Принцип действия атомной бомбы кратко. Водородная против атомной. Что нужно знать о ядерном оружии. Самая мощная бомба в мире

Введение

Интерес к истории возникновения и значению для человечества ядерного оружия определяется значением целого ряда факторов, среди которых, пожалуй, первый ряд занимают проблемы обеспечения баланса сил на мировой арене и актуальности построения системы ядерного сдерживания военной угрозы для государства. Определённое влияние, прямое или косвенное, наличие ядерного оружия всегда оказывает на социально-экономическую ситуацию и политическую расстановку сил в «странах-владельцах» таковым вооружением, Этим, в том числе, и обусловлена актуальность выбранной нами проблемы исследования. Проблема разработки и актуальности использования ядерного оружия в целях обеспечения национальной безопасности государства является достаточно актуальной в отечественной науке уже не первое десятилетие, и эта тема, до сих пор, не исчерпала себя.

Объектом данного исследования является атомное оружие в современном мире, предметом исследования - история создания атомной бомбы и её технологическое устройство. Новизна работы состоит в том, что проблема атомного оружия освещается с позиции целого ряда направлений: ядерной физики, национальной безопасности, истории, внешней политики и разведки.

Цель данной работы состоит в исследовании истории создания и роли атомной (ядерной) бомбы в обеспечении мира и порядка на нашей планете.

Для достижения поставленной цели в работе решены следующие задачи:

охарактеризовано понятие «атомная бомба», «ядерное оружие» и др.;

рассмотрены предпосылки возникновения атомного оружия;

выявлены причины, побудившие человечество к созданию атомного оружия и его использованию.

проанализировано строение и состав атомной бомбы.

Поставленные цель и задачи обусловили структуру и логику исследования, которое состоит из введения, двух разделов, заключения и списка использованных источников.

АТОМНАЯ БОМБА: СОСТАВ, БОЕВЫЕ ХАРАКТЕРИСТИКИ И ЦЕЛЬ СОЗДАНИЯ

Прежде чем начать изучение строения атомной бомбы, необходимо разобраться в терминологии по данной проблеме. Итак, в научных кругах, существуют специальные термины, отображающие характеристики атомного оружия. Среди них, особо отметим следующие:

Атомная бомба - первоначальное название авиационной ядерной бомбы, действие которой основано на взрывной цепной ядерной реакции деления. С появлением так называемой водородной бомбы, основанной на термоядерной реакции синтеза, утвердился общий для них термин - ядерная бомба.

Ядерная бомба - авиационная бомба с ядерным зарядом, обладает большой разрушительной силой. Первые две ядерные бомбы с тротиловым эквивалентом около 20 кт каждая были сброшены американской авиацией на японские города Хиросима и Нагасаки, соответственно 6 и 9 августа 1945, и вызвали огромные жертвы и разрушения. Современные ядерные бомбы имеют тротиловый эквивалент от десятков до миллионов тонн.

Ядерное или атомное оружие - оружие взрывного действия, основанного на использовании ядерной энергии, освобождающейся при цепной ядерной реакции деления тяжёлых ядер или термоядерной реакции синтеза лёгких ядер.

Относится к оружию массового поражения (ОМП) наряду с биологическим и химическим.

Ядерное оружие - совокупность ядерных боеприпасов, средств их доставки к цели и средств управления. Относится к оружию массового поражения; обладает громадной разрушительной силой. По выше указанной причине, США и СССР вкладывали огромные средства в разработку ядерного оружия. По мощности зарядов и дальности действия ядерное оружие делится на тактическое, оперативно-тактическое и стратегическое. Применение ядерного оружия в войне гибельно для всего человечества.

Ядерный взрыв - это процесс мгновенного выделения большого количества внутриядерной энергии в ограниченном объеме.

Действие атомного оружия основывается на реакции деления тяжелых ядер (уран-235, плутоний-239 и, в отдельных случаях, уран-233).

Уран-235 используют в ядерном оружии потому, что в отличие от наиболее распространённого изотопа урана-238, в нём возможна самоподдерживающаяся цепная ядерная реакция.

Плутоний-239 также называют "оружейным плутонием", т.к. он предназначен для создания ядерного оружия и содержание изотопа 239Pu должно быть, не менее 93,5 %.

Для отражения строения и состава атомной бомбы, в качестве прототипа проанализируем плутониевую бомбу "Толстяк" (рис. 1) сброшенную 9 августа 1945 года на японский город Нагасаки.

атомный ядерный бомба взрыв

Рисунок 1 - Атомная бомба "Толстяк"

Схема этой бомбы (типичная для плутониевых однофазных боеприпасов) примерно следующая:

Нейтронный инициатор - шар диаметром порядка 2 см из бериллия, покрытый тонким слоем сплава иттрий-полоний или металлического полония-210 - первичный источник нейтронов для резкого снижения критической массы и ускорения начала реакции. Срабатывает в момент перевода боевого ядра в закритическое состояние (при сжатии происходит смешение полония и бериллия с выбросом большого количества нейтронов). В настоящее время помимо данного типа инициирования, больше распространено термоядерное инициирование (ТИ). Термоядерный инициатор (ТИ). Находится в центре заряда (подобно НИ) где размещается небольшое количество термоядерного материала, центр которого нагревается сходящейся ударной волной и в процессе термоядерной реакции на фоне возникших температур нарабатывается значимое количество нейтронов, достаточное для нейтронного инициирования цепной реакции (рис. 2).

