Какие существуют методы измерения физических величин. Методы измерения физических величин. По характеристике средства измерения различают

Измерение физических величин, заключается в сопоставлении какой - либо величины с однородной величиной, принятой за единицу. В метрологии используется термин "измерение", под которым понимается нахождение значения физической величины опытным путем с помощью специальных технических средств.

Измерение, выполняемые с помощью специальных технических средств, называют инструментальными. Простейшим примером таких измерений является определение размера детали линейкой с делениями, то есть сравнение размера детали с единицей длины, хранимой линейкой.

Производным от термина "измерение" является термин "измерять", широко используемый на практике. Встречаются термины "мерить", "обмерять", "замерять", но применение их в метрологии недопустимо.

Для упорядочения измерительной деятельности измерения классифицируют по следующим признакам:

Общим приемам получения результатов - прямые, косвенные, совместимые, совокупные;

Числу измерений в серии – однократные и многократные;

Метрологическому назначению – технические, метрологические;

Характеристике точности – равноточные и неравноточные;

Отношению к изменению измеряемой величины – статистические и динамические;

Выражению результата измерений – абсолютные и относительные;

Прямые измерения - измерения, при которых искомое значение величины находят непосредственно из опытных данных (измерения массы на весах, температуры термометров, длины с помощью линейных мер). При прямых измерениях объект исследования приводят во взаимодействие со средствами измерений и по показаниям последнего отсчитывают значение измеряемой величины. Иногда показания прибора умножают на коэффициент, вводят соответствующие поправки и т. д. Эти измерения можно записать в виде уравнения: Х = С · Х П,

где Х – значение измеряемой величины в принятых для нее единицах;

С – цена деления шкалы или единичного показания цифрового отсчетного устройства в единицах измеряемой величины;

Х П – отсчет по индикаторному устройству в делениях шкалы.

Косвенные измерения- измерения, при которых искомое значение находят на основании известной зависимости между этой величиной и величинами, полученными прямыми измерениями (определение плотности однородного тела по его массе и геометрическим размерам, удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения). В общем случае эту зависимость можно представить в виде функции Х = (X1,X2,....,Xn), в которой значение аргументов Х1, Х2, ….,Хn находят в результате прямых, а иногда косвенных, совместных или совокупных измерений.

Например, плотность однородного твердого тела ρ находят как отношение массы m к его объему V , а массу и объем тела измеряют непосредственно: ρ=m/V.

Для повышения точности измерений плотности ρ измерения массы m и объема V производят многократно. В этом случае плотность тела

ρ = m/V , m – результат измерения массы тела, m = 1/n Σ m i ;

V=ΣVi/n - результат измерения объема тела Π.

Совокупные измерения- измерения нескольких однородных величин, при которых искомое значение величин находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин (измерения при которых масса отдельных гирь набора находятся по известной массе одной из них и по результатам прямых сравнений масс различных сочетаний гирь).

Совместные измерения- одновременные измерения двух или нескольких разноименных величин для нахождения зависимости между ними (проводимые одновременно измерения приращения длины образца в зависимости от изменений его температуры и определения коэффициента линейного расширения).

Совместные и совокупные измерения по способам нахождения искомых значений измеряемых величин очень близки. Отличие же состоит в том, что при сово­купных измерениях одновременно измеряют несколько одноименных величин, а при совместных - разноименных. Значения измеряемых величин х1, ..., хп определяют на основании совокупных уравнений;

F1 (X1, ..., Хm, Х11, ... , Х1n);

F2 (X1, ..., Хm, Х21, ... , Х1n);

Fn (X1, ..., Хm, Хk1, ... , Хkn),

где Х11, Х21, ……………..Хk n - величины, намеряемые прямыми методами.

Совместные измерения основываются на известных уравнениях, отражающих существующие в природе связи между свойствами объектов, т.е. между величинами.

Абсолютные измерения- измерения, основанные на прямых измерениях одной или нескольких основных величин и использовании физических констант.

Относительные измерения- получение отношения величины к одноименной величине, играющей роль единицы, или изменение величины по отношению к одноименной величине, принимаемой за исходную.

Однократные измерения- измерение, выполняемое один раз (измерение конкретного времени по часам).

Многократные измерения- измерения одной и той же физической величины, результат которых получают из нескольких следующих друг за другом измерений. Обычно многократными измерениями считаются те, которые производятся свыше трех раз.

Технические измерения- измерения, выполняемые при помощи рабочих средств измерений с целью контроля и управления научными экспериментами, контроля параметров изделий и т.д. (измерение давления воздуха в автомобильной камере).

Метрологические измерения - измерения при помощи эталонов и образцовых средств измерений с целью нововведения единиц физических величин или передачи их размеров рабочим средствам измерений.

Равноточные измерения- ряд измерений какой-либо величины, выполненных одинаковыми по точности сред­ствами измерений в одних и тех же условиях.

Неравноточные измерения- ряд измере­ний какой-либо величины, выполненных различными по точности с средствами измерений и в разных условиях.

Статические измерения- измерения фи­зической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения (измерения размера детали при нормальной темпера­туре).

Динамические измерения- измерения фи­зической величины, размер которой изменяется с течением време­ни (измерения расстояния до уровня земли со снижающегося само­лета) .

Средства измерений

Средства измерений - это технические сред­ства, используемые при измерениях и имеющие нормированные метро­логические свойства. От средств измерений зависит правильное определение значе­ния измеряемой величины в процессе ее измерений. К средствам измерений относят: меры: измерительные приборы, измерительные установки, измерительные системы.

Мера - средство измерений, предназначенное для воспроиз­ведения физической величины заданного размера (гиря - мера массы, генератор - мера частоты электрических колебаний). Меры, в свою очередь, подразделяют на однозначные и много­значные.

Однозначная мера- мера, воспроизводящая фи­зическую величину одного размера (плоскопараллельная концевая мера длины, нормальный элемент, конденсатор постоянной емкости),

многозначная мера- мера, воспроизводящая Ряд одноименных физических величин различного размера (линейка: миллиметровыми делениями, конденсатор переменной емкости).

Набор мер - специально подобранный комплект мер, применяемых не только по отдельности, но и в различных соче­таниях с целью воспроизведения Ряда одноименных величин различ­ного размера (набор гирь, набор плоскопараллельных концевых мер длины).

Измерительный прибор средство изме­рений, предназначенное для выработки сигнала измерительной ин­формации в форме, доступной для непосредственного восприятия наблюдателем. Результаты измерений выдаются отсчетными устрой­ствами приборов, которые могут быть шкальными, цифровыми и регистрирующими.

Шкальные отсчетные устройства состоят из шкалы, представля­ющей собой совокупность отметок и чисел, изображающих ряд пос­ледовательных значений измеряемой величины, и указателя (стре­лки, электронного луча и других), связанного с подвижной систе­мой прибора.

Отметки шкалы с представленными числовыми значениями называ­ют числовыми отметками шкалы. Основные характеристики шкалы - длина деления шкалы, выражающаяся расстоянием между осями двух соседних штрихов шкалы, и цена деления шкалы, представ­ляющая значение измеряемой величины, вызывающей перемещение указателя на одно деление.

Принято также выделять понятия: диапазон измерений и диапа­зон показаний.

Диапазон измерений представляет собой часть диапазона пока­заний, для которого нормированы пределы допускаемых погрешно­стей средств измерений. Наименьшее и наибольшее значения диапа­зона измерений называют соответственно нижним и верхним преде­лами измерений.

Значение величины, определяемое по отсчетному устройству средства измерений и выраженное в принятых единицах этой вели­чины, называют показанием средства измерений.

Измеренное значение определяется или путем умножения количе­ства делений шкалы на цену деления шкалы или умножением число­вого значения, считанного по шкале, на постоянную шкалы.

В настоящее время широкое распространение имеют либо механи­ческие, либо световые цифровые отсчетные устройства.

Регистрирующие отсчетные устройства состоят из пишущего или печатного механизма и ленты. Простейшее пишущее устройство пре­дставляет собой перо, заполненное чернилами, фиксирующее резу­льтат измерения на бумажной ленте. В более сложных устройствах запись результата измерений может проводиться световым или электронным лучом, перемещение которого зависит от значений измеряемых величин.

Федеральный закон «Об обеспечении единства измерений» от 27.04.1993 осуществляет регулирование отношений, связанных с обеспечением единства измерений в Российской Федерации, в соответствии с Конституцией РФ.

Основные статьи Закона устанавливают:

  • основные понятия, применяемые в Законе;
  • организационную структуру государственного управления обеспечением единства измерений;
  • нормативные документы по обеспечению единства измерений;
  • единицы величин и государственные эталоны единиц величин;
  • средства и методики измерений.

Закон определяет Государственную метрологическую службу и другие службы обеспечения единства измерений, метрологические службы государственных органов управления и юридических лиц, а также виды и сферы распределения государственного метрологического контроля и надзора.

Отдельные статьи Закона содержат положения по калибровке и сертификации средств измерений и устанавливают виды ответственности за нарушение Закона.

Становление рыночных отношений наложило отпечаток на статью Закона, которая определяет основы деятельности метрологических служб государственных органов управления и юридических лиц. Вопросы деятельности структурных подразделений метрологических служб на предприятиях стимулируются чисто экономическими методами.

В тех сферах, которые не контролируются государственными органами, создается Российская система калибровки , также направленная на обеспечение единства измерений. Госстандарт РФ назначил центральным органом Российской системы калибровки Управление технической политики в области метрологии.

