Монотонность функций. Исследование функций на монотонность. Исследование функции на монотонность

Цели урока:

Образовательные:

  • повторить описание свойств кусочной функции по графику;
  • вывести и усвоить формальные определения возрастания и убывания функции;
  • научить доказывать монотонность функции на области определения.

Воспитательные:

  • воспитание познавательного интереса;
  • воспитание культуры общения;
  • воспитание ответственности за общее дело.

Развивающие:

  • развитие мышления и математической речи через формулировку общих выводов и обобщений.

Ход урока

Эпиграф к уроку:

"Мало иметь хороший ум, главное хорошо его применять"
Р. Декарт.

Домашнее задание к этому уроку: выясните, людям каких профессий по роду своей деятельности приходится читать графики.

Ответы: - кардиолог (кардиограмма)

Экономист (график динамики роста цен, роста стоимости нефти, рост курса $)

Метеоролог (график изменения температуры за год)

Сейсмолог (график колебания активности вулкана, сейсмоактивность данной местности).

Давайте посмотрим, насколько мы владеем этой культурой.

Аукцион "Чтение графика"

Последний ученик, правильно назвавший свойство функции, получает "5"

Дополнительный аукцион:

Кусочек графика какой функции изображен на чертеже?

Сегодня на уроке мы подробно рассмотрим только одно свойство функции - монотонность.

Подберите к прилагательному "монотонный" существительное. О чем говорят "монотонный"?

Движение.

Монотонный - значит какой? Одинаковый, повторяющийся.

С каким свойством функции можно связать словосочетание - монотонное движение? Движение куда?

Итак: монотонность - это возрастание и убывание функции.

В тетради: число, тема урока "Исследование функции на монотонность".

Давайте начнем с того, что мы уже знаем - с графика. Начертите в каждом столбике систему координат и изобразите график произвольной функции, обладающей указанным свойством на всей области определения.

В тетради таблица:

Отложим в сторону тетради. Для дальнейшего изучения свойства, давайте еще раз убедимся, что мы все хорошо понимаем о чем идет речь на уроке. Собираем лото.

Инструкция: На каждой парте таблица и набор карточек.

Работаем в парах. Карточек больше, чем необходимо. Будьте внимательны. Лото собирайте на тетрадке, чтобы потом перевернув, мы прочитали закодированную фразу, правильность которой зависит от слаженной работы каждой пары.

Набор карточек:

После того как каждая пара сложит лото и перевернет таблицу, из получившихся слов получается фраза:

"От живого созерцания к абстрактному мышлению, от него к практике - таков путь познания истины" Ф. Энгельс.

На боковой доске:

Нам сегодня предстоит подняться по этой лесенке, чтобы постигнуть лишь малую крупицу истины знаний, которые накопило человечество на своем пути развития.

Как вы думаете, на какой ступеньке мы находимся? Созерцание, т.е. рассматриваем графики. Продолжаем работу в тетради, в первом столбике таблицы.

Зафиксируйте х 1 , найдите по графику соответствующее у 1 , зафиксируйте х 2 - найдите у 2. Сравните х 1 и х 2 (х 1 < х 2). Что происходит со значением х?

Сравните у 1 и у 2 (у 1 > у 2). Что происходит со значением у?

Вывод: Большему значению х соответствует меньшее значение у. Это и есть определение убывающей функции. Запишите его в таблицу.

Самостоятельная работа.

1 вариант. Проделайте те же операции во втором столбике таблицы.

2 вариант. Заполните третий столбик.

Проверка по доске и в парах обмен результатами.

Итог работы.

Если мы знаем определение, то график для установления вида монотонности нам не нужен. А это значит, что мы поднялись на вторую ступеньку по лестнице познания.

Осталось применить свои знания на практике.

V. Задачник стр.194, № 4, 5 .Один ученик у доски.

Дано: у = 2х - 5

Доказать: у 1 < у 2

Доказательство:

х 1 < х 2 |· 2

2х 1 < 2х 2 | + (- 5)

2х 1 - 5 < 2х 2 - 5

у 1 < у 2 > функция у = 2х - 5 - возрастающая.

Дано: у = 7 - 13х

Доказать: у 1 > у 2

Доказательство: аналогично

Как называются функции, которые мы исследовали? От чего зависит вид монотонности линейной функции? Запишите вывод в таблицу. Используя этот вывод, выполним устно № 6. .

№ 8(а,б) . по вариантам, оформить в тетради по образцу.

Проверка вывода: как называется функция? Какой общей формулой задается функция? От чего зависит вид монотонности? Запишите в таблицу.

Как вы думаете, будет ли меняться вид монотонности, если смещать график вдоль оси Ох или Оу?

№ 8(в,г) устно.

Вспомните графики известных функций. Какая из них одинаково ведет себя на всей области определения? у = . Запишите в таблицу.