Плутоний. Используют максимально чистый изотоп плутоний-239, хотя для увеличения стабильности физических свойств (плотности) и улучшения сжимаемости заряда плутоний легируется небольшим количеством галлия.

Оболочка (обычно из урана), служащая отражателем нейтронов.

Обжимающая оболочка из алюминия. Обеспечивает бомльшую равномерность обжима ударной волной, в то же время предохраняя внутренние части заряда от непосредственного контакта со взрывчаткой и раскалёнными продуктами её разложения.

Взрывчатое вещество со сложной системой подрыва, обеспечивающей синхронность подрыва всего взрывчатого вещества. Синхронность необходима для создания строго сферической сжимающей (направленной внутрь шара) ударной волны. Несферическая волна приводит к выбросу материала шара через неоднородность и невозможность создания критической массы. Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее трудных задач. Используется комбинированная схема (система линз) из «быстрой» и «медленной» взрывчаток.

Корпус, изготовленный из дюралевых штампованных элементов - две сферических крышки и пояс, соединяемые болтами.

Рисунок 2 - Принцип действия плутониевой бомбы

Центр ядерного взрыва - точка, в которой происходит вспышка или находится центр огненного шара, а эпицентром - проекцию центра взрыва на земную или водную поверхность.

Ядерное оружие является самым мощным и опасным видом оружия массового поражения, угрожающим всему человечеству невиданными разрушениями и уничтожением миллионов людей.

Если взрыв происходит на земле или довольно близко от ее поверхности, то часть энергии взрыва передается поверхности Земли в виде сейсмических колебаний. Возникает явление, которое по своим особенностям напоминает землетрясение. В результате такого взрыва образуются сейсмические волны, которые через толщу земли распространяется на весьма большие расстояния. Разрушительное действие волны ограничивается радиусом в несколько сот метров.

В результате чрезвычайно высокой температуры взрыва возникает яркая вспышка света, интенсивность которой в сотни раз превосходит интенсивность солнечных лучей, падающих на Землю. При вспышке выделяется огромное количество тепла и света. Световое излучение вызывает самовозгорание воспламеняющихся материалов и ожоги кожи у людей в радиусе многих километров.

При ядерном взрыве возникает радиация. Она продолжается около минуты и обладает настолько высокой проникающей способностью, что для защиты от нее на близких расстояниях требуются мощные и надежные укрытия.

Ядерный взрыв способен мгновенно уничтожить или вывести из строя незащищенных людей, открыто стоящую технику, сооружения и различные материальные средства. Основными поражающими факторами ядерного взрыва (ПФЯВ) являются:

ударная волна;

световое излучение;

проникающая радиация;

радиоактивное заражение местности;

электромагнитный импульс (ЭМИ).

При ядерном взрыве в атмосфере распределение выделяющейся энергии между ПФЯВ примерно следующее: около 50% на ударную волну, на долю светового излучения 35%, на радиоактивное заражение 10% и 5% на проникающую радиацию и ЭМИ.

Радиоактивное заражение людей, боевой техники, местности и различных объектов при ядерном взрыве обусловливается осколками деления вещества заряда (Pu-239, U-235) и не прореагировавшей частью заряда, выпадающими из облака взрыва, а также радиоактивные изотопы, образующиеся в грунте и других материалах под воздействием нейтронов - наведённая активность. С течением времени активность осколков деления быстро уменьшается, особенно в первые часы после взрыва. Так, например, общая активность осколков деления при взрыве ядерного боеприпаса мощностью 20 кТ через один день будет в несколько тысяч раз меньше, чем через одну минуту после взрыва.

Как известно, к ядерному оружию первого поколения , его нередко называют АТОМНЫМ, относят боевые заряды, основанные на использовании энергии деления ядер урана-235 или плутония-239. Первое в истории испытание такого зарядного устройства мощностью 15 кт было проведено в США 16 июля 1945 года на полигоне Аламогордо.

Взрыв в августе 1949 года первой советской атомной бомбы придал новый импульс в развертывании работ по созданию ядерного оружия второго поколения . В его основе лежит технология использования энергии термоядерных реакций синтеза ядер тяжелых изотопов водорода — дейтерия и трития. Такое оружие называют ТЕРМОЯДЕРНЫМ или водородным. Первое испытание термоядерного устройства «Майк» было проведено Соединенными Штатами 1 ноября 1952 года на острове Элугелаб (Маршалловы острова), мощность которого составила 5-8 миллионов тонн. В следующем году термоядерный заряд был взорван в СССР.

Осуществление атомных и термоядерных реакций открыло широкие возможности для их использования при создании серии различных боеприпасов последующих поколений. К ядерному оружию третьего поколения относят специальные заряды (боеприпасы), у которых за счет особой конструкции добиваются перераспределения энергии взрыва в пользу одного из поражающих факторов. Другие варианты зарядов такого оружия обеспечивают создание фокусировки того или иного поражающего фактора в определенном направлении, что также приводит к значительному усилению его поражающего действия.

Анализ истории создания и совершенствования ядерного оружия свидетельствует о том, что США неизменно лидировали в создании новых его образцов. Однако проходило некоторое время и СССР ликвидировал эти односторонние преимущества США. Не является исключением в этом отношении и ядерное оружие третьего поколения. Одним из наиболее известных образцов ядерного оружия третьего поколения является НЕЙТРОННОЕ оружие.

Что представляет собой нейтронное оружие?