Положение о лицензировании метрологической деятельности направлено на защиту прав потребителей и охватывает сферы, подлежащие государственному метрологическому контролю и надзору. Право выдачи лицензии предоставлено исключительно органам Государственной метрологической службы.

Закон создает условия для взаимодействия с международной и национальными системами измерений зарубежных стран. Это прежде всего необходимо для взаимного признания результатов испытаний, калибровки и сертификации, а также для использования мирового опыта и тенденций в современной метрологии.

Вопросами теории и практики обеспечения единства измерений занимается метрология. Метрология - наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Метрология имеет большое значение для прогресса естественных и технических наук, так как повышение точности измерений - одно из средств совершенствования путей познания природы человеком, открытий и практического применения точных знаний.

Для обеспечения научно-технического прогресса метрология должна опережать в своем развитии другие области науки и техники, ибо для каждой из них точные измерения являются одним из основных путей их совершенствования.

Основными задачами метрологии являются:

  • установление единиц физических величин, государственных эталонов и образцовых средств измерений;
  • разработка теории, методов и средств измерений и контроля; обеспечение единства измерений;
  • разработка методов оценки погрешностей, состояния средств измерения и контроля;
  • разработка методик передачи размеров единиц от эталонов или образцовых средств измерений рабочим средствам измерений.

Измерением называется совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения измеряемой величины с ее единицей (сравнение) и получение значения этой величины. Измерения должны выполняться в общепринятых единицах.

Метрологическое обеспечение (МО) - установление и применение научных и организационных основ, технических средств, правил и норм, необходимых для достижения единства и требуемой точности измерений.

В перечень основных задач метрологического обеспечения в технике входят:

  • определение путей наиболее эффективного использования научных и технических достижений в области метрологии;
  • стандартизация основных правил, положений, требований и норм метрологического обеспечения;
  • согласование приборов и методов измерения, проведение совместных измерений с помощью отечественной и зарубежной аппаратуры (интеркалибрация);
  • определение рациональной номенклатуры измеряемых параметров, установление оптимальных норм точности измерений, порядка выбора и назначений средств измерений;
  • организация и проведение метрологической экспертизы на стадиях разработки, производства и испытаний изделий;
  • разработка и применение прогрессивных методов измерений, методик и средств измерений;
  • автоматизация сбора, хранения и обработки измерительной информации;
  • осуществление ведомственного контроля за состоянием и применением на предприятиях отрасли образцовых, рабочих и нестандартизованных средств измерений;
  • проведение обязательных государственной или ведомственной поверок средств измерений, их ремонта;
  • обеспечение постоянной готовности к проведению измерений;
  • развитие метрологической службы отрасли и др.

Физическая величина - одно из свойств физического объекта (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них.

Единица измерения должна быть установлена для каждой из физических величин, при этом необходимо учитывать, что многие физические величины связаны между собой определенными зависимостями. Поэтому лишь часть физических величин и их единиц может определяться независимо от других. Такие величины называют основными. Производная физическая величина - физическая величина, входящая в систему физических величин и определяемая через основные физические величины этой системы.

Совокупность физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимают за независимые, а другие определяют как функции независимых величин, называется системой единиц физических величин. Единица основной физической величины является основной единицей системы. Международная система единиц (система СИ; SI - от франц. Systeme International - The International System of Units) была принята XI Генеральной конференцией по мерам и весам в 1960 г.

В основу системы СИ положены семь основных и две дополнительные физические единицы. Основные единицы: метр, килограмм, секунда, ампер, кельвин, моль и кандела (табл. 1.1).

Метр - длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 секунды.

Килограмм - единица массы, определяемая как масса международного прототипа килограмма, представляющего собой цилиндр из сплава платины и иридия.

Секунда равна 9 192 631 770 периодам излучения, соответствующего энергетическому переходу между двумя уровнями сверхтонкой структуры основного состояния атома цезия-133.

Ампер - сила неизменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывал бы силу взаимодействия, равную 2 10“ 7 Н (ньютон) на каждом участке проводника длиной 1 м.

Таблица 1.1. Единицы Международной системы СИ

Величина

Наименование

Размерность

Наименование

Обозначение

международное

Основные единицы

килограмм

Сила электрического тока

Температура

Количество

вещества

Сила света

Дополнительные единицы

Плоский угол

Телесный угол

стерадиан

Кельвин - единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды, т. е. температуры, при которой три фазы воды - парообразная, жидкая и твердая - находятся в динамическом равновесии.

Моль - количество вещества, содержащее столько же структурных элементов, сколько содержится в образце углерода-12 массой 0,012 кг.

Кандела - сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540 10 12 Гц, чья энергетическая сила излучения в этом направлении составляет "/ 683 Вт/ср (ср - стерадиан).

Дополнительные единицы системы СИ предназначены и используются для образования единиц угловой скорости, углового ускорения. К дополнительным физическим величинам системы СИ относят плоский и телесный углы.

Радиан {рад) - угол между двумя радиусами окружности, длина дуги которой равна этому радиусу. В практических случаях часто используют такие единицы измерения угловых величин:

градус - 1° = 2л/360 рад = 0,017453 рад;

минута - 1" = 1°/60 = 2,9088 10 4 рад;

секунда - 1" = Г/60 = 1°/3600 = 4,8481 10“ 6 рад;

радиан - 1 рад = 57°17"45" = 57,2961° = (3,4378 10 3)" = (2,0627 10 5)".

Стерадиан {ср) - телесный угол с вершиной в центре сферы, вырезающий на ее поверхности площадь, равную площади квадрата со стороной, равной радиусу сферы.

Производные единицы системы СИ образуют из основных и дополнительных единиц. Производные единицы бывают когерентными и некогерентными. Когерентной называют производную единицу величины, связанную с другими единицами системы уравнением, в котором числовой множитель - единица (например, скорость и равномерного прямолинейного движения связана с длиной пути / и временем t соотношением и = //г). Остальные производные единицы - некогерентные. В табл. 1.2 приведены основные производные единицы.

Размерность физической величины - одна из важнейших ее характеристик, которую можно определить как буквенное выражение, отражающее связь данной величины с величинами, принятыми за основные в рассматриваемой системе величин. В табл. 1.2 для величин приняты следующие размерности: для длины - Ь, массы - М, времени - Т, силы электрического тока - I. Размерности записывают прописными буквами и печатают прямым шрифтом.

Среди получивших широкое распространение внесистемных единиц отметим киловатт-час, ампер-час, градус Цельсия и т. д.

Сокращенные обозначения единиц, как международных, так и русских, названных в честь великих ученых, пишутся с заглавных букв; например ампер - А; ом - Ом; вольт - В; фарад - Ф. Для сравнения: метр - м, секунда - с, килограмм - кг.

Применение целых единиц не всегда удобно, так как в результате измерений получаются слишком большие или малые их значения. Поэтому в системе СИ установлены десятичные кратные и дольные единицы, которые образуются с помощью множителей. Десятичным множителям соответствуют приставки

Таблица 1.2. Производные единицы СИ

Величина

Наименование

Размерность

Наименование

Обозначение

международное

Энергия, работа, количество теплоты

Сила, вес

Мощность, поток энергии

Количество электричества

Электрическое напряжение, электродвижущая сила (ЭДС), потенциал

Электрическая емкость

Ь- 2 М >Т 4 1 2

Электрическое сопротивление

Ь 2 МТ- 3 1-2

Электрическая проводимость

Ь- 2 м-1Т 3 1 2

Магнитная индукция

Поток магнитной индукции

Ц 2 МТ- 2 1-1

Индуктивность, взаимная индуктивность

Ь 2 МТ- 2 1-2

(табл. 1.3), которые пишутся слитно с наименованием основной или производной единицы, например: километр (км), милливольт (мВ), мегагерц (МГц), наносекунда (нс).

Если физическая единица в целое число раз больше системной, она называется кратной единицей, например килогерц (10 3 Гц). Дольная единица физической величины - единица, меньшая системной в целое число раз, например, микрогенри (КГ 6 Гн).

Мерой физической величины или просто мерой называют средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных

Таблица 1.3. Множители и приставки для образования десятичных кратных и дольных единиц СИ

Множитель

Приставка

Обозначение приставки

международное

единицах и известны с необходимой точностью. Различают следующие разновидности мер:

  • однозначная мера - мера, воспроизводящая физическую величину одного размера (например, гиря 1 кг);
  • многозначная мера - мера, воспроизводящая физическую величину разных размеров (например, штриховая мера длины);
  • набор мер - комплект мер одной и той же физической величины, но разного размера, предназначенных для применения на практике, как в отдельности, так и в различных сочетаниях (например, набор концевых мер длины);
  • магазин мер - набор мер, конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях (например, магазин электрических сопротивлений).

Электроизмерительными приборами называют средства электрических измерений, предназначенные для выработки информации о значениях измеряемой величины, в форме, доступной для непосредственного восприятия наблюдателем, например амперметр, вольтметр, ваттметр, фазометр.

Измерительными преобразователями называют средства электрических измерений, предназначенные для выработки измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки или хранения, но не поддающейся непосредственному восприятию наблюдателем. Измерительные преобразователи можно разделить на два вида:

  • преобразователи электрических величин в электрические, например шунты, делители или усилители напряжения, трансформаторы;
  • преобразователи неэлектрических величин в электрические, например термоэлектрические термометры, терморезисторы, тензорезисторы, индуктивные и емкостные преобразователи.