V. Наш урок подходит к концу. Закройте тетради. Откройте дневники.

Домашнее задание:

на "3" - выучить определения 10 ., 32 № 1,2;

на "4" + 32 № 11.,

на "5" + задание на карточке.

Построй графики - получишь рисунок. .

"собачка"

х = 8, - 19 у - 3;

у = - х - 11, 0 х 8;

х = 0, - 19 у - 11;

у = - х - 19, - 14 х 0;

х = - 14, - 5 у 1;

у = - х -13, - 14 х - 8;

х = - 8, - 11 у - 5;

у = х - 3, - 8 х 0;

у = - 3, 0 х 8;

у = - 0,6х + 1,2, - 2 х 8;

у = 1, 7 х 10;

у = - 4х - 42,8, 8 х 10;

у = , 5 х 8;

у = - 0,4х + 8, 0 х 2;

у = - 4х + 8, 0 х 2.

"парусник"

В повседневной жизни часто приходится наблюдать множество процессов и явлений, при изучении которых нужно рассматривать самые разнообразные величины. Эти величины могут по-разному зависеть друг от друга. Закон, по которому одна величина зависит от другой, мы назвали функцией. Это одно из основных математических и общенаучных понятий, имеющее практическое применение во многих областях знаний и человеческой деятельности. Поэтому так важно уметь исследовать функции.

В данном видео уроке познакомимся с правилами исследования известных нам функций на монотонность.

Разглядывая графики, мы уже многое можем сказать об их функциях. Например, указать возрастает функция или убывает, как об этом говориться в видео уроке. Однако понятия возрастания и убывания функций в математике имеют свои точные определения, которые и приведены в предложенном нашему вниманию видеоматериале.

Так, чтобы судить о возрастании или убывании функции, зададим некоторый промежуток, на котором будем исследовать функцию. В видео уроке это промежуток Х. Выберем любые два числа, принадлежащие промежутку Х. Пусть это будут числа х 1 и х 2 . Эти два числа являются двумя значениями аргумента, которым соответствуют два значения какой-либо функции f(x 1) и f(x 2). Если получается, что при х 1 > х 2 выполняется неравенство f(x 1) > f(x 2), то наша функция возрастает на промежутке Х.

Другими словами, можно сказать, что функция f(x) называется возрастающей на данном числовом промежутке Х, если большему значению аргумента из этого промежутка соответствует большее значение функции.

Аналогично в видео уроке рассматривается понятие убывающей функции.

Далее в видеоматериале подробно проводится исследование линейной функции y = kx + m. Как известно, эта функция определена на всем множестве действительных чисел, то есть на всей числовой прямой. Даже если не проводить математических доказательств, а просто судить по графику этой функции, видно, что она ведет себя одинаково на всей области определения. Функция либо возрастает (график все время идет вверх), либо убывает (график все время идет вниз). В таких случаях можно не указывать промежуток, а просто сказать, что функция возрастающая или убывающая.

Возрастает или убывает функция y = kx + m, зависит от коэффициента k. Если коэффициент k положительный, то функция y = kx + m возрастает на всей области определения, то есть является возрастающей. Если коэффициент k отрицательный, то функция убывает. Доказательство возрастания или убывания функции y = kx + m основано на свойствах числовых неравенств и рассматривается в видео уроке.

Обычно, если функция только возрастает или только убывает на данном числовом промежутке, то ее называют монотонной на этом промежутке. Функция y = kx + m монотонна на всей своей области определения.

Следующая функция, которая рассматривается в видео уроке квадратичная y = kx 2 . Как и в первом случае, областью ее определения являются все действительные числа x. По графику мы видим, что функция ведет себя неодинаково. К тому же коэффициент k может быть, как положительным, так и отрицательным. Пусть коэффициент k больше нуля. Тогда если аргумент принадлежит промежутку (-∞; 0], то функция убывает. А вот на числовом промежутке Рассмотрим функцию \(f(t)=t^3+t\) . Тогда уравнение перепишется в виде: \ Исследуем функцию \(f(t)\) . \ Следовательно, функция \(f(t)\) возрастает при всех \(t\) . Значит, каждому значению функции \(f(t)\) соответствует ровно одно значение аргумента \(t\) . Следовательно, для того, чтобы уравнение имело корни, нужно: \ Чтобы полученное уравнение имело два корня, нужно, чтобы его дискриминант был положительным: \

Ответ:

\(\left(-\infty;\dfrac1{12}\right)\)

Задание 2 #2653

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при которых уравнение \

имеет два корня.

(Задача от подписчиков.)