О нейтронном оружии широко заговорили на рубеже 60-х годов. Однако впоследствии стало известно, что возможность его создания обсуждалась еще задолго до этого. Бывший президент Всемирной федерации научных работников профессор из Великобритании Э.Буроп вспоминал, что впервые он услышал об этом еще в 1944 году, когда в составе группы английских ученых работал в США над «Манхэттенским проектом». Работа над созданием нейтронного оружия была инициирована необходимостью получения мощного боевого средства, обладающего избирательной способностью поражения, для использования непосредственно на поле боя.

Первый взрыв нейтронного зарядного устройства (кодовый номер W-63) был произведен в подземной штольне Невады в апреле 1963 года . Полученный при испытании поток нейтронов оказался значительно ниже расчетной величины, что существенно снижало боевые возможности нового оружия. Потребовалось еще почти 15 лет для того, чтобы нейтронные заряды приобрели все качества боевого оружия. По мнению профессора Э.Буропа, принципиальное отличие устройства нейтронного заряда от термоядерного заключается в различной скорости выделения энергии: «В нейтронной бомбе выделение энергии происходит гораздо медленнее. Это нечто вроде пиропатрона замедленного действия «.

За счет этого замедления и уменьшается энергия, идущая на образование ударной волны и светового излучения и, соответственно, возрастает ее выделение в виде потока нейтронов. В ходе дальнейших работ были достигнуты определенные успехи в обеспечении фокусировки нейтронного излучения, что позволяло не только обеспечивать усиление его поражающего действия в определенном направлении, но и снизить опасность при его применении для своих войск.

В ноябре 1976 года в Неваде были проведены очередные испытания нейтронного боезаряда, в ходе которых были получены весьма впечатляющие результаты . В результате этого в конце 1976 года было принято решение о производстве компонентов нейтронных снарядов 203-мм калибра и боеголовок к ракете «Ланс». Позднее, в августе 1981 года на заседании Группы ядерного планирования Совета национальной безопасности США было принято решение о полномасштабном производстве нейтронного оружия: 2000 снарядов к 203-мм гаубице и 800 боеголовок к ракете «Ланс».

При взрыве нейтронной боеголовки основное поражение живым организмам наносится потоком быстрых нейтронов . По расчетам, на каждую килотонну мощности заряда выделяется около 10 нейтронов, которые с огромной скоростью распространяются в окружающем пространстве. Эти нейтроны обладают чрезвычайно высоким поражающим действием на живые организмы, гораздо сильнее, чем даже Y-излучение и ударная волна . Для сравнения укажем, что при взрыве обычного ядерного заряда мощностью 1 килотонна открыто расположенная живая сила будет уничтожена ударной волной на расстоянии 500-600 м. При взрыве нейтронной боеголовки той же мощности уничтожение живой силы будет происходить на расстоянии примерно в три раза большем.

Образующиеся при взрыве нейтроны движутся со скоростями несколько десятков километров в секунду. Врываясь словно снаряды в живые клетки организма, они выбивают ядра из атомов, рвут молекулярные связи, образуют свободные радикалы, обладающие высокой реакционной способностью, что приводит к нарушению основных циклов жизненных процессов.

При движении нейтронов в воздухе в результате столкновений с ядрами атомов газов они постепенно теряют энергию. Это приводит к тому, что на расстоянии около 2 км их поражающее действие практически прекращается . Для того чтобы снизить разрушительное действие сопутствующей ударной волны мощность нейтронного заряда выбирают в пределах от 1 до 10 кт, а высоту взрыва над землей — порядка 150-200 метров.

По свидетельству некоторых американских ученых, в Лос-Аламосской и Сандийской лабораториях США и во Всероссийском институте экспериментальной физики в Сарове (Арзамас-16) проводятся термоядерные эксперименты, в которых наряду с исследованиями по получению электрической энергии изучается возможность получения чисто термоядерной взрывчатки. Наиболее вероятным побочным результатом проводимых исследований, по их мнению, может стать улучшение энергомассовых характеристик ядерных боезарядов и создание нейтронной мини-бомбы. По оценкам экспертов, такой нейтронный боезаряд с тротиловым эквивалентом всего в одну тонну может создать смертельную дозу излучения на расстояниях 200-400 м .

Нейтронное оружие является мощным оборонительным средством и его наиболее эффективное применение возможно при отражении агрессии, особенно в том случае, когда противник вторгся на защищаемую территорию. Нейтронные боеприпасы являются тактическим оружием и их применение наиболее вероятно в так называемых «ограниченных» войнах, в первую очередь в Европе . Это оружие может приобрести особое значение для России, поскольку в условиях ослабления ее вооруженных сил и возрастания угрозы региональных конфликтов она будет вынуждена делать больший упор в обеспечении своей безопасности на ядерное оружие.

Применение нейтронного оружия может быть особенно эффективным при отражении массированной танковой атаки . Известно, что танковая броня на определенных расстояниях от эпицентра взрыва (более 300-400 м при взрыве ядерного заряда мощностью 1 кт) обеспечивает защиту экипажей от ударной волны и Y-излучения. В то же время быстрые нейтроны проникают через стальную броню без существенного ослабления.