Электроизмерительная установка состоит из ряда средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, расположенных в одном месте. При помощи таких установок можно в ряде случаев производить более сложные и более точные измерения, чем при помощи отдельных измерительных приборов. Электроизмерительные установки широко используются, например, для поверки и градуировки электроизмерительных приборов и испытаний различных материалов, используемых в электротехнических конструкциях.

Измерительные информационные системы представляют собой совокупность средств измерений и вспомогательных устройств, соединенных между собой каналами связи. Они предназначены для автоматического получения, передачи и обработки измерительной информации от многих источников.

В зависимости от способа получения результата измерения делятся на прямые и косвенные.

Прямыми называются измерения, результат которых получается непосредственно из опытных данных. Примеры прямых измерений: измерение тока амперметром, длины детали микрометром, массы на весах.

Косвенными называются измерения, при которых искомая величина непосредственно не измеряется, а ее значение находится на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. Например, мощность Р в цепях постоянного тока вычисляют по формуле Р= Ш, напряжение и в этом случае измеряют вольтметром, а ток / - амперметром.

В зависимости от совокупности приемов измерений все методы делятся на методы непосредственной оценки и методы сравнения.

Под методом непосредственной оценки понимают метод, по которому измеряемая величина определяется непосредственно по отсчетному устройству измерительного прибора прямого действия, т. е. прибора, осуществляющего преобразование измерительного сигнала в одном направлении (без применения обратной связи), например измерение тока амперметром. Метод непосредственной оценки прост, но отличается относительно низкой точностью.

Методом сравнения называют метод, по которому измеряемая величина сравнивается с величиной, воспроизводимой мерой. Отличительной чертой метода сравнения является непосредственное участие меры в процессе измерения, например измерение сопротивления путем сравнения его с мерой сопротивления - образцовой катушкой сопротивления, измерение массы на рычажных весах с уравновешиванием гирями. Методы сравнения обеспечивают большую точность измерения, чем методы непосредственной оценки, но это достигается за счет усложнения процесса измерения.

Глава 1. ИЗМЕРЕНИЕ ФИЗИЧЕСКИХ ВЕЛИЧИН

Большое разнообразие явлений, с которыми приходится сталкиваться в практической деятельности, определяет широкий круг величин, подлежащих измерению. Основным объектом изучения в метрологии является измерение физических величин. Во всех случаях проведения измерений, независимо от величины, метода и средства измерения, есть общее, что составляет основу измерений – это сравнение размера данной величины с единицей, хранимой средством измерения. При всяком измерении мы с помощью эксперимента определяем количественно физическую величину в виде некоторого числа принятых для нее единиц, т.е. находим значение размера физической величины. Измерение проводят c использованием шкалы – заранее составленной упорядоченной совокупности последовательности физических величин, принятой по соглашению.

Выбор единиц измерения величин имеет большое значение для сопоставления результатов, выполненных с использованием разных методов, средств и в разных условиях измерения. Поэтому принято устанавливать их размеры законодательным путем. Утвержденная XI Генеральной конференцией по мерам и весам Международная система единиц создала реальные перспективы полной унификации единиц измерения во всех странах мирового сообщества.

Объекты измерений

Шкалы измерений

Шкала измерения служит исходной основой для измерений данной величины. Она представляет собой упорядоченную совокупность значений величины.

Практическая деятельность привела к формированию различных видов шкал измерений физических величин, основными из которых являются четыре, рассматриваемых ниже.



1. Шкала порядка (рангов) представляет собой ранжированный ряд упорядоченную по возрастанию или убыванию последовательность величин, характеризующих изучаемое свойство. Она позволяет установить отношение порядка по возрастанию ли убыванию величин, но нет возможности судить, во сколько раз (или на сколько) больше или меньше одна величина по сравнению с другой. В шкалах порядка в ряде случаев может существовать нуль (нулевая отметка), принципиальным для них является отсутствие единицы измерения, т.к. ее размер невозможно установить, в этих шкалах над величинами нельзя проводить математические операции (умножение, суммирование).

Примером шкалы порядка является шкала Мооса для определения твердости тел. Это шкала с реперными точками, которая содержит 10 опорных (реперных) минералов с различными условными числами твердости. Примерами таких шкал также являются шкала Бофорта для измерения силы (скорости) ветра и шкала землетрясений Рихтера (сейсмическая шкала).

2. Шкала интервалов (разностей) отличается от шкалы порядка тем, что для измеряемых величин вводятся не только отношения порядка, но и суммирования интервалов (разностей) между различными количественными проявлениями свойств. Шкалы разностей могут иметь условные нули-реперы и единицы измерений, установленные по согласованию. По шкале интервалов можно определить, на сколько одна величина больше или меньше другой, но нельзя сказать во сколько раз. По шкалам интервалов измеряют время, расстояние (если не известно начало пути), температуру по Цельсию и т. д.

Шкалы интервалов являются более совершенными, чем шкалы порядка. В этих шкалах над величинами можно проводить аддитивные математические операции (сложение и вычитание), но нельзя – мультипликативные (умножение и деление).

3. Шкала отношений описывает свойства величин, для которых применимы отношения порядка, суммирования интервалов и пропорциональности. В этих шкалах существует естественный нуль и по согласованию устнавливают единицу измерения. Шкала отношений служит для представления результатов измерений, полученных в соответствии с основным уравнением измерений (1.1) путем экспериментального сравнения неизвестной величины Q с ее единицей [Q]. Примерами шкал отношений являются шкалы массы, длины, скорости, термодинамической температуры.

Шкала отношений является самой совершенной и наиболее распространенной из всех измерительных шкал. Это единственная шкала, по которой можно установить значение измеренного размера.На шкале отношенийопределены любые математические операции, что и позволяет вносить в показания, нанесенные на шкалу, мультипликативные и аддитивные поправки.

4. Абсолютная шкала обладает всеми признаками шкалы отношений, но дополнительно в ней существует естественное однозначное определение единицы измерений. Такие шкалы используют для измерений относительных величин (коэффициенты усиления, ослабления, полезного действия, отражения, поглощения, амплитудной модуляции и т.д.). Ряду таких шкал присущи границы, заключенные между нулем и единицей.

Шкалы интервалов и отношений объединяют термином «метрические шкалы». Шкалу порядка относят к условным шкалам, т.е. к шкалам, в которых не определена единица измерения и иногда называют неметрической. Абсолютные и метрические шкалы относят к разряду линейных. Практическая реализация шкал измерений осуществляется путем стандартизации как самих шкал и единиц измерений, так и, в необходимых случаях, способов и условий их однозначного воспроизведения.

Основные единицы СИ

Основной единицей величины называется единица основной физической величины, т.е. величины, которая условно принята в качестве независимой от других величин системы. При выборе основных единиц СИ исходили из того, чтобы: 1) охватить системой все области науки и техники; 2) создать основу образования производных единиц для различных физических величин; 3) принять удобные для практики размеры основных единиц, уже получивших широкое распространение; 4) выбрать единицы таких величин, воспроизведение которых с помощью эталонов возможно с наибольшей точностью.

Основные единицы СИ с указанием сокращенных обозначений русскими и латинскими буквами приведены в табл. 1.1.

Таблица 1.1.

Основные единицы СИ

Определения основных единиц, соответствующие решениям Генеральной конференции по мерам и весам, следующие.

Метр равен длине пути, проходимого светом в вакууме за 1/299 792 458 долю секунды.

Килограмм равен массе международного прототипа килограмма.

Секунда равна 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывает на каждом участке проводника длиной 1 м силу взаимодействия, равную 2×10 –7 Н.

Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды.

Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0.012 кг.

Кандела равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 540×10 12 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

Три первые единицы СИ (метр, килограмм и секунда) позволяют образовать производные единицы для измерения механических и акустических величин. При добавлении к ним единицы температуры (кельвина) можно образовать производные единицы для измерений тепловых величин.

Метр, килограмм, секунда и ампер служат основой для образования производных единиц в области электрических, магнитных измерений и измерений ионизирующих излучений, а моль используют для образования единиц в области физико-химических измерений.

Производные единицы СИ

Производные единицы Международной системы единиц образуются из основных при помощи уравнений связи между величинами, в которых числовые коэффициенты равны единице. Например, для установления единицы линейной скорости v следует воспользоваться уравнением равномерного прямолинейного движения

где l - длина пройденного пути (в метрах); t - время (в секундах).

Следовательно, единица скорости СИ – метр в секунду – это скорость прямолинейно и равномерно движущейся точки, при которой она за время 1 с перемещается на расстояние 1 м.

Производным единицам могут присваиваться наименования в честь известных ученых. Так, единице давления 1 Н/м 2 присвоено специальное наименование – паскаль (Па) по имени французского математика и физика Блеза Паскаля. Производные единицы, имеющие специальные названия, приведены в табл. 1.2.


Таблица 1.2.