Сделаем замену: \(ax^2-2x=t\) , \(x^2-1=u\) . Тогда уравнение примет вид: \ Рассмотрим функцию \(f(w)=7^w+\sqrtw\) . Тогда наше уравнение примет вид: \

Найдем производную \ Заметим, что при всех \(w\ne 0\) производная \(f"(w)>0\) , т.к. \(7^w>0\) , \(w^6>0\) . Заметим также, что сама функция \(f(w)\) определена при всех \(w\) . Т.к. к тому же \(f(w)\) непрерывна, то мы можем сделать вывод, что \(f(w)\) возрастает на всем \(\mathbb{R}\) .
Значит, равенство \(f(t)=f(u)\) возможно тогда и только тогда, когда \(t=u\) . Вернемся к изначальным переменным и решим полученное уравнение:

\ Для того, чтобы данное уравнение имело два корня, оно должно быть квадратным и его дискриминант должен быть положительным:

\[\begin{cases} a-1\ne 0\\ 4-4(a-1)>0\end{cases} \quad\Leftrightarrow\quad \begin{cases}a\ne1\\a<2\end{cases}\]

Ответ:

\((-\infty;1)\cup(1;2)\)

Задание 3 #3921

Уровень задания: Равен ЕГЭ

Найдите все положительные значения параметра \(a\) , при которых уравнение

имеет как минимум \(2\) решения.

Перенесем все слагаемые, содержащие \(ax\) , влево, а содержащие \(x^2\) – вправо, и рассмотрим функцию
\

Тогда исходное уравнение примет вид:
\

Найдем производную:
\

Т.к. \((t-2)^2 \geqslant 0, \ e^t>0, \ 1+\cos{2t} \geqslant 0\) , то \(f"(t)\geqslant 0\) при любых \(t\in \mathbb{R}\) .

Причем \(f"(t)=0\) , если \((t-2)^2=0\) и \(1+\cos{2t}=0\) одновременно, что не выполняется ни при каких \(t\) . Следовательно, \(f"(t)> 0\) при любых \(t\in \mathbb{R}\) .

Таким образом, функция \(f(t)\) строго возрастает при всех \(t\in \mathbb{R}\) .

Значит, уравнение \(f(ax)=f(x^2)\) равносильно уравнению \(ax=x^2\) .

Уравнение \(x^2-ax=0\) при \(a=0\) имеет один корень \(x=0\) , а при \(a\ne 0\) имеет два различных корня \(x_1=0\) и \(x_2=a\) .
Нам нужно найти значения \(a\) , при которых уравнение будет иметь не менее двух корней, учитывая также то, что \(a>0\) .
Следовательно, ответ: \(a\in (0;+\infty)\) .

Ответ:

\((0;+\infty)\) .

Задание 4 #1232

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет единственное решение.

Домножим правую и левую части уравнения на \(2^{\sqrt{x+1}}\) (т.к. \(2^{\sqrt{x+1}}>0\) ) и перепишем уравнение в виде: \

Рассмотрим функцию \(y=2^t\cdot \log_{\frac{1}{9}}{(t+2)}\) при \(t\geqslant 0\) (т.к. \(\sqrt{x+1}\geqslant 0\) ).

Производная \(y"=\left(-2^t\cdot \log_9{(t+2)}\right)"=-\dfrac{2^t}{\ln9}\cdot \left(\ln 2\cdot \ln{(t+2)}+\dfrac{1}{t+2}\right)\) .

Т.к. \(2^t>0, \ \dfrac{1}{t+2}>0, \ \ln{(t+2)}>0\) при всех \(t\geqslant 0\) , то \(y"<0\) при всех \(t\geqslant 0\) .

Следовательно, при \(t\geqslant 0\) функция \(y\) монотонно убывает.

Уравнение можно рассматривать в виде \(y(t)=y(z)\) , где \(z=ax, t=\sqrt{x+1}\) . Из монотонности функции следует, что равенство возможно только в том случае, если \(t=z\) .

Значит, уравнение равносильно уравнению: \(ax=\sqrt{x+1}\) , которое в свою очередь равносильно системе: \[\begin{cases} a^2x^2-x-1=0\\ ax \geqslant 0 \end{cases}\]

При \(a=0\) система имеет одно решение \(x=-1\) , которое удовлетворяет условию \(ax\geqslant 0\) .

Рассмотрим случай \(a\ne 0\) . Дискриминант первого уравнения системы \(D=1+4a^2>0\) при всех \(a\) . Следовательно, уравнение всегда имеет два корня \(x_1\) и \(x_2\) , причем они разных знаков (т.к. по теореме Виета \(x_1\cdot x_2=-\dfrac{1}{a^2}<0\) ).

Это значит, что при \(a<0\) условию \(ax\geqslant 0\) подходит отрицательный корень, при \(a>0\) условию подходит положительный корень. Следовательно, система всегда имеет единственное решение.

Значит, \(a\in \mathbb{R}\) .