Проведенные расчеты показывают, что при взрыве нейтронного заряда мощностью 1 килотонна экипажи танков будут мгновенно выведены из строя в радиусе 300 м от эпицентра и погибнут в течение двух суток. Экипажи, находящиеся на расстоянии 300-700 м, выйдут из строя через несколько минут и в течение 6-7 дней также погибнут; на расстояниях 700-1300 м они окажутся небоеспособными через несколько часов, а гибель большинства из них растянется в течение нескольких недель. На расстояниях 1300-1500 м определенная часть экипажей получит серьезные заболевания и постепенно выйдет из строя.

Нейтронные боезаряды могут быть также использованы в системах ПРО для борьбы с боеголовками атакующих ракет на траектории . По расчетам специалистов, быстрые нейтроны, обладая высокой проникающей способностью, пройдут через обшивку боеголовок противника, вызовут поражение их электронной аппаратуры. Кроме того, нейтроны, взаимодействуя с ядрами урана или плутония атомного детонатора боеголовки, вызовут их деление.

Такая реакция будет происходить с большим выделением энергии, что, в конечном счете, может привести к нагреванию и разрушению детонатора. Это, в свою очередь, приведет к выходу из строя всего заряда боеголовки. Это свойство нейтронного оружия было использовано в системах противоракетной обороны США. Еще в середине 70-х годов нейтронные боеголовки были установлены на ракетах-перехватчиках «Спринт» системы «Сейфгард», развернутой вокруг авиабазы «Гранд Форкс» (штат Северная Дакота). Не исключено, что в будущей системе национальной ПРО США будут также использованы нейтронные боезаряды.

Как известно, в соответствии с обязательствами, объявленными президентами США и России в сентябре-октябре 1991 г., все ядерные артснаряды и боеголовки тактических ракет наземного базирования должны быть ликвидированы . Однако не вызывает сомнений, что в случае изменения военно-политической ситуации и принятия политического решения отработанная технология нейтронных боезарядов позволяет наладить их массовое производство в короткое время.

«Супер-ЭМИ»

Вскоре после окончания Второй мировой войны, в условиях монополии на ядерное оружие, Соединенные Штаты возобновили испытания с целью его совершенствования и определения поражающих факторов ядерного взрыва. В конце июня 1946 года в районе атолла Бикини (Маршалловы острова) под шифром «Операция Кроссроудс» были проведены ядерные взрывы, в ходе которых исследовалось поражающее действие атомного оружия.

В ходе этих испытательных взрывов было обнаружено новое физическое явление образование мощного импульса электромагнитного излучения (ЭМИ) , к которому сразу же был проявлен большой интерес. Особенно значительным оказался ЭМИ при высоких взрывах. Летом 1958 года были произведены ядерные взрывы на больших высотах. Первую серию под шифром «Хардтэк» провели над Тихим океаном вблизи острова Джонстон. В ходе испытаний были взорваны два заряда мегатонного класса: «Тэк» — на высоте 77 километров и «Ориндж» — на высоте 43 километра.

В 1962 году были продолжены высотные взрывы: на высоте 450 км под шифром «Старфиш» был произведен взрыв боеголовки мощностью 1,4 мегатонны. Советский Союз также в течение 1961-1962 гг. провел серию испытаний, в ходе которых исследовалось воздействие высотных взрывов (180-300 км) на функционирование аппаратуры систем ПРО.
При проведении этих испытаний были зафиксированы мощные электромагнитные импульсы, которые обладали большим поражающим действием на электронную аппаратуру, линии связи и электроснабжения, радио- и радиолокационные станции на больших расстояниях. С тех пор военные специалисты продолжали уделять большое внимание исследованию природы этого явления, его поражающего действия, способов защиты от него своих боевых и обеспечивающих систем.

Физическая природа ЭМИ определяется взаимодействием Y-квантов мгновенного излучения ядерного взрыва с атомами газов воздуха : Y-кванты выбивают из атомов электроны (так называемые комптоновские электроны), которые движутся с огромной скоростью в направлении от центра взрыва. Поток этих электронов, взаимодействуя с магнитным полем Земли, создает импульс электромагнитного излучения. При взрыве заряда мегатонного класса на высотах несколько десятков километров напряженность электрического поля на поверхности земли может достигать десятков киловольт на метр .

На основе полученных в ходе испытаний результатов военные специалисты США развернули в начале 80-х годов исследования, направленные на создание еще одного вида ядерного оружия третьего поколения — Супер-ЭМИ с усиленным выходом электромагнитного излучения.

Для увеличения выхода Y-квантов предполагалось создать вокруг заряда оболочку из вещества, ядра которого, активно взаимодействуя с нейтронами ядерного взрыва, испускают Y-излучение высоких энергий. Специалисты считают, что с помощью Супер-ЭМИ возможно создать напряженность поля у поверхности Земли порядка сотен и даже тысяч киловольт на метр .

По расчетам американских теоретиков, взрыв такого заряда мощностью 10 мегатонн на высоте 300-400 км над географическим центром США — штатом Небраска приведет к нарушению работы радиоэлектронных средств почти на всей территории страны в течение времени, достаточном для срыва ответного ракетно-ядерного удара.

Дальнейшее направление работ по созданию Супер-ЭМИ было связано с усилением его поражающего действия за счет фокусировки Y-излучения, что должно было привести к увеличению амплитуды импульса. Эти свойства Супер-ЭМИ делают его оружием первого удара, предназначенном для выведения из строя системы государственного и военного управления, МБР, особенно мобильного базирования, ракет на траектории, радиолокационных станций, космических аппаратов, систем энергоснабжения и т.п. Таким образом, Супер-ЭМИ имеет явно наступательный характер и является дестабилизирующим оружием первого удара .