Производные единицы СИ, имеющие специальные названия

Величина Единица
Наименование Размерность Наименование Обозначение Выражение через единицы СИ
Частота Т -1 герц Гц с -1
Сила, вес LMT -2 ньютон Н м·кг·c -2
Давление, механическое напряжение L -1 MT -2 паскаль Па м -1 ·кг·с -2
Энергия, работа, количество теплоты L 2 MT -2 джоуль Дж м 2 ·кг·c -2
Мощность L 2 MT -3 ватт Вт м 2 ·кг·c -3
Количество электричества TI кулон Кл с·A
Электрическое напряжение, потенциал L 2 MT -3 I -1 вольт В м 2 ·кг·c -3 А -1
Электрическая ёмкость L -2 M -1 T 4 I 2 фарад Ф м -2 ·кг -1 ·c 4 ·A 2
Электрическое сопротивление L 2 MT -3 I -2 ом Ом м 2 ·кг·c -3 ·A -2
Электрическая проводимость L -2 M -1 T 3 I 2 сименс См м -2 ·кг -1 ·c 3 ·А 2
Поток магнитной индукции L 2 MT -2 I -1 вебер Вб м 2 ·кг·c -2 ·А -1
Магнитная индукция MT -2 I -1 тесла Тл кг·c -2 ·А -1
Индуктивность L 2 MT -2 I -2 генри Гн м 2 ·кг·c -2 ·А -2
Активность радионуклида Т -1 беккерель Бк с -1
Поглощенная доза излучения L 2 T -2 грей Гр м 2 с -2
Эквивалентная доза излучения L 2 T -2 зиверт Зв м 2 ·c -2

Для измерения плоского и телесного углов в СИ предназначены радиан и стерадиан соответственно.

Радиан (рад) – единица плоского угла – это угол между двумя радиусами окружности, дуга между которыми по длине равна радиусу. В градусном исчислении радиан равен 57°17"48".

Стерадиан (ср) – единица телесного угла – это телесный угол, вершина которого расположена в центре сферы и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной, по длине равной радиусу сферы.

Сами по себе радиан и стерадиан применяются в основном для теоретических расчетов, на практике измерения углов производят в угловых градусах (минутах, секундах). Именно в этих единицах проградуировано большинство угломерных средств измерений.

Кратные и дольные единицы

Различают кратные и дольные единиц величин. Кратная единица – это единица физической величины, в целое число раз превышающая системную или внесистемную единицу. Например, единица длины километр равна 10 3 м, т.е. кратна метру. Дольная единица – единица физической величины, значение которой в целое число раз меньше системной или внесистемной единицы. Например, единица длины миллиметр равна 10 -3 м, т.е. является дольной.

Для удобства применения единиц физических величин СИ приняты приставки для образования наименований десятичных кратных единиц и дольных единиц, табл. 1.3.

Таблица 1.3.

Множители и приставки для образования десятичных кратных и дольных единиц и их наименования

Множитель Приставка Обозначение приставки
русское международное
10 24 иотта Y И
10 21 зетта Z З
10 18 экса Э Е
10 15 пета П Р
10 12 тера Т Т
10 9 гига Г G
10 6 мега М М
10 3 кило к k
10 2 гекто г h
10 1 дека да da
10 -1 деци д d
10 -2 санти с c
10 -3 милли м m
10 -6 микро мк m
10 -9 нано н n
10 -12 пико п p
10 -15 фемто ф f
10 -18 атто а a
10 -21 зепто z з
10 -24 иокто y и

В соответствии с международными правилами кратные и дольные единицы площади и объема следует образовывать, присоединяя приставки к исходным единицам. Таким образом, степени относятся к тем единицам, которые получены в результате присоединения приставок. Например, 1 км 2 = 1 (км) 2 = (10 3 м) 2 = 10 6 м 2 .

Виды и методы измерений

Понятие измерения

Измерение является важнейшим понятием в метрологии. Как было сказано выше, оно представляет собой процесс нахождения значения физической величины с помощью специальных технических средств (средств измерений). При измерении проводят наблюдения за объектом измерения с целью своевременно и правильно произвести отсчет. Объектом измерения может быть техническое устройство (например, камерная печь), технологические процессы, окружающая среда, расход веществ и материалов, показатели жизнедеятельности человека и др. Физическую величину, которая выбрана для измерений, называют измеряемой величиной .

Кроме измеряемой величины на объект измерения и, соответственно результат измерения, оказывают влияние другие физические величины, не измеряемые данным средством измерения. Их называют влияющими физическими величинами . Влияющие величины подразделяют на следующие группы:

климатические (температура окружающей среды, влажность воздуха, атмосферное давление);

электрические и магнитные (колебания электрического тока, напряжение в электрической цепи, частота переменного тока, магнитное поле);

внешние нагрузки (вибрации, ударные нагрузки, ионизирующее излучение).

Действие этих величин на результат измерения, а также несовершенство изготовления средства измерения, субъективные ошибки человека-оператора и ряд других факторов являются причинами, обусловливающими неизбежное появление погрешности измерения.

Процесс решения любой измерительной задачи, включает в себя, как правило, три этапа:

1) подготовка к измерениям (выбор методов и средств измерений, обеспечение условий измерения и т.п.);

2) проведение измерений (измерительный эксперимент);

3) обработка результатов измерения.

В процессе измерительного эксперимента, представленного на рис. 1.2, объект измерения и средство измерения, приводятся во взаимодействие. При этом измеряемая величина, воздействуя на средство измерения, преобразуется в некоторый сигнал, который воспринимает человек или различные технические устройства – потребители измерительной информации.

Рис. 1.2. Схема процесса получения измерения

Этот сигнал функционально связан с измеряемой физической величиной, поэтому его называют сигналом измерительной информации. Наиболее часто в качестве сигналов используют:

сигналы постоянного уровня (постоянный электрический ток и напряжение, давление сжатого воздуха, световой поток);

синусоидальные сигналы (переменный электрический ток и напряжение);

последовательность прямоугольных импульсов (электрических, световых).

Воспринятые сигналы измерительной информации далее могут подвергаться обработке с целью наиболее удобного представления результата измерения. Такая обработка может включать статистическую обработку (при многократных измерениях величины), дополнительные расчеты (при косвенных измерениях), округление и т.п. Вопросы, связанные с обработкой результатов измерений рассмотрены далее (п. 2.4).

Классификация измерений

Измерения весьма разнообразны, и классифицировать их можно по различным признакам, наиболее важные из которых отражены на рис. 1.3.

Рис. 1.3. Классификация измерений

Во-первых, измерения определяются физическим характером явлений (процессов), в соответствии с которым сложились определенные совокупности физических величин, родственных по природе или применению в отдельных областях науки и техники, – механические, тепловые, физико-химические и другие измерения.

Во-вторых, измерения в зависимости от способа получения результатов измерения подразделяют на прямые и косвенные. Прямые – это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных. При этом объект измерения приводят во взаимодействие со средством измерения и по его показаниям определяют значение измеряемой величины. Примеры прямых измерений: измерение длины линейкой, времени при помощи часов, массы при помощи весов, температуры – термометром, силы тока – амперметром и др. К прямым измерениям относят измерения подавляющего большинства параметров технологических процессов.

Косвенные – это измерения, при которых искомую величину определяют на основании результатов прямых измерений, функционально с ней связанных. Значение величины Q находят путем вычисления по формуле

Q = f (X 1 , X 2 ,…X m), (1.5)

где X 1 , X 2 ,…X m – величины, размер которых определяют из прямых измерений

Примеры косвенных измерений: определение плотности однородного тела по его массе и объему, электрического сопротивления проводника по падению напряжения и силе тока, мощности по силе тока и напряжению.

Косвенные измерения широко распространены в тех случаях, когда искомую величину невозможно или слишком сложно измерить непосредственно или когда прямое измерение дает менее точный результат. Роль их особенно велика при измерении величин, недоступных непосредственному экспериментальному сравнению, например размеров астрономического или внутриатомного порядка.

По метрологическому назначению измерения подразделяют на технические и метрологические. Технические измерения проводятся рабочими средствами измерения с целью определения значения измеряемой величины, а также при ее контроле. Эти измерения являются наиболее распространенными и выполняются во всех отраслях промышленности и науки. Метрологические измерения выполняют при помощи эталонов с целью воспроизведения единиц физических величин и для передачи их размера рабочим средствам измерений (при поверочных и калибровочных работах, осуществляемых метрологическими службами).

По числу измерений, выполненных для получения результата, различают одно- и многократные измерения. Однократным называют измерение, выполненное один раз. Например, измерение времени по часам. Если необходима большая уверенность в получаемом результате, то проводят многократные измерения одной и той же величины, за результат которого обычно принимают среднее арифметическое значение отдельных измерений Обычно для многократных измерений число измерений n ³3.

По зависимости измеряемой величины от времени измерения подразделяют на статические и динамические. При статических измерениях физическая величина принимается за неизменную на протяжении времени измерения (например, измерение длины детали при нормальной температуре). Если размер физической величины изменяется с течением времени, то такие измерения называют динамическими (например, измерение расстояния до поверхности земли со снижающегося самолета).

В зависимости от точности применяемых средств измерения и условий измерения их подразделяют на равноточные и неравноточные. Равноточными называют измерения величины, выполненных с одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью. Если измерения были выполнены различающимися по точности средствами измерений и (или) в разных условиях, то их называют неравноточными .

Кроме приведенных на рис. 1.3. признаков классификации измерений для конкретных случаев при необходимости могут быть использованы и другие. Например, измерения можно подразделять в зависимости от места выполнения на лабораторные и промышленные; в зависимости от формы представлении результатов – на абсолютные и относительные.

Приведенные выше измерения можно выполнять различными методами, т.е. способами решения измерительной задачи.

Методы измерений

Метод измерения представляет собой прием или совокупность приемов сравнения измеряемой величины с ее единицей в соответствии с реализованным принципом измерений. Под принципом измерений понимают физические эффекты (явления), положенные в основу измерений. Например, измерение температуры с использованием термоэлектрического эффекта. Метод измерений обычно обусловлен устройством средств измерений.