Ответ:

\(a\in \mathbb{R}\) .

Задание 5 #1234

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет хотя бы один корень из отрезка \([-1;0]\) .

Рассмотрим функцию \(f(x)=2x^3-3x(ax+x-a^2-1)-3a-a^3\) при некотором фиксированном \(a\) . Найдем ее производную: \(f"(x)=6x^2-6ax-6x+3a^2+3=3(x^2-2ax+a^2+x^2-2x+1)=3((x-a)^2+(x-1)^2)\) .

Заметим, что \(f"(x)\geqslant 0\) при всех значениях \(x\) и \(a\) , причем равна \(0\) только при \(x=a=1\) . Но при \(a=1\) :
\(f"(x)=6(x-1)^2 \Rightarrow f(x)=2(x-1)^3 \Rightarrow\) уравнение \(2(x-1)^3=0\) имеет единственный корень \(x=1\) , не удовлетворяющий условию. Следовательно, \(a\) не может быть равно \(1\) .

Значит, при всех \(a\ne 1\) функция \(f(x)\) является строго возрастающей, следовательно, уравнение \(f(x)=0\) может иметь не более одного корня. Учитывая свойства кубической функции, график \(f(x)\) при некотором фиксированном \(a\) будет выглядеть следующим образом:


Значит, для того, чтобы уравнение имело корень из отрезка \([-1;0]\) , необходимо: \[\begin{cases} f(0)\geqslant 0\\ f(-1)\leqslant 0 \end{cases} \Rightarrow \begin{cases} a(a^2+3)\leqslant 0\\ (a+2)(a^2+a+4)\geqslant 0 \end{cases} \Rightarrow \begin{cases} a\leqslant 0\\ a\geqslant -2 \end{cases} \Rightarrow -2\leqslant a\leqslant 0\]

Таким образом, \(a\in [-2;0]\) .

Ответ:

\(a\in [-2;0]\) .

Задание 6 #2949

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \[(\sin^2x-5\sin x-2a(\sin x-3)+6)\cdot (\sqrt2a+8x\sqrt{2x-2x^2})=0\]

имеет корни.

(Задача от подписчиков)

ОДЗ уравнения: \(2x-2x^2\geqslant 0 \quad\Leftrightarrow\quad x\in \) . Следовательно, для того, чтобы уравнение имело корни, нужно, чтобы хотя бы одно из уравнений \[\sin^2x-5\sin x-2a(\sin x-3)+6=0 \quad {\small{\text{или}}}\quad \sqrt2a+8x\sqrt{2x-2x^2}=0\] имело решения на ОДЗ.

1) Рассмотрим первое уравнение \[\sin^2x-5\sin x-2a(\sin x-3)+6=0 \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &\sin x=2a+2\\ &\sin x=3\\ \end{aligned} \end{gathered}\right. \quad\Leftrightarrow\quad \sin x=2a+2\] Данное уравнение должно иметь корни на \(\) . Рассмотрим окружность:

Таким образом, мы видим, что для любых \(2a+2\in [\sin 0;\sin 1]\) уравнение будет иметь одно решение, а для всех остальных – не будет иметь решений. Следовательно, при \(a\in \left[-1;-1+\sin 1\right]\) уравнение имеет решения.

2) Рассмотрим второе уравнение \[\sqrt2a+8x\sqrt{2x-2x^2}=0 \quad\Leftrightarrow\quad 8x\sqrt{x-x^2}=-a\]

Рассмотрим функцию \(f(x)=8x\sqrt{x-x^2}\) . Найдем ее производную: \ На ОДЗ производная имеет один ноль: \(x=\frac34\) , который к тому же является точкой максимума функции \(f(x)\) .
Заметим, что \(f(0)=f(1)=0\) . Значит, схематично график \(f(x)\) выглядит так:

Следовательно, для того, чтобы уравнение имело решения, нужно, чтобы график \(f(x)\) пересекался с прямой \(y=-a\) (на рисунке изображен один из подходящих вариантов). То есть нужно, чтобы \ . При этих \(x\) :

Функция \(y_1=\sqrt{x-1}\) является строго возрастающей. Графиком функции \(y_2=5x^2-9x\) является парабола, вершина которой находится в точке \(x=\dfrac{9}{10}\) . Следовательно, при всех \(x\geqslant 1\) функция \(y_2\) также строго возрастает (правая ветвь параболы). Т.к. сумма строго возрастающих функций есть строго возрастающая, то \(f_a(x)\) – строго возрастает (константа \(3a+8\) не влияет на монотонность функции).

Функция \(g_a(x)=\dfrac{a^2}{x}\) при всех \(x\geqslant 1\) представляет собой часть правой ветви гиперболы и является строго убывающей.