Проникающие боеголовки — пенетраторы

Поиски надежных средств уничтожения высокозащищенных целей привели военных специалистов США к идее использования для этого энергии подземных ядерных взрывов. При заглублении ядерных зарядов в грунт значительно возрастает доля энергии, идущей на образование воронки, зоны разрушения и сейсмических ударных волн. В этом случае при существующей точности МБР и БРПЛ значительно повышается надежность уничтожения «точечных», особо прочных целей на территории противника.

Работа над созданием пенетраторов была начата по заказу Пентагона еще в середине 70-х годов, когда концепции «контрсилового» удара придавалось приоритетное значение. Первый образец проникающей боеголовки был разработан в начале 80-х годов для ракеты средней дальности «Першинг-2» . После подписания Договора по ракетам средней и меньшей дальности (РСМД) усилия специалистов США были перенацелены на создание таких боеприпасов для МБР.

Разработчики новой боеголовки встретились со значительными трудностями, связанными, прежде всего, с необходимостью обеспечить ее целостность и работоспособность при движении в грунте. Огромные перегрузки, действующие на боезаряд (5000-8000 g, g-ускорение силы тяжести) предъявляют чрезвычайно жесткие требования к конструкции боеприпаса.

Поражающее действие такой боеголовки на заглубленные, особо прочные цели определяется двумя факторами — мощностью ядерного заряда и величиной его заглубления в грунт . При этом для каждого значения мощности заряда существует оптимальная величина заглубления, при которой обеспечивается наибольшая эффективность действия пенетратора.

Так, например, разрушающее действие на особо прочные цели ядерного заряда мощностью 200 килотонн будет достаточно эффективным при его заглублении на глубину 15-20 метров и оно будет эквивалентным воздействию наземного взрыва боеголовки ракеты МХ мощностью 600 кт. Военные специалисты определили, что при точности доставки боеголовки-пенетратора, характерной для ракет МХ и «Трайдент-2», вероятность уничтожения ракетной шахты или командного пункта противника одним боезарядом, весьма высока. Это означает, что в этом случае вероятность разрушения целей будет определяться лишь технической надежностью доставки боеголовок.

Очевидно, что проникающие боеголовки предназначены для уничтожения центров государственного и военного управления противника, МБР, находящихся в шахтах, командных пунктов и т.п. Следовательно, пенетраторы являются наступательным, «контрсиловым» оружием, предназначенным для нанесения первого удара и в силу этого имеют дестабилизирующий характер .

Значение проникающих боеголовок, в случае принятия их на вооружение, может значительно возрасти в условиях сокращения стратегических наступательных вооружений, когда снижение боевых возможностей по нанесению первого удара (уменьшение количества носителей и боеголовок) потребует повышения вероятности поражения целей каждым боеприпасом. В то же время для таких боеголовок необходимо обеспечивать достаточно высокую точность попадания в цель. Поэтому рассматривалась возможность создания боеголовок-пенетраторов, оснащенных системой самонаведения на конечном участке траектории, подобно высокоточному оружию.

Рентгеновский лазер с ядерной накачкой

Во второй половине 70-х годов в Ливерморской радиационной лаборатории были начаты исследования по созданию «противоракетного оружия XXI века» — рентгеновского лазера с ядерным возбуждением . Это оружие с самого начала замышлялось в качестве основного средства уничтожения советских ракет на активном участке траектории, до разделения боеголовок. Новому оружию присвоили наименование — «оружие залпового огня».

В схематическом виде новое оружие можно представить в виде боеголовки, на поверхности которой укрепляется до 50 лазерных стержней. Каждый стержень имеет две степени свободы и подобно орудийному стволу может быть автономно направлен в любую точку пространства. Вдоль оси каждого стержня, длиной несколько метров, размещается тонкая проволока из плотного активного материала, «такого как золото». Внутри боеголовки размещается мощный ядерный заряд, взрыв которого должен выполнять роль источника энергии для накачки лазеров.

По оценкам некоторых специалистов, для обеспечения поражения атакующих ракет на дальности более 1000 км потребуется заряд мощностью несколько сотен килотонн . Внутри боеголовки также размещается система прицеливания с быстродействующим компьютером, работающим в реальном масштабе времени.

Для борьбы с советскими ракетами военными специалистами США была разработана особая тактика его боевого использования. С этой целью ядерно-лазерные боеголовки предлагалось разместить на баллистических ракетах подводных лодок (БРПЛ). В «кризисной ситуации» или в период подготовки к нанесению первого удара подлодки, оснащенные этими БРПЛ, должны скрытно выдвинуться в районы патрулирования и занять боевые позиции как можно ближе к позиционным районам советских МБР: в северной части Индийского океана, в Аравийском, Норвежском, Охотском морях.

При поступлении сигнала о старте советских ракет производится пуск ракет подводных лодок. Если советские ракеты поднялись на высоту 200 км, то для того, чтобы выйти на дальность прямой видимости, ракетам с лазерными боеголовками необходимо подняться на высоту около 950 км. После этого система управления совместно с компьютером производит наведение лазерных стержней на советские ракеты. Как только каждый стержень займет положение, при котором излучение будет попадать точно в цель, компьютер подаст команду на подрыв ядерного заряда.