Существует множество методов измерений, и по мере развития науки и техники их число увеличивается. Каждую физическую величину можно измерить, как правило, несколькими методами. Для их систематизации необходимо выделить общие характерные признаки. Одним из таких признаков является наличие или отсутствие при измерении меры. В зависимости от этого различают два метода измерений: метод непосредственной оценки и метод сравнения с мерой (рис. 1.4). Мерой называют средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью. Подробнее о разновидностях мер – см. п. 3.1.

Рис. 1.4. Классификация методов измерений

Наиболее распространен метод непосредственной оценки . Его сущность состоит в том, что значение измеряемой величины определяют непосредственно по отсчетному устройству измерительного прибора, например измерение напряжения вольтметром, взвешивание груза на пружинных весах (рис. 1.5). При этом массу груза Х определяют на основе измерительного преобразования по значению деформации d пружины.

Рис. 1.5. Схема измерения методом непосредственной оценки

Измерения с помощью метода непосредственной оценки, как правило, просты и не требуют высокой квалификации оператора, поскольку не нужно создавать специальные измерительные установки и выполнять какие-либо сложные вычисления. Однако точность измерений чаще всего оказывается невысокой из-за воздействия влияющих величин и необходимости градуировки шкал приборов.

Наиболее многочисленной группой приборов, служащих для измерения методом непосредственной оценки, являются показывающие (в т.ч. стрелочные приборы). К ним относят манометры, динамометры, барометры, амперметры, вольтметры, ваттметры, расходомеры, жидкостные термометры и многие другие. Измерения при помощи интегрирующего прибора-счетчика или самопишущего прибора также относят к методу непосредственной оценки.

При проведении более точных измерений предпочтение отдают методу сравнения с мерой , при котором измеряемую величину находят сравнением с величиной, воспроизводимой мерой. Отличительной особенностью этого метода является непосредственное участие меры в процессе измерения.

Методы сравнения в зависимости от наличия или отсутствия при сравнении разности между измеряемой величиной и величиной, воспроизводимой мерой, подразделяют на нулевой и дифференциальный. В обоих из этих методов различают методы противопоставления, замещения и совпадения.

Нулевой метод измерений – это метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля. В этом случае значение измеряемой величины принимается равным значению меры. Совпадение значений измеряемой величины и меры отмечают при помощи нулевого указателя (нуль-индикатора). Примеры нулевого метода измерения: взвешивание на равноплечих весах; измерение сопротивления, индуктивности и емкости при помощи уравновешенного моста; измерение температуры в оптическом пирометре с применением образцовой лампы накаливания (соответственно весы, гальванометр и глаз человека – это нулевые указатели).

Дифференциальный метод измерений (его также называют разностным) – это метод сравнения с мерой, при котором измеряемая величина сравнивается с мерой, и при этом измеряется разность между этими двумя величинами. Мера должна иметь значение, незначительно отличающееся от значения измеряемой величины. Пример дифференциального метода: измерение длины детали по разности между измеряемой длиной и концевой мерой длины (в области линейных и угловых измерений этот метод называют относительным); измерение сопротивления, индуктивности и емкости при помощи неуравновешенного моста; взвешивание на неравноплечих весах. Применение нулевого указателя в данном методе не требуется.

Метод противопоставления заключается в том, что измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между этими величинами. Примером нулевого метода противопоставления является взвешивание груза Х на равноплечих весах (рис. 1.6, а), когда измеряемая масса груза Х равна массе гирь, ее уравновешивающих. Состояние равновесия определяют по положению указателя нуль-индикатора (он должен находиться на нулевой отметке). При взвешивании груза в случае дифференциального метода противопоставления масса груза Х уравновешивается массой гири и силой упругой деформации пружины (рис. 1.6, б), значение которой отсчитывают по шкале прибора. Массу груза определяют как сумму массы гири и показаний, отсчитанных по шкале.

а)
б)

Рис. 1.6. Схема измерения методом сравнения с мерой: а – нулевой, б - дифференциальный

Метод противопоставления широко используют для измерения различных физических величин. Как правило, он обеспечивает большую точность измерения, чем метод непосредственной оценки, за счет уменьшения воздействия на результат измерения погрешности средства измерения и влияющих величин.

К разновидностям метода сравнения с мерой относится и метод замещения , широко применяемый в практике точных метрологических исследований. Сущность метода в том, что измеряемую величину замещают мерой с известным значением величины, т.е. измеряемая величина и мера последовательно воздействуют на измерительный прибор. В нулевом методе проводят полное замещение измеряемой величины мерой, и результат измерения принимается равным значению меры. В дифференциальной методе не удается провести полное замещение и для получения значения измеряемой величины к значению меры следует прибавить величину, на которую изменилось показание прибора.

Вследствие того, что измеряемая величина и мера включаются одна за другой в одну и ту же часть измерительной цепи прибора, точность измерений значительно повышается по сравнению с измерениями, проводимыми с помощью других разновидностей метода сравнения, где асимметрия цепей, в которые включаются сравниваемые величины, приводит к возникновению систематических погрешностей. Метод замещения часто применяется при электрических измерениях с помощью мостов переменного тока.

Метод совпадений представляет собой разновидность метода сравнения с мерой, в котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов. По принципу метода совпадений построен нониус, входящий в состав ряда измерительных приборов (например, штангенциркуля).

Кроме рассмотренных методов измерений различают также контактные и бесконтактные в зависимости от наличия (или отсутствия) непосредственного контакта между чувствительным элементом средства измерения и объектом измерения. Примеры контактного метода – измерение диаметра вала штангенциркулем, измерение температуры тела термометром. Примеры бесконтактного метода – измерение температуры в доменной печи пирометром, измерение расстояния до объекта радиолокатором.

Погрешности измерений

Результат измерений величины зависит от многих факторов: выбора метода и средства измерений, условий его осуществления (например, температуры, давления, влажности окружающей среды), способа обработки результатов измерений, квалификации оператора, выполняющего измерения, и др. Указанные факторы приводят к различию в значении результата измерения величины и ее истинного значения, т.е. к погрешности. Одной из основных задач метрологии является разработка методов определения погрешностей измерений.

В зависимости от степени приближения к объективно существующему значению величины следует различать истинное значение величины и результат ее измерения, а также ее действительное значение.

Истинным значением Х и величиныназывают значение, идеальным образом характеризующее в качественном и количественном отношении соответствующую физическую величину. Оно может быть получено только в результате бесконечного процесса измерений с бесконечным совершенствованием методов и средств измерений.

Результатом измерения Х изм называют значение, полученное при ее измерении с применением конкретных методов и средств измерений.

Погрешность результата измерения (или погрешность измерения) D – это отклонение результата измерения от истинного значения измеряемой величины, т.е.

D = Х изм – Х и.

Но поскольку истинное значение измеряемой величины неизвестно, то точно неизвестны и погрешности измерений, поэтому на практике для определения погрешности используют так называемое действительное значение величины, которым заменяют истинное значение.

Действительное значение Х д величиныэто значение, полученное экспериментально и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него. Действительное значение находят более точными методами и средствами измерений. Чем выше точность средства и метода измерений, с помощью которых определено Х д, тем с большей уверенностью оно рассматривается как близкое к истинному. Поэтому на практике погрешность измерения D (здесь имеется в виду абсолютная погрешность) находят по формуле

D = Х изм – Х д (1.6)

Полностью устранить погрешности невозможно, но можно уменьшить их с помощью методов, рассмотренных ниже.

Точность результата измерения – это одна из важнейших характеристик (показателей) качества измерения, отражающая близость к нулю погрешности результата измерения. Кроме того, показателями качества измерений являются сходимость, воспроизводимость, правильность и достоверность результатов измерений, о которых речь пойдет ниже.

Правило трех сигм

Характерное свойство нормального распределения состоит в том, что в интервале ± 1s] находится около 68 % из всех его результатов измерений. В интервале ± 2s] - 95 %. В интервале ± 3s] - 99,73 % (рис. 1.12). Следовательно, почти все результаты измерений лежат в интервале 6s (по три s в каждую сторону от M[Х]). За пределами этого интервала могут находится 0,27 % данных от их общего числа (приблизительно три из тысячи результатов измерений).

Рис. 1.12. Иллюстрация правила трех сигм

Отсюда следует, что если какое-либо значение величины выходит за пределы ±3s, то с большой вероятностью его можно считать ошибочным.

На основании этого сформулировано правило трех сигм : если при многократных измерениях (n > 25…30) одной и той же величины постоянного размера сомнительный результат Х сомн отдельного измерения (максимальный или минимальный) отличается от среднего значения более чем на 3s, то с вероятностью 99,7 % он ошибочен, т.е.

если > 3s, (1.12)

то Х сомн является промахом; его отбрасывают и не учитывают при дальнейшей обработке результатов измерений.

Закон нормального распределения работает при числе результатов измерений n = ¥. В реальности получают конечное число измерений, которые подчиняются закону распределения Стьюдента. При n>25 распределение Стьюдента стремится к нормальному.