Решить уравнение \(f_a(x)=g_a(x)\) - значит найти точки пересечения функций \(f\) и \(g\) . Из их противоположной монотонности следует, что уравнение может иметь не более одного корня.

При \(x\geqslant 1\) \(f_a(x)\geqslant 3a+4, \ \ \ 0. Следовательно, уравнение будет иметь единственное решение в том случае, если:


\\cup

Ответ:

\(a\in (-\infty;-1]\cup применяется теорема Лагранжа: существует точка x 0 из (x 1 ; x 2) такая, что f (x 2) - f (x 1) = (x 2 - x 1)×f ¢(x 0). Но, по условию, f" (x 0) = 0, следовательно, f (x 2) = f (x 1), т.е. функция f (x ) постоянна на (a ; b ). Это означает, что достаточность доказана. Теорема доказана.

Теорема 4 (необходимое условие монотонности функции) . Пусть в интервале (a ; b ) функция f (x ) дифференцируема. Тогда :

а ) если f (x ) возрастает, то ее производная в (a ; b ) не отрицательна , т.е. f ¢(x ) ³ 0;

б ) если f (x ) убывает, то ее производная в (a ; b ) не положительна , т.е. f ¢(x ) £ 0.


Доказательство. а). Пусть функция f (x ) возрастает в (a ; b ), т.е. для любых x 1 , x 2 из (a ; b ) выполняется соотношение: x 1 < x 2 ® f (x 1) < f (x 2). Тогда, для указанных точек x 1 , x 2 следующее отношение положительное:

Отсюда следует, что производная f ¢(x 1) ³ 0. Утверждение а б ).

Теорема 5 (достаточное условие монотонности функции). Пусть в интервале (a ; b ) функция f (x ) дифференцируема. Тогда :

а ) если f ¢(x ) > 0 на (a ; b ), то f (x ) возрастает на (a ; b );

б) если f ¢(x ) < 0 на (a ; b ), то f (x ) убывает на (a ; b ).

Доказательство. а). Пусть f ¢(x ) > 0 на (a ; b ) и точки x 1 , x 2 из (a ; b ) такие, что x 1 < x 2 . По теореме Лагранжа, существует точка x 0 из (x 1 ; x 2) такая, что f (x 2) - f (x 1) = (x 2 - x 1)×f ¢(x 0). Здесь правая часть равенства положительная, поэтому f (x 2) - f (x 1) > 0, т.е. f (x 2) > f (x 1) . Это означает, что f (x ) возрастает на (a ; b ). Утверждение а ) доказано. Аналогично доказывается утверждение б ).

Пример 9. Функция у = х 3 всюду возрастает, так как с ростом значений х возрастают кубы этих значений. Производная этой функции у ¢= 3х 2 всюду неотрицательная, т.е. выполняется необходимое условие монотонности.

Пример 10. Найти промежутки возрастания и убывания функции у = 0,25х 4 - 0,5х 2 .

Решение. Находится производная данной функции у ¢ = х 3 - х , и строятся промежутки, в которых х 3 - х положительная или отрицательная. Для этого сначала находятся критические точки, в которых у ¢ = 0: х 3 - х = 0 ® х (х + 1)(х -1) = 0 ® х 1 = 0, х 2 = -1 х 3 = 1. Эти точки разбивают числовую ось на 4 промежутка:


- + - + X

-¥ -2 -1 0 1 2 3 +¥

Черт.36.

В общем случае, для определения знаков производной берут по одной точке в каждом промежутке и вычисляют значения производной в этих точках. Но иногда достаточно взять только одну точку в крайнем правом промежутке, определить знак производной в этой точке, а в остальных промежутках знаки чередовать. В данном примере пусть х = 2, тогда у ¢(2) = 2 3 – 2 = 6 > 0. В правом интервале ставится знак +, а затем знаки чередуются. Получено у ¢ > 0 на промежутках (-1; 0) и (1; +¥), следовательно, исследуемая функция на этих промежутках возрастает. Далее, у ¢< 0 на (- ¥; -1) и (0; 1), следовательно, исследуемая функция на этих промежутках убывает. Ниже на чертеже 37 построен график этой функции.

Определение 3 . 1). Точка х о называется точкой максимума функции f (x ), если существует интервал (a ; b ), содержащий х о, в котором значение f (x о) наибольшее, т.е. f (x о) > f (x ) для всех х из (a ; b ).

2). Точка х о называется точкой минимума функции f (x ), если существует интервал (a ; b ), содержащий х о, в котором значение f (x о) наименьшее, т.е. f (x о) < f (x ) для всех х из (a ; b ). Точки максимума и минимума называются точками экстремума.

Теорема 6 (необходимое условие экстремума функции ). Если х о является точкой экстремума функции f (x ) и существует производная

f ¢(x 0), то f "(x 0) = 0.