Огромная энергия, выделяющаяся при взрыве в виде излучений, мгновенно переведёт активное вещество стержней (проволоку) в плазменное состояние . Через мгновение эта плазма, охлаждаясь, создаст излучение в рентгеновском диапазоне, распространяющееся в безвоздушном пространстве на тысячи километров в направлении оси стержня. Сама лазерная боеголовка через несколько микросекунд будет разрушена, но до этого она успеет послать мощные импульсы излучения в сторону целей.

Поглощаясь в тонком поверхностном слое материала ракеты, рентгеновское излучение может создать в нем чрезвычайно высокую концентрацию тепловой энергии, что вызовет его взрывообразное испарение, приводящее к образованию ударной волны и, в конечном счете, к разрушению корпуса.

Однако создание рентгеновского лазера, который считался краеугольным камнем рейгановской программы СОИ, встретилось с большими трудностями, которые пока не удалось преодолеть . Среди них на первых местах стоят сложности фокусировки лазерного излучения, а также создание эффективной системы наведения лазерных стержней.

Первые подземные испытания рентгеновского лазера были проведены в штольнях Невады в ноябре 1980 года под кодовым названием «Дофин». Полученные результаты подтвердили теоретические выкладки ученых, однако, выход рентгеновского излучения оказался весьма слабым и явно недостаточным для уничтожения ракет. После этого последовала серия испытательных взрывов «Экскалибур», «Супер-Экскалибур», «Коттедж», «Романо», в ходе которых специалисты преследовали главную цель — повысить интенсивность рентгеновского излучения за счет фокусировки.

В конце декабря 1985 года был произведен подземный взрыв «Голдстоун» мощностью около 150 кт, а в апреле следующего года — испытание «Майти Оук» с аналогичными целями. В условиях запрета на ядерные испытания на пути создания этого оружия возникли серьезные препятствия.

Необходимо подчеркнуть, что рентгеновский лазер является, прежде всего, ядерным оружием и, если его взорвать вблизи поверхности Земли, то он будет обладать примерно таким же поражающим действием, что и обычный термоядерный заряд такой же мощности.

«Гиперзвуковая шрапнель»

В ходе работ по программе СОИ, теоретические расчеты и результаты моделирования процесса перехвата боеголовок противника показали, что первый эшелон ПРО, предназначенный для уничтожения ракет на активном участке траектории, полностью решить эту задачу не сможет. Поэтому необходимо создать боевые средства, способные эффективно уничтожать боеголовки в фазе их свободного полета.

С этой целью специалисты США предложили использовать мелкие металлические частицы, разогнанные до высоких скоростей с помощью энергии ядерного взрыва . Основная идея такого оружия состоит в том, что при высоких скоростях даже маленькая плотная частица (массой не более грамма) будет обладать большой кинетической энергией. Поэтому при соударении с целью частица может повредить или даже пробить оболочку боеголовки. Даже в том случае, если оболочка будет только повреждена, то при входе в плотные слои атмосферы она будет разрушена в результате интенсивного механического воздействия и аэродинамического нагрева.

Естественно, при попадании такой частицы в тонкостенную надувную ложную цель, ее оболочка будет пробита и она в вакууме сразу же потеряет свою форму. Уничтожение легких ложных целей значительно облегчит селекцию ядерных боеголовок и, тем самым, будет способствовать успешной борьбе с ними.

Предполагается, что конструктивно такая боеголовка будет содержать ядерный заряд сравнительно небольшой мощности с автоматической системой подрыва, вокруг которого создается оболочка, состоящая из множества мелких металлических поражающих элементов. При массе оболочки 100 кг можно получить более 100 тысяч осколочных элементов , что позволит создать сравнительно большое и плотное поле поражения. В ходе взрыва ядерного заряда образуется раскаленный газ — плазма, который, разлетаясь с огромной скоростью, увлекает за собой и разгоняет эти плотные частицы. Сложной технической задачей при этом является сохранение достаточной массы осколков, поскольку при их обтекании высокоскоростным потоком газа будет происходить унос массы с поверхности элементов.

В США была проведена серия испытаний по созданию «ядерной шрапнели» по программе «Прометей». Мощность ядерного заряда в ходе этих испытаний составляла всего несколько десятков тонн. Оценивая поражающие возможности этого оружия, следует иметь в виду, что в плотных слоях атмосферы частицы, движущиеся со скоростями более 4-5 километров в секунду, будут сгорать. Поэтому «ядерную шрапнель» можно применять только в космосе, на высотах более 80-100 км, в условиях безвоздушного пространства .

Соответственно этому, шрапнельные боеголовки могут с успехом применяться, помимо борьбы с боеголовками и ложными целями, также в качестве противокосмического оружия для уничтожения спутников военного назначения, в частности, входящих в систему предупреждения о ракетном нападении (СПРН). Поэтому возможно его боевое использование в первом ударе для «ослепления» противника.

Рассмотренные выше различные виды ядерного оружия отнюдь не исчерпывают всех возможностей в создании его модификаций. Это, в частности, касается проектов ядерного оружия с усиленным действием воздушной ядерной волны, повышенным выходом Y-излучения, усилением радиоактивного заражения местности (типа пресловутой «кобальтовой» бомбы) и др.

В последнее время в США рассматриваются проекты ядерных зарядов сверхмалой мощности :
— мини-ньюкс (мощность сотни тонн),
— микро-ньюкс (десятки тонн),
— тайни-ньюкс (единицы тонн), которые кроме малой мощности, должны быть значительно более «чистыми», чем их предшественники.