Глава 2. СРЕДСТВА ИЗМЕРЕНИЙ

Одним из важнейших элементов процесса измерения, который позволяет непосредственно получать измерительную информацию, является средство измерения. Каждый день осуществляется огромное количество измерений с помощью целой «армии» разнообразных средств измерений. Их много, они могут быть простыми в использовании, как например, линейка, или представлять собой сложнейшие аппараты, требующие высококвалифицированного обслуживания, как например, радионавигационная система. Вне зависимости от сложности, назначения и принципа действия все они выполняют одну и ту же функцию – сравнивают неизвестный размер физической величины с его единицей. При этом важно, чтобы средство измерений «умело» хранить (и воспроизводить) единицу физической величины таким образом, чтобы выполнялось требование неизменности размера хранимой единицы в течение времени. Именно это «умелое хранение» отличает средства измерений от иных технических средств. Таким образом, средство измерения представляет собой техническое средство (или их комплекс), предназначенное для изме­рений, имеющее нормированные метрологические ха­рактеристики, воспроизводящее и (или) хранящее еди­ницу физической величины, размер которой принимается неизменным (в преде

Измерение физической величины - совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины .

В простейшем случае, прикладывая линейку с делениями к какой-либо детали, по сути сравнивают ее размер с единицей, хранимой линейкой, и, произведя отсчет, получают значение величины (длины, высоты, толщины и других параметров детали). С помощью измерительного прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, и проводят отсчет.

Определение понятия "измерение" удовлетворяет общему уравнению измерений, что имеет существенное значение в деле упорядочения системы понятий в метрологии. В нем учтена техническая сторона (совокупность операций), раскрыта метрологическая суть измерений (сравнение с единицей) и показан гносеологический аспект (получение значения величины).

Виды измерений

Область измерений - совокупность измерений физических величин, свойственных какой-либо области науки или техники и выделяющихся своей спецификой. Примечание - Выделяют ряд областей измерений: механические, магнитные, акустические, измерения ионизирующих излучений и др.

Вид измерений - часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин. Пример - В области электрических и магнитных измерений могут быть выделены как виды измерений: измерения электрического сопротивления, электродвижущей силы, электрического напряжения, магнитной индукции и др.

Существует несколько видов измерений.

По характеру зависимости измеряемой величины от времени измерения разделяются на:

статические измерения;

динамические измерения.

По способу получения результатов измерений их разделяют на:

косвенные;

совокупные;

совместные.

По условиям, определяющим точность результата, измерения делятся на:

метрологические измерения;

контрольно-поверочные измерения;

технические измерения.

По способу выражения результатов различают:

абсолютные измерения;

относительные измерения.

По характеристике средства измерения различают:

равноточные измерения;

неравноточные измерения.

По числу измерений в ряду измерений:

однократные измерения;

многократные измерения.

Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе измерений, по количеству измерительной информации, по отношению к основным единицам.

По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.

Прямые измерения - это непосредственное сравнение физической величины с ее мерой. Например, при определении длины предмета линейкой происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т. е. линейкой.

Косвенные измерения - отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью. Так, если измерить силу тока амперметром, а напряжение вольтметром, то по известной функциональной взаимосвязи всех трех величин можно рассчитать мощность электрической цепи.

Совокупные измерения - сопряжены с решением системы уравнений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.

Совместные измерения - это измерения двух или более неоднородных физических величин для определения зависимости между ними.

Совокупные и совместные измерения часто применяют в измерениях различных параметров и характеристик в области электротехники.

По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и статические измерения.

Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т. д. Статические измерения имеют место тогда, когда измеряемая величина практически постоянна.

Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения. Статические и динамические измерения в идеальном виде на практике редки.

По количеству измерительной информации различают однократные и многократные измерения.

Однократные измерения - это одно измерение одной величины, т. е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.

Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Преимущество многократных измерений - в значительном снижении влияний случайных факторов на погрешность измерения. измерение метрологический шкала

Методы измерения определяются видом измеряемых величин, их размерами, требуемой точностью результата, требуемой быстротой процесса измерения и прочими данными.

Существует множество методов измерения, и по мере развития науки и техники число их все увеличивается.

По способу получения числового значения измеряемой величины все измерения разделены на три основных вида: прямые, косвенные и совокупные.

Прямыми называются измерения, при которых искомое значение величины находят непосредственно из опытных данных (например, измерение массы на циферблатных или равноплечных весах, температуры – термометром, длины – с помощью линейных мер).

Косвенными называются измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям (например, плотности однородного тела по его массе и геометрическим размерам; определение электрического сопротивления по результатам измерения падения напряжения и силы тока).

Совокупными называются измерения, при которых одновременно измеряют несколько одноименных величин, а искомое значение величин находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин (например, измерения, при которых массы отдельных гирь набора устанавливают по известной массе одной из них и по результатам прямых сравнений масс различных сочетаний гирь).

Ранее говорилось о том, что на практике наибольшее распространение получили прямые измерения ввиду их простоты и скорости исполнения. Дадим краткую характеристику прямым измерениям.

Прямые измерения величин можно производить следующими методами:

1) Метод непосредственной оценки – значение величины определяют непосредственно по отсчетному устройству измерительного прибора (измерение давления – пружинным манометром, массы – циферблатными весами, силы электрического тока – амперметром).

2) Метод сравнения с мерой измеряемую величину сравнивают с величиной, воспроизводимой мерой (измерение массы рычажными весами с уравновешиванием гирями).

3) Дифференциальный метод – метод сравнения с мерой, при котором на измерительный прибор действует разность измеряемой величины и известной величины, воспроизводимой мерой (измерения, выполняемые при проверке мер длины сравнением с образцовой мерой на компараторе).

4) Нулевой метод – метод сравнения с мерой, когда результирующий эффект воздействия величин на прибор сравнения доводят до нуля (измерение электрического сопротивления мостом с полным его уравновешиванием).

5) Метод совпадений – метод сравнения с мерой, при котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадения отметок шкал или периодических сигналов (измерение длины с помощью штангенциркуля с нониусом, когда наблюдают совпадение отметок на шкалах штангенциркуля и нониуса).

6) Метод замещения метод сравнения с мерой, когда измеряемую величину замещают известной величиной, воспроизводимой мерой (взвешивание с поочередным помещением измеряемой массы и гирь на одну и ту же чашку весов).

Конец работы -

Эта тема принадлежит разделу:

Метрология

Понятие о метрологии как науке метрология наука об измерениях методах и.. основные понятия связанные с объектами измерения..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие о метрологии как науке
Метрология - наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. В практической жизни человек вс

Понятие о средствах измерений
Средство измерения (СИ) - это техническое средство (или комплекс технических средств), предназначенное для измерения, имеющее нормированные метрологические характер

Метрологические характеристики средств измерений
Метрологические характеристики средств измерений – это характеристики свойств, оказывающие влияние на результаты и погрешности измерений. Информация о назначении метр

Факторы, влияющие на результаты измерений
В метрологической практике при проведении измерений необходимо учитывать ряд факторов, влияющих на результаты измерения. Это - объект и субъект измерения, метод измерения, ср

Формирование результата измерений. Погрешности измерений
Процедура измерения состоит из следующих основных этапов: 1) принятие модели объектоизмерения; 2) выбор метода измерения; 3) выбор средств измерения;

Представление результатов измерений
Существует правило: результаты измерения округляют с точностью до "погрешности". В практической метрологии выработаны правила округления результа­тов и погрешностей измерений. Ос

Причины возникновения погрешностей измерения
Имеется ряд слагаемых погрешностей, которые являются доминирующими в общей погрешности измерения. К ним относятся: 1) Погрешности, зависящиеот средств измерения. Но

Обработка многократных измерений
Предполагаем, что измерения равноточные, т.е. выполняются одним экспериментатором, в одинаковых условиях, одним прибором. Методика сводится к следующему: проводят n наблюдений (един

Распределение Стьюдента (t-критерий)
n/α 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0005

Методики выполнения измерений
Основная потеря точности при измерениях происходит не за счёт возможной метрологической неисправности применяемых средств измерений, а в первую очередь за счёт несовершенства методо

Понятие метрологического обеспечения
Под метрологическим обеспечением (МО) понимается установ­ление и применение научных и организационных основ, техни­ческих средств, правил и норм, необ

Системный подход при разработке метрологического обеспечения
При разработке МО необходимо использовать системный под­ход, суть которого состоит в рассмотрении МО как совокупности взаимосвязанных процессов, объединен­ных одной целью - достижен

Основы метрологического обеспечения
Метрологическое обеспечение имеет четыре основы: научную, организационную, нормативную и техническую. Их содержание показано на рисунке 1. Отдельные аспекты МО рассмотрены в реко­ме

Законодательство РФ об обеспечении единства измерений
Нормативная база обеспечения единства измерений представлена на рисунке 2.

Национальная система обеспечения единства измерений
Национальная система обеспечения единства измерений (НСОЕИ) - это совокупность правил выполнения работ по обеспечению единства измерений, ее участников и правил

Основные виды метрологической деятельности по обеспечению единства измерений
Под единством измерений понимается такое состояние измерений, при котором их результаты выражены в узаконенных единицах вели­чин и погрешности (неопределенно

Оценка соответствия средств измерений
При проведении измерений, относящихся к сфере государственного регулирования обеспечения единства измерений, на территории России должны применяться СИ, соответствующие требованиям

Утверждение типа средств измерений
Утверждение типа (кроме СОССВМ) осуще­ствляется на основании положительных результатов испытаний. Утвер­ждение типа СОССВМ осуществляется на основании положительных результатов атте

Аттестация методик выполнения измерений
Методика выпол­нения измерений – это совокупность операций и правил, выполнение которых обеспечивает получение результата измерений с установлен­ной погрешностью.