Доказательство аналогично доказательству теоремы Ролля.

Точка x 0 , в которой f ¢(x 0) = 0 или f ¢(x 0) не существует, называется критической точкой функции f (x ). Говорят, что критические точки подозрительны на экстремум , т.е. они могут быть точками максимума или минимума, но могут и не быть ими.

Теорема 7 (достаточное условие экстремума функции) . Пусть f (x ) дифференцируема в некотором интервале, содержащем критическую точку х о ( кроме, быть может, самой точки х о). Тогда :

а ) если при переходе через х о слева направо производная f ¢(x ) меняет знак с + на - , то х о является точкой максимума функции f (x );

б ) если при переходе через х о слева направо производная f ¢(x ) меняет знак с - на +, то х о является точкой минимума функции f (x ).

Доказательство. Пусть выполнены все условия пункта а ). Возьмем точку х (из указанного интервала) такую, что х < х о, и применим теорему Лагранжа к интервалу (х ; х о). Получим: f (x 0) - f (x ) = (x 0 - x )×f ¢(x 1), где x 1 – некоторая точка из (х ; х о). По условию, f ¢(x 1) > 0 и (x 0 - x ) > 0, поэтому f (x 0) > f (x ) . Аналогично доказывается, что для любой точки х > х о тоже f (x 0) > f (x ). Из этих утверждений следует, что – точка максимума, утверждение а ) доказано. Аналогично доказывается утверждение б ).

Пример 11. В примере 9 показано, что функция у = х 3 всюду возрастает, следовательно, она не имеет экстремумов. Действительно, ее производная у" = 3х 2 равна нулю только при х о = 0, т.е. в этой точке выполняется необходимое условие экстремума функции. Но при переходе через 0 ее производная у" = 3х 2 не меняет знак, поэтому х о = 0 не является точкой экстремума этой функции.

Пример 12. В примере 10 показано, что функция у = 0,25х 4 - 0,5х 2 имеет критические точки х 1 = 0, х 2 = -1, х 3 = 1. На чертеже 34 указано, что при переходе через эти точки ее производная меняет знак, следовательно, х 1 , х 2 , х 3 - точки экстремума, при этом х 1 = 0 - точка максимума, а х 2 = -1, х 3 = 1 - точки минимума.

Далее, делается чертеж к этому примеру. Функция f (x ) = 0,25х 4 - 0,5х 2 исследуется на четность : f (-x ) = 0,25(-х ) 4 - 0,5(-х ) 2 = f (x ), следовательно, эта функция четная, и ее график симметричен относительно оси ОY . Строятся найденные выше точки графика и некоторые вспомогательные точки, лежащие на графике, и они соединяются плавной линией.


y = 0,25x 4 - 0,5x 2 0,5 -0,11

1 0 max 1 х Ö `1/3 –0,14 A B

Черт.37.

Теорема 8 (второе достаточное условие экстремума ). Пусть х 0 – критическая точка функции f (x ), и существует производная второго порядка f ¢¢(х 0). Тогда :

a ) если f ¢¢( х 0) < 0, то х 0 – точка максимума функции f (x );

б) если f ¢¢(х 0) > 0, то х 0 - точка минимума функции f (x ).

Доказательство этой теоремы не рассматривается (см.).

Пример 13. Исследовать на экстремум функцию y = 2x 2 - x 4 .

Решение. Находится производная y ¢ и критические точки, в которых

y ¢= 9: y ¢= 4x - 4x 3 ; 4x - 4x 3 = 0 ® x 1 = 0, x 2 = 1, x 3 = -1 - критические точки. Находится производная второго порядка y ¢¢ и вычисляются ее значения в критических точках: y ¢¢= 4 –12х 2 ; y ¢¢(0) = 4, y ¢¢(1) = –8, y ¢¢(-1) = –8. Так как y ¢¢(0) > 0, то x 1 = 0 - точка минимума; и так как y ¢¢(1) < 0, y ¢¢(-1) < 0, то x 2 = 1, x 3 = -1 - точки максимума данной функции.

Абсолютными экстремумами функции на сегменте [a ; b ] называются наибольшее и наименьшее значения f (x ) на [a ; b ]. Эти экстремумы достигаются или в критических точках функции f (x ), или на концах сегмента [a ; b ].

Пример 14. Определить наибольшее и наименьшее значения функции у = х 2 ×lnx на промежутке .