Процесс совершенствования ядерного оружия продолжается и нельзя исключить появления в будущем сверхминиатюрных ядерных зарядов, созданных на основе использования сверхтяжелых трансплутониевых элементов с критической массой от 25 до 500 граммов. У трансплутониевого элемента курчатовия величина критической массы составляет около 150 граммов.

Ядерное устройство при использовании одного из изотопов калифорния будет иметь настолько малые размеры, что, обладая мощностью в несколько тонн тротила, может быть приспособлено для стрельбы из гранатометов и стрелкового оружия.

Все вышесказанное свидетельствует о том, что использование ядерной энергии в военных целях обладает значительными потенциальными возможностями и продолжение разработок в направлении создания новых образцов оружия может привести к «технологическому прорыву», который снизит «ядерный порог», окажет отрицательное влияние на стратегическую стабильность.

Запрещение всех ядерных испытаний если и не перекрывает полностью пути развития и совершенствования ядерного оружия, то значительно тормозит их. В этих условиях особое значение приобретает взаимная открытость, доверительность, ликвидация острых противоречий между государствами и создание, в конечном счете, эффективной международной системы коллективной безопасности.

/Владимир Белоус, генерал-майор, профессор Академии военных наук, nasledie.ru /

Мир атома настолько фантастичен, что для его понимания требуется коренная ломка привычных понятий о пространстве и времени. Атомы так малы, что если бы каплю воды можно было увеличить до размеров Земли, то каждый атом в этой капле был бы меньше апельсина. В самом деле, одна капля воды состоит из 6000 миллиардов миллиардов (6000000000000000000000) атомов водорода и кислорода. И тем не менее, несмотря на свои микроскопические размеры, атом имеет строение до некоторой степени сходное со строением нашей солнечной системы. В его непостижимо малом центре, радиус которого менее одной триллионной сантиметра, находится относительно огромное «солнце» - ядро атома.

Вокруг этого атомного «солнца» вращаются крохотные «планеты» - электроны. Ядро состоит из двух основных строительных кирпичиков Вселенной - протонов и нейтронов (они имеют объединяющее название - нуклоны). Электрон и протон - заряженные частицы, причем количество заряда в каждом из них совершенно одинаково, однако заряды различаются по знаку: протон всегда заряжен положительно, а электрон - отрицательно. Нейтрон не несет электрического заряда и вследствие этого имеет очень большую проницаемость.

В атомной шкале измерений масса протона и нейтрона принята за единицу. Атомный вес любого химического элемента поэтому зависит от количества протонов и нейтронов, заключенных в его ядре. Например, атом водорода, ядро которого состоит только из одного протона, имеет атомную массу равную 1. Атом гелия, с ядром из двух протонов и двух нейтронов, имеет атомную массу, равную 4.

Ядра атомов одного и того же элемента всегда содержат одинаковое число протонов, но число нейтронов может быть разным. Атомы, имеющие ядра с одинаковым числом протонов, но отличающиеся по числу нейтронов и относящиеся к разновидностям одного и того же элемента, называются изотопами. Чтобы отличить их друг от друга, к символу элемента приписывают число, равное сумме всех частиц в ядре данного изотопа.

Может возникнуть вопрос: почему ядро атома не разваливается? Ведь входящие в него протоны - электрически заряженные частицы с одинаковым зарядом, которые должны отталкиваться друг от друга с большой силой. Объясняется это тем, что внутри ядра действуют еще и так называемые внутриядерные силы, притягивающие частицы ядра друг к другу. Эти силы компенсируют силы отталкивания протонов и не дают ядру самопроизвольно разлететься.

Внутриядерные силы очень велики, но действуют только на очень близком расстоянии. Поэтому ядра тяжелых элементов, состоящие из сотен нуклонов, оказываются нестабильными. Частицы ядра находятся здесь в беспрерывном движении (в пределах объема ядра), и если добавить им какое-то дополнительное количество энергии, они могут преодолеть внутренние силы - ядро разделится на части. Величину этой избыточной энергии называют энергией возбуждения. Среди изотопов тяжелых элементов есть такие, которые как бы находятся на самой грани самораспада. Достаточно лишь небольшого «толчка», например, простого попадания в ядро нейтрона (причем он даже не должен разгоняться до большой скорости), чтобы пошла реакция ядерного деления. Некоторые из этих «делящихся» изотопов позже научились получать искусственно. В природе же существует только один такой изотоп - это уран-235.

Уран был открыт в 1783 году Клапротом, который выделил его из урановой смолки и назвал в честь недавно открытой планеты Уран. Как оказалось в дальнейшем, это был, собственно, не сам уран, а его оксид. Чистый уран - металл серебристо-белого цвета - был получен
только в 1842 году Пелиго. Новый элемент не обладал никакими замечательными свойствами и не привлекал к себе внимания вплоть до 1896 года, когда Беккерель открыл явление радиоактивности солей урана. После этого уран сделался объектом научных исследований и экспериментов, но практического применения по-прежнему не имел.

Когда в первой трети XX века физикам более или менее стало понятно строение атомного ядра, они прежде всего попробовали осуществить давнюю мечту алхимиков - постарались превратить один химический элемент в другой. В 1934 году французские исследователи супруги Фредерик и Ирен Жолио-Кюри доложили Французской академии наук о следующем опыте: при бомбардировке пластин алюминия альфа-частицами (ядрами атома гелия) атомы алюминия превращались в атомы фосфора, но не обычные, а радиоактивные, которые свою очередь переходили в устойчивый изотоп кремния. Таким образом, атом алюминия, присоединив один протон и два нейтрона, превращался в более тяжелый атом кремния.