Поверка и калибровка средств измерений
Поверка средств измерений – это совокупность операций, выпол­няемых с целью подтверждения соответствия действительных значений метрологических характерис

Структура и функции метрологической службы предприятия, организации, учреждения, являющиеся юридическими лицами
Метрологическая служба предприятия, организации и учреждения, пользующихся правами юридического лица, независимо от форм собственности (далее - предприятия) включает отдел (службу)

Понятие взаимозаменяемости
Взаимозаменяемостью называется свойство одних и тех же деталей, узлов или агрегатов машин и т. д., позволяющее устанавливать детали (узлы, агрегаты) в процессе сборки или зам

Квалитеты, основные отклонения, посадки
Точность детали определяется точностью размеров, шероховатостью поверхностей, точностью формы поверхностей, точностью расположения и волнистостью поверхностей. Для обеспече

Обозначение полей допусков, предельных отклонений и посадок на чертежах
Предельные отклонения линейных размеров указывают на чертежах условными (буквенными) обозначениями полей допусков или числовыми значениями предельных отклонений, а также буквенными

Неуказанные предельные отклонения размеров
Предельные отклонения, не указанные непосредственно после номинальных размеров, а оговоренные общей записью в технических требованиях чертежа, называются неуказанными предельными отклонениями.

Рекомендации по применению посадок с зазором
Посадку Н5/h4 (Smin= 0 и Smax = Td +Td) назначают для пар с точным центрированием и направлением, в которых допускается проворачивание и продольное перемещение

Рекомендации по применению переходных посадок
Переходные посадки Н/js, Н/k, Н/m, Н/n используют в неподвижных разъемных соединениях для центрирования сменных деталей или деталей, которые при необходимости могут передвигаться вд

Рекомендации по применению посадок с натягом
Посадки Н/р; Р/h – "легкопрессовые" - характеризуются минимальным гарантированным натягом. Установлены в наиболее точных квалитетах (валы 4 - 6-го, отверстия 5 – 7-

Понятие о шероховатости поверхности
Шероховатостью поверхности согласно ГОСТу 25142 - 82 называют совокупность неровностей поверхности с относительно малыми шагами, выделенную с помощью базовой длины. Базова

Параметры шероховатости
Согласно ГОСТ 2789 – 73 шероховатость поверхности изделий независимо от материала и способа изготовления можно оценивать следующими параметрами (рисунок 10):

Общие термины и определения
Допуски формы и расположения поверхностей деталей машин и приборов, термины, определения, относящиеся к основным видам отклонений, стандартизованы ГОСТ 24642 – 81. В основу

Отклонения и допуски формы
К отклонениям формы относятся отклонения прямолинейности, плоскостности, круглости, профиля продольного сечения и цилиндричности. Отклонения формы плоских поверхнос

Отклонения и допуски расположения
Отклонением расположения поверхности или профиля называют отклонение реального расположения поверхности (профиля) от его номинального расположения. Количественно отклонения расположения о

Суммарные отклонения и допуски формы и расположения поверхностей
Суммарным отклонением формы и расположения называется отклонение, являющееся результатом совместного проявления отклонения формы и отклонения расположения рассматриваемого элемента (повер

Зависимый и независимый допуск формы и расположения
Допуски расположения или формы, устанавливаемые для валов или отверстий, могут быть зависимыми и независимыми. Зависимым называется допуск формы или расположения, минимальное значен

Числовые значения допусков формы и расположения поверхностей
Согласно ГОСТ 24643 - 81 для каждого вида допуска формы и расположения поверхностей установлено 16 степе­ней точности. Числовые значения допусков от одной степени к другой изменяютс

Обозначение на чертежах допусков формы и расположения
Вид допуска формы и расположения согласно ГОСТу 2.308 – 79 следует обозначать на чертеже знаками (графическими символами), приведенными в таблице 4. Знак и числовое значение допуска вписываю

Неуказанные допуски формы и расположения
Непосредственно в чертеже указывают, как правило, наиболее ответственные допуски формы и расположения поверхностей. По ГОСТ 25069 - 81 все показатели точности формы и распо

Правила определения баз
1) Если деталь имеет более двух элементов, для которых установлены одноименные неуказанные допуски расположения или биения, то эти допуски следует относить к одной и той же базе;

Правила определения определяющего допуска размера
Под определяющим допуском размера понимается: 1) При определении неуказанного допуска перпендикулярности или торцового биения - допуск размера, координирующег

Волнистость поверхности
Под волнистостью поверхности понимают совокупность периодически повторяющихся неровностей, у которых расстояния между смежными возвышенностями или впадинами превышают базовую длину l.

Допуски подшипников качения
Качество подшипников при прочих равных условиях определяется: 1) точностью присоединительных размеров и ширины колец, а для роликовых радиально-упорных подшипников е

Выбор посадок подшипников качения
Посадку подшипника качения на вал и в корпус выбирают в зависимости от типа и размера подшипника, условий его эксплуатации, значения и характера действующих на него нагрузок и вида нагружения колец

Решение
1) При вращающемся вале и постоянно действующей силе Fr внутреннее кольцо нагружено циркуляционной, а наружное – местной нагрузками. 2) Интенсивность нагрузки

Условные обозначения подшипников
Система условных обозначений шарико- и роликоподшипников установлена ГОСТ 3189 - 89. Условное обозначение подшипника дает полное представление о его габаритных размерах, конструкции, точности изгот

Допуски угловых размеров
Допуски угловых размеров назначают по ГОСТу 8908 – 81. Допуски углов AT (от англ. Angle tolerance – допуск угла) должны назначаться в зависимости от номинальной длины L1 меньшей стороны

Система допусков и посадок для конических соединений
Коническое соединение по сравнению с цилиндрическим имеет преимущества: можно регулировать величину зазора или натяга относительным смещением деталей вдоль оси; при неподвижном соед

Основные параметры метрической крепежной резьбы
Параметры цилиндрической резьбы (рисунок 36, а): средний d2 (D2); наружный d (D) и внутренний d1 (D1) диаметры на

Общие принципы взаимозаменяемости цилиндрических резьб
Системы допусков и посадок, обеспечивающих взаимозаменяемость метрической, трапецеидальной, упорной, трубной и других цилиндрических резьб, построены на едином принципе: они учитывают наличие взаим

Допуски и посадки резьб с зазором
Допуски метрических резьб с крупными и мелкими шагами для диаметров 1 - 600 мм регламентированы ГОСТ 16093 – 81. Этот стандарт устанавливает предельные отклонения диаметров резьбы в

Допуски резьб с натягом и с переходными посадками
Рассматриваемые посадки служат главным образом для соединения шпилек с корпусными деталями, если нельзя применить соединения винтовое или типа болт – гайка. Эти посадки применяют в крепежных соедин

Стандартные резьбы общего и специального назначения
В таблице 9 приведены наименования стандартных резьб общего назначения, наиболее широко распространенных в машино- и приборостроении, и даны примеры их обозначения на чертежах. К наиболее

Кинематическая точность передачи
Для обеспечения кинематической точности предусмотрены нормы, ограничивающие кинематическую погрешность передачи и кинематическую погрешность колеса. Кинематической

Плавность работы передачи
Эта характеристика передачи определяется параметрами, погрешности которых многократно (циклически) проявляются за оборот зубчатого колеса и также составляют часть кинематической пог

Контакт зубьев в передаче
Для повышения износостойкости и долговечности зубчатых передач необходимо, чтобы полнота контакта сопряженных боковых поверхностей зубьев колес была наибольшей. При неполном и нерав

Боковой зазор
Для устранения возможного заклинивания при нагреве передачи, обеспечения условий протекания смазочного материала и ограничения мертвого хода при реверсировании отсчетных и делительных реальных пере

Обозначение точности колес и передач
Точность изготовления зубчатых колес и передач задают степенью точности, а требования к боковому зазору – видом сопряжения по нормам бокового зазора. Примеры условного обозначения:

Выбор степени точности и контролируемых параметров зубчатых передач
Степень точности колес и передач устанавливают в зависимости от требований к кинематической точности, плавности, передаваемой мощности, а также окружной скорости колес. При выборе степени точности

Допуски зубчатых конических и гипоидных передач
Принципы построения системы допусков для зубчатых конических (ГОСТ 1758 - 81) и гипоидных передач (ГОСТ 9368 – 81) аналогичны принципам построения системы для цилиндрических передач

Допуски червячных цилиндрических передач
Для червячных цилиндрических передач ГОСТ 3675 – 81 устанавливает 12 степеней точности: 1, 2, . . ., 12 (в порядке убывания точности). Для червяков, червячных колес и червячных передач каж

Допуски и посадки соединений с прямобочным профилем зубьев
По ГОСТ 1139 – 80 установлены допуски для соединений с центрированием по внутреннему d и наружному D диаметрам, а также по боковым сторонам зубьев b. Поскольку вид центрирова

Допуски и посадки шлицевых соединений с эвольвентным профилем зубьев
Номинальные размеры шлицевых соединений с эвольвентным профилем (рисунок 58), номинальные размеры по роликам (рисунок 59) и длины общей нормали для отдельных измерений шлицевых валов и втулок должн

Контроль точности шлицевых соединений
Шлицевые соединения контролируют комплексными проходными калибрами (рисунок 61) и поэлементными непроходными калибрами.