Решение. Находится производная данной функции и ее критические точки: у ¢ = 2x ×lnx + x 2 ×(1/x ) = x ×(2lnx +1); x ×(2×lnx +1) = 0 ® а) х 1 = 0; б) 2×lnx + 1 = 0 ® ln x = -0,5 ® х 2 = e - 0,5 = 1/Ö `e » 0,607. Критическая точка х 1 = 0 не входит в рассматриваемый промежуток , поэтому находятся значения функции в точке х 2 = e - 0,5 и на концах а = 0,5, b = e . у (e -0,5) = (e - 0,5) 2 ×ln (e - 0,5) = e - 1 (-0,5) = -0,5/e » -0,184; у (0,5) = 0,25×ln 0,5 » 0,25(-0,693) = -0,17325; у (e ) = e 2 ×lne = e 2 ×1» 7,389. Выбираются наибольшее и наименьшее среди найденных значений: наибольшее значение »7,389 в при х = е , наименьшее значение » -0,184 в при х = e - 0,5 .

Задачи на экстремум.

В таких задачах рассматриваются две переменные величины х и у , и требуется найти такое значение х , при котором значение у является наибольшим или наименьшим. Решение такой задачи содержит следующие шаги:

1) выбирается экстремальная величина y , максимум или минимум которой необходимо найти;

2) выбирается переменная х , и y выражается через х ;

3) вычисляется производная у " и находятся критические точки, в которых у " равна 0 или не существует;

4) исследуются критические точки на экстремум;

5) рассматриваются значения y на концах, и вычисляется требуемая в задаче величина.

Пример 15. Экспериментально установлено, что расход бензина

у (л) на 100 км пути автомобилем ГАЗ-69 в зависимости от скорости х (км/ч) описывается функцией у = 18 - 0,3х + 0,003х 2 . Определить наиболее экономичную скорость.

Решение. Здесь первые два шага 1) и 2) выполнены в условии задачи. Поэтому сразу вычисляется производная: у" = -0,3 +0,006х , и находится критическая точка: -0,3 + 0,006х = 0 ® х о = 50 . Теперь, прменяется второе достаточное условие экстремума: у"" = 0,006 > 0 в любой точке, следовательно, х о = 50 - точка минимума. Вывод: наиболее экономичная скорость равна 50 км/ч, при этом расход бензина равен 18 - 0,3×50 + 0,003×50 2 = 10,5 л. на 100 км.

Пример 16. Из квадратного листа картона со стороной 60 см вырезают по углам одинаковые квадраты и из оставшейся части склеивают прямоугольную коробку. Какова должна быть сторона вырезаемого квадрата, чтобы объем коробки был наибольшим .

Решение. Осуществляются указанные выше шаги решения задачи.

1). По условию объем коробки должен быть наибольшим, поэтому пусть y - объем коробки.

2). За х (см) берется сторона вырезаемого квадрата. Тогда высота коробки будет равна х и основанием коробки будет квадрат со стороной

(60 – 2х ), его площадь равна (60 – 2х ) 2 . Следовательно, объем коробки равен y = х (60 – 2х ) 2 = 3600х - 240х 2 + 4х 3 .

3). Вычисляется производная и находятся критические точки: у" = 3600 - 480х + 12х 2 ; х 2 - 40х +300 = 0 ® х 1 =10, х 2 =30 - критические точки.

4). Производная 2-го порядка равна у"" = - 480 + 24х и у"" (10) = -240, у"" (30) = 240. По теореме 8, х 1 =10 - точка максимума и y max = 400 (см 3).

5). Кроме того, х может принять крайнее значение х 3 = 0. Но у (0) = 0 - это меньше чем y max .

Ответ: сторона вырезаемого квадрата равна 10 см.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20

Урок и презентация по алгебре в 10 классе на тему: "Исследование функции на монотонность. Алгоритм исследования"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Алгебраические задачи с параметрами, 9–11 классы
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Убывающие и возрастающие функции.
2. Связь производной и монотонности функции.
3. Две важные теоремы о монотонности.
4. Примеры.

Ребята, ранее мы с вами рассмотрели множество различных функций и строили их графики. Теперь давайте введем новые правила, которое работают для всех функций, которые мы рассматривали и еще будем рассматривать.

Убывающие и возрастающие функции

Давайте рассмотрим понятие возрастающей и убывающей функции. Ребята, а что такое функция?

Функцией называется соответствие y= f(x), в котором каждому значению x ставится в соответствие единственное значение y.

Посмотрим на график некоторой функции:


На нашем графике видно: чем больше x, тем меньше y. Итак, давайте дадим определение убывающей функции. Функция называется убывающей, если большему значению аргумента соответствует меньшее значение функции.

Если x2 > x1, то f(x2) Теперь давайте рассмотрим график такой функции:
На этом графике видно: чем больше x, тем больше y. Итак, давайте дадим определение возрастающей функции. Функция называется возрастающей, если большему значению аргумента соответствует большее значения функции.
Если x2 > x1, то f(x2 > f(x1) или: чем больше x, тем больше y.

Если функция возрастает или убывает на некотором промежутке, то говорят, что она монотонна на данном промежутке .