Этот опыт навел на мысль, что если «обстреливать» нейтронами ядра самого тяжелого из существующих в природе элементов - урана, то можно получить такой элемент, которого в естественных условиях нет. В 1938 году немецкие химики Отто Ган и Фриц Штрассман повторили в общих чертах опыт супругов Жолио-Кюри, взяв вместо алюминия уран. Результаты эксперимента оказались совсем не те, что они ожидали - вместо нового сверхтяжелого элемента с массовым числом больше, чем у урана, Ган и Штрассман получили легкие элементы из средней части периодической системы: барий, криптон, бром и некоторые другие. Сами экспериментаторы не смогли объяснить наблюдаемое явление. Только в следующем году физик Лиза Мейтнер, которой Ган сообщил о своих затруднениях, нашла правильное объяснение наблюдаемому феномену, предположив, что при обстреле урана нейтронами происходит расщепление (деление) его ядра. При этом должны были образовываться ядра более легких элементов (вот откуда брались барий, криптон и другие вещества), а также выделяться 2-3 свободных нейтрона. Дальнейшие исследования позволили детально прояснить картину происходящего.

Природный уран состоит из смеси трех изотопов с массами 238, 234 и 235. Основное количество урана приходится на изотоп-238, в ядро которого входят 92 протона и 146 нейтронов. Уран-235 составляет всего 1/140 природного урана (0, 7% (он имеет в своем ядре 92 протона и 143 нейтрона), а уран-234 (92 протона, 142 нейтрона) лишь - 1/17500 от общей массы урана (0, 006%. Наименее стабильным из этих изотопов является уран-235.

Время от времени ядра его атомов самопроизвольно делятся на части, вследствие чего образуются более легкие элементы периодической системы. Процесс сопровождается выделением двух или трех свободных нейтронов, которые мчатся с огромной скоростью - около 10 тыс. км/с (их называют быстрыми нейтронами). Эти нейтроны могут попадать в другие ядра урана, вызывая ядерные реакции. Каждый изотоп ведет себя в этом случае по-разному. Ядра урана-238 в большинстве случаев просто захватывают эти нейтроны без каких-либо дальнейших превращений. Но примерно в одном случае из пяти при столкновении быстрого нейтрона с ядром изотопа-238 происходит любопытная ядерная реакция: один из нейтронов урана-238 испускает электрон, превращаясь в протон, то есть изотоп урана обращается в более
тяжелый элемент - нептуний-239 (93 протона + 146 нейтронов). Но нептуний нестабилен - через несколько минут один из его нейтронов испускает электрон, превращаясь в протон, после чего изотоп нептуния обращается в следующий по счету элемент периодической системы - плутоний-239 (94 протона + 145 нейтронов). Если же нейтрон попадает в ядро неустойчивого урана-235, то немедленно происходит деление - атомы распадаются с испусканием двух или трех нейтронов. Понятно, что в природном уране, большинство атомов которого относятся к изотопу-238, никаких видимых последствий эта реакция не имеет - все свободные нейтроны окажутся в конце концов поглощенными этим изотопом.

Ну а если представить себе достаточно массивный кусок урана, целиком состоящий из изотопа-235?

Здесь процесс пойдет по-другому: нейтроны, выделившиеся при делении нескольких ядер, в свою очередь, попадая в соседние ядра, вызывают их деление. В результате выделяется новая порция нейтронов, которая расщепляет следующие ядра. При благоприятных условиях эта реакция протекает лавинообразно и носит название цепной реакции. Для ее начала может быть достаточно считанного количества бомбардирующих частиц.

Действительно, пусть уран-235 бомбардируют всего 100 нейтронов. Они разделят 100 ядер урана. При этом выделится 250 новых нейтронов второго поколения (в среднем 2, 5 за одно деление). Нейтроны второго поколения произведут уже 250 делений, при котором выделится 625 нейтронов. В следующем поколении оно станет равным 1562, затем 3906, далее 9670 и т.д. Число делений будет увеличиваться безгранично, если процесс не остановить.

Однако реально лишь незначительная часть нейтронов попадает в ядра атомов. Остальные, стремительно промчавшись между ними, уносятся в окружающее пространство. Самоподдерживающаяся цепная реакция может возникнуть только в достаточно большом массиве урана-235, обладающим, как говорят, критической массой. (Эта масса при нормальных условиях равна 50 кг.) Важно отметить, что деление каждого ядра сопровождается выделением огромного количества энергии, которая оказывается примерно в 300 миллионов раз больше энергии, затраченной на расщепление! (Подсчитано, что при полном делении 1 кг урана-235 выделяется столько же тепла, сколько при сжигании 3 тыс. тонн угля.)

Этот колоссальный выплеск энергии, освобождающейся в считанные мгновения, проявляет себя как взрыв чудовищной силы и лежит в основе действия ядерного оружия. Но для того чтобы это оружие стало реальностью, необходимо, чтобы заряд состоял не из природного урана, а из редкого изотопа - 235 (такой уран называют обогащенным). Позже было установлено, что чистый плутоний также является делящимся материалом и может быть использован в атомном заряде вместо урана-235.

Все эти важные открытия были сделаны накануне Второй мировой войны. Вскоре в Германии и в других странах начались секретные работы по созданию атомной бомбы. В США этой проблемой занялись в 1941 году. Всему комплексу работ было присвоено наименование «