala to je zgodno
koristite sljedeća svojstva
integrali:
Ako je f x dx F x C , onda
f x b dx F x b C .
Ako je f x dx F x C , onda
1
f ax b dx F ax b C .
a

Primjer

Hajde da izračunamo
1
6
2
3
x
dx
2
3
x
C
.
3 6
5

Metode integracije Integracija po dijelovima

Ova metoda se zasniva na formuli udv uv vdu.
Metodom integracije po dijelovima uzimaju se sljedeći integrali:
a) x n sin xdx, gdje je n 1,2...k;
b) x n e x dx, gdje je n 1,2...k;
c) x n arctgxdx, gdje je n 0, 1, 2,... k. ;
d) x n ln xdx, gdje je n 0, 1, 2,... k.
Prilikom izračunavanja integrala a) i b) unesite
n 1
notacija: x n u , zatim du nx dx , i, na primjer
sin xdx dv , zatim v cos x .
Prilikom izračunavanja integrala c), d), u se označava funkcijom
arctgx, ln x, a za dv uzmite x n dx.

Primjeri

Primjer. Izračunajte x cos xdx .
Rješenje.
u x, du dx
=
x cos xdx
dv cos xdx, v sin x
x sin x sin xdx x sin x cos x C .

Primjeri

Primjer. Izračunati
x ln xdx
dx
u ln x, du
x
x2
dv xdx, v
2
x2
x 2 dx
ln x
=
2
2 x
x2
1
x2
1 x2
ln x xdx
ln x
C.
=
2
2
2
2 2

Varijabilna metoda zamjene

Neka je potrebno pronaći f x dx , i
direktno odabrati antiderivat
za f x ne možemo, ali to znamo
ona postoji. Često je moguće pronaći
antiderivativ uvođenjem nove varijable,
prema formuli
f x dx f t t dt , gdje je x t i t novo
varijabla

Integrirajuće funkcije koje sadrže kvadratni trinom

Razmotrimo integral
sjekira b
dx,
x px q
koji sadrži kvadratni trinom V
nazivnik integrala
izrazi. Takav integral se također može uzeti
metodom zamjene varijabli,
prethodno dodijeljena u
imenilac je savršen kvadrat.
2

Primjer

Izračunati
dx
.
x 4x 5
Rješenje. Hajde da transformišemo x 2 4 x 5 ,
2
birajući ceo kvadrat koristeći formulu a b 2 a 2 2ab b 2.
Tada dobijamo:
x2 4x 5 x2 2 x 2 4 4 5
x 2 2 2 x 4 1 x 2 2 1
x 2 t
dx
dx
dt
x t 2
2
2
2
x 2 1 dx dt
x 4x 5
t 1
arctgt C arctg x 2 C.

Primjer

Nađi
1 x
1 x
2
dx
tdt
1 t
2
x t, x t 2,
dx 2tdt
2
t2
1 t
2
dt
1 t
1 t
d(t 2 1)
t
2
1
2
2tdt
2
dt
ln(t 1) 2 dt 2
2
1 t
ln(t 2 1) 2t 2arctgt C
2
ln(x 1) 2 x 2arctg x C.
1 t 2 1
1 t
2
dt

Određeni integral, njegova glavna svojstva. Newton-Leibnizova formula. Primjena određenog integrala.

Dovodi do koncepta određenog integrala
problem nalaženja površine krivoline
trapezi.
Neka je dato na nekom intervalu
kontinuirana funkcija y f (x) 0
zadatak:
Konstruirajte njegov graf i pronađite F površinu figure,
omeđen ovom krivom, dvije prave linije x = a i x
= b, a ispod – segment ose apscise između tačaka
x = a i x = b.

Zove se figura aABb
zakrivljeni trapez

Definicija

b
f(x)dx
Pod određenim integralom
a
od ovoga kontinuirana funkcija f(x) uključeno
ovaj segment je shvaćen
njegov odgovarajući prirast
antiderivat, tj
F (b) F (a) F (x) /
b
a
Brojevi a i b su granice integracije,
– interval integracije.

pravilo:

Definitivni integral je jednak razlici
vrijednosti antiderivativnog integrala
funkcije za gornje i donje granice
integracija.
Uvođenjem oznake za razliku
b
F(b)F(a)F(x)/a
b
f (x)dx F (b) F (a)
a
Newton–Leibnizova formula.

Osnovna svojstva određenog integrala.

1) Vrijednost određenog integrala ne zavisi od
notacija za varijablu integracije, tj.
b
b
a
a
f (x)dx f (t)dt
gdje su x i t bilo koja slova.
2) Definitivni integral sa identičnim
vani
integracija je nula
a
f (x)dx F (a) F (a) 0
a

3) Prilikom preuređivanja granica integracije
određeni integral mijenja svoj predznak u suprotan
b
a
f (x)dx F (b) F (a) F (a) F (b) f (x)dx
a
b
(svojstvo aditivnosti)
4) Ako je interval podijeljen na konačan broj
parcijalni intervali, zatim određeni integral,
uzeti u intervalu, jednak je zbiru određenih
integrali uzeti u svim njegovim parcijalnim intervalima.
b
c
b
f (x)dx f (x)dx
c
a
a
f(x)dx

5) Konstantni množitelj se može podesiti
za predznak određenog integrala.
6) Definitivni integral algebarskog
sume konačnog broja kontinuiranih
funkcije jednaka istoj algebarskoj
iznos određeni integrali od ovih
funkcije.

3. Promjena varijable u određenom integralu.

3. Zamjena varijable u određenom
integral.
b
f (x)dx f (t) (t)dt
a
a(), b(), (t)
Gdje
za t [ ; ] , funkcije (t) i (t) su kontinuirane;
5
primjer:
1
=
x 1dx
=
x 1 5
t 0 4
x 1 t
dt dx
4
0
3
2
t dt t 2
3
4
0
2
2
16
1
t t 40 4 2 0
5
3
3
3
3

Nepravilni integrali.

Nepravilni integrali.
Definicija. Neka je funkcija f(x) definirana na
beskonačni interval, gdje je b< + . Если
postoji
b
lim
f(x)dx,
b
a
tada se ova granica naziva nepravilnim
integral funkcije f(x) na intervalu
}
mob_info