Связь производной и монотонности функции

Ребята, а теперь давайте подумаем, как можно применять понятие производной при исследовании графиков функций. Нарисуем график возрастающей дифференцируемой функции и проведем пару касательных к нашему графику.

Если посмотреть на наши касательные или зрительно провести любую другую касательную, то можно заметить, что угол между касательной и положительным направлением оси абсцисс будет острым. Значит, касательная имеет положительный угловой коэффициент. Угловой коэффициент касательной равен значению производной в абсциссе точки касания. Таким образом, значение производной положительно во всех точках нашего графика. Для возрастающей функции выполняет следующее неравенство: f"(x) ≥ 0, для любой точки x.

Ребята, теперь давайте посмотрим на график некоторой убывающей функции и построим касательные к графику функции.

Посмотрим на касательные и зрительно проведем любую другую касательную. Мы заметим, что угол между касательной и положительным направлением оси абсцисс - тупой, а значит касательная имеет отрицательный угловой коэффициент. Таким образом, значение производной отрицательно во всех точках нашего графика. Для убывающей функции выполняет следующее неравенство: f"(x) ≤ 0, для любой точки x.


Итак, монотонность функции зависит от знака производной:

Если функция возрастает на промежутке и имеет производную на этом промежутке, то эта производная будет не отрицательна.

Если функция убывает на промежутке и имеет производную на этом промежутке, то эта производная будет не положительна.

Важно , чтобы промежутки, на которых мы рассматриваем функцию были открытыми!

Две важные теоремы о монотонности

Теорема 1. Если во всех точках открытого промежутка Х выполняется неравенство f’(x) ≥ 0 (причем равенство производной нулю либо не выполняется, либо выполняется, но лишь в конечном множестве точек), то функция y= f(x) возрастает на промежутке Х.

Теорема 2. Если во всех точках открытого промежутка Х выполняется неравенство f’(x) ≤ 0 (причем равенство производной нулю либо не выполняется, либо выполняется, но лишь в конечном множестве точек), то функция y= f(x) убывает на промежутке Х.

Теорема 3. Если во всех точках открытого промежутка Х выполняется равенство
f’(x)= 0, то функция y= f(x) постоянна на этом промежутке.

Примеры исследования функции на монотонность

1) Доказать, что функция y= x 7 + 3x 5 + 2x - 1 возрастает на всей числовой прямой.

Решение: Найдем производную нашей функции: y"= 7 6 + 15x 4 + 2. Т.к. степень при x четная, то степенная функция принимает только положительные значения. Тогда y" > 0 для любого x, а значит по теореме 1, наша функция возрастает на всей числовой прямой.

2) Доказать, что функция убывает: y= sin(2x) - 3x.

Найдем производную нашей функции: y"= 2cos(2x) - 3.
Решим неравенство:
2cos(2x) - 3 ≤ 0,
2cos(2x) ≤ 3,
cos(2x) ≤ 3/2.
Т.к. -1 ≤ cos(x) ≤ 1, значит наше неравенство выполняется для любых x, тогда по теореме 2 функция y= sin(2x) - 3x убывает.

3) Исследовать на монотонность функцию: y= x 2 + 3x - 1.

Решение: Найдем производную нашей функции: y"= 2x + 3.
Решим неравенство:
2x + 3 ≥ 0,
x ≥ -3/2.
Тогда наша функция возрастает при x ≥ -3/2, а убывает при x ≤ -3/2.
Ответ: При x ≥ -3/2 - функция возрастает, при x ≤ -3/2 - функция убывает.

4) Исследовать на монотонность функцию: y= $\sqrt{3x - 1}$.

Решение: Найдем производную нашей функции: y"= $\frac{3}{2\sqrt{3x - 1}}$.
Решим неравенство: $\frac{3}{2\sqrt{3x - 1}}$ ≥ 0.

Наше неравенство больше либо равно нуля:
$\sqrt{3x - 1}$ ≥ 0,
3x - 1 ≥ 0,
x ≥ 1/3.
Решим неравенство:
$\frac{3}{2\sqrt{3x-1}}$ ≤ 0,

$\sqrt{3x-1}$ ≤ 0,
3x - 1 ≤ 0.
Но это невозможно, т.к. квадратный корень определен только для положительных выражений, значит промежутков убывания у нашей функции нет.
Ответ: при x ≥ 1/3 функция возрастает.

Задачи для самостоятельного решения

а) Доказать, что функция y= x 9 + 4x 3 + 1x - 10 возрастает на всей числовой прямой.
б) Доказать, что функция убывает: y= cos(5x) - 7x.
в) Исследовать на монотонность функцию: y= 2x 3 + 3x 2 - x + 5.
г) Исследовать на монотонность функцию: y = $\frac{3x-1}{3x+1}$.
mob_info