Метод расчета размерных цепей, обеспечивающий полную взаимозаменяемость
Чтобы обеспечить полную взаимозаменяемость, размерные цепи рассчитывают методом максимума-минимума, при котором допуск замыкающего размера определяют арифметическим сложением допусков состав

Теоретико-вероятностный метод расчета размерных цепей
При расчете раз­мерных цепей методом максимума – минимума предполагалось, что в процессе обработки или сборки возможно одновременное сочетание наибольших увеличивающих и наименьших уменьшающих разм

Метод групповой взаимозаменяемости при селективной сборке
Сущность метода групповой взаимозаменяемости заключается в изготовлении деталей со сравнительно широкими технологически выполнимыми допусками, выбираемыми из соответствующих стандартов, сорт

Метод регулирования и пригонки
Метод регулирования. Под методом регулирования понимают расчет размерных цепей, при котором требуемая точность исходного (замыкающего) звена достигается преднамеренным изменени

Расчет плоских и пространственных размерных цепей
Плоские и пространственные размерные цепи рассчитывают теми же методами, что и линейные. Необходимо лишь привести их к виду линейных размерных цепей. Это достигается путем проектиро

Исторические основы развития стандартизации
Стандартизацией человек занимается с древнейших времен. Например, письмен­ность насчитывает, по меньшей мере, 6 тысяч лет и возникла согласно последним находкам в Шумере или Египте.

Правовые основы стандартизации
Правовые основы стандартизации в Российской федерации устанавливает Федеральный Закон «О техническом регулировании» от 27 декабря 2002 года. Он обязателен для всех государственных о

Принципы технического регулирования
В настоящее время установлены следующие принципы: 1) применения единых правил установления требований к продукции или к связанным с ними процессам проектирования (включая изыскания), произ

Цели технических регламентов
Закон о техническом регулировании устанавливает новый документ – технический регламент. Технический регламент - документ, который принят международным договором Россий

Виды технических регламентов
В Российской Федерации применяется два вида технических регламентов: - общие технические регламенты; - специальные технические регламенты. Общие технические регламенты ра

Понятие стандартизации
Содержание терминов стандартизации прошло длинный эволюционный путь. Уточнение этого термина происходило параллельно с развитием самой стандартизации и отражало достигнутый уровень ее развития на р

Цели стандартизации
Стандартизация осуществляется в целях: 1) Повышения уровня безопасности: - жизни и здоровья граждан; - имущества физических и юридических лиц; - государственного

Объект, аспект и область стандартизации. Уровни стандартизации
Объект стандартизации – конкретная продукция, услуги, производственный процесс (работа), или группы однородной продукции, услуг, процессов, для которых разрабатывают требования

Принципы и функции стандартизации
Основные принципы стандартизации в Российской Федерации, обеспечивающие достижение целей и задач ее развития, заключаются в: 1) добровольного применения документов в области стандартизации

Международная стандартизация
Международная стандартизация (МС) - это деятельность, в которой принимают участие два или более суверенных государства. МС принадлежит видная роль в углубления мировой экономической кооперации, в м

Комплекс стандартов национальной системы стандартизации
Для реализации ФЗ «О техническом регулировании» с 2005 года действует 9 национальных стандартов комплекса “Стандартизация РФ”, который заменил комплекс “Государственная система стандартизации”. Это

Структура органов и служб стандартизации
Национальным органом по стандартизации является Федеральное агентство по техническому регулированию и метрологии (Ростехрегулирование), оно заменило собой Госстандат. Оно подчиняется непосредственн

Нормативные документы по стандартизации
Нормативные документы по стандартизации (НД) - документы содержащие правила, общие принципы для объекта стандартизации и доступны широкому кругу пользователей. К НД относится: 1)

Категории стандартов. Обозначения стандартов
Категории стандартизации различают по тому, на каком уровне принимаются и утверждаются стандарты. Установлены четыре категории: 1) международные; 2) межго

Виды стандартов
В зависимости от объекта и аспекта стандартизации ГОСТ Р 1.0 устанавливает следующие виды стандартов: 1) стандарты основополагающие; 2) стандарты на продукцию;

Государственный контроль за соблюдением требований технических регламентов и стандартов
Государственный контроль осуществляется должностными лицами органа госконтроля РФ за соблюдением требований ТР касающихся стадии обращения продукции. Органы госконтроля обл

Стандарты организаций (СТО)
Организация и порядок разработки СТО содержится в ГОСТ Р 1.4 – 2004. Организация – группа работников и необходимых средств с распределением ответственности полномочий и вза

Необходимость предпочтительных чисел (ПЧ)
Введение ПЧ вызвано следующими соображениями. Применение ПЧ позволяет наилучшим образом осуществлять согласование параметров и размеров отдельно взятого изделия со всеми связанными с ними

Ряды на основе арифметической прогрессии
Чаще всего ряды ПЧ строятся на основе геометрической прогрессии, реже на основе арифметической прогрессии. Кроме того, есть разновидности рядов построенных на основе "золотого&

Ряды на основе геометрической прогрессии
Длительная практика стандартизации показала, что наиболее удобными являются ряды, построенные на основе геометрической прогрессии, так как при этом получается одинаковая относительная разность межд

Свойства рядов предпочтительных чисел
Ряды ПЧ обладают свойствами геометрической прогрессии. Ряды ПЧ не ограничиваются в обоих направлениях, при этом числа менее 1,0 и более 10 получают делением или умножением на 10, 100 и т.д

Ограниченные, выборочные, составные и приближенные ряды
Ограниченные ряды. При необходимости ограничения основных и дополнительных рядов в их обозначениях указываются предельные члены, которые всегда включаются в ограниченные ряды. Пример. R10(

Понятие и виды унификации
При унификации устанавливается минимально допустимое, но достаточное число типов, видов, типоразмеров, изделий, сборочных единиц и деталей, обладающих высокими показателями качества

Показатели уровня унификации
Под уровнем унификации изделий понимается насыщенность их унифицированными составными элементами; деталями, модулями, узлами. Основными количественными показателями уровня унификации издел

Определение показателя уровня унификации
Оценка уровня унификации базируется на исправлении следующей формулы:

История развития сертификации
"Сертификат" в переводе с латыни означает "сделано верно". Хотя термин "сертификация" стал известен в повседневной жизни и коммерческой практи

Термины и определения в области подтверждения соответствия
Оценка соответствия - прямое или косвенное определение соблюдения требований, предъявляемых к объекту. Типичным примером деятельности по оценке соответ

Цели, принципы и объекты подтверждения соответствия
Подтверждение соответствия осуществляется в целях: - удостоверения соответствия продукции, процессов проектирования (включая изыскания), производства, строительства, монтаж

Роль сертификации в повышении качества продукции
Коренное повышение качества продукции в современных условиях является одной из ключевых экономических и политических задач. Именно поэтому на ее решение направлена совокупность таки

Схемы сертификации продукции на соответствие требованиям технических регламентов
Схема сертификации - определенная совокупность действий, официально принимаемая в качестве доказательства соответствия про­дукции заданным требованиям.

Схемы декларирования соответствия на соответствие требованиям технических регламентов
Таблица 17 - Схемы декларирования соответствия на соответствие требованиям технических регламентов Обозначение схемы Содержание схемы и ее исп

Схемы сертификации услуг
Таблица 18 - Схемы сертификации услуг № схемы Оценка качества оказания услуг Проверка (испытания) результатов услуг

Схемы подтверждения соответствия стандартам
Таблица 19 - Схемы сертификации продукции Номер схемы Испытания в аккредитованных испытательных лабораториях и другие способы доказательства

Обязательное подтверждение соответствия
Обязательное подтверждение соответствия может проводиться только в случаях, установленных техническими регламентами и исключительно на соответствие их требованиям. При этом

Декларирование соответствия
В ФЗ «О техническом регулировании» сформулированы условия, при соблюдении которых может быть принята декларация о соответст­вии. Прежде всего, эта форма подтверждения соответствия д

Обязательная сертификация
Обязательная сертификация в соответствии с ФЗ «О техническом регулировании» осуществляется аккредитованным органом по сертификации на основании договора с заявителем.

Добровольное подтверждение соответствия
Добровольное подтверждение соответ­ствия должно осуществляться только в форме добровольной сертификации. Добровольная сертификация проводится по инициативе заяви­теля на основе дого

Системы сертификации
Под системой сертификации понимается совокупность участников сертифи­кации, действующих в определенной области по определенным в сис­теме правилам. Понятие «система сертификации» в

Порядок проведения сертификации
Сертификация продукции проходит по следующим основным этапам: 1) Подача заявки на сертификацию; 2) Рассмотрение и принятие решения по заявке; 3) Отбор, ид

Органы по сертификации
Орган по сертификации - юридическое лицо или индивидуальный предприниматель, аккредитованные в установленном порядке для выполнения работ по сертификации.

Испытательные лаборатории
Испытательная лаборатория - лаборатория, которая проводит испытания (отдельные виды испытаний) определенной продукции. При проведении сер

Аккредитация органов по сертификации и испытательных лабораторий
Согласно определению, данному в ФЗ «О техническом регулировании», аккредитация - это «официальное признание органом по аккредитации компетентности физическог

Сертификация услуг
Сертификацию проводят аккредитованные органы по сертификации услуг в пределах их области аккредитации. При сертификации проверяются характеристики услуг и используются мето

Сертификация систем качества
В последние годы в мире стремительно растет число компаний, сертифицировавших свои системы качества на соответствие стандартам ИСО серии 9000. В настоящее время эти стандарты примен

mob_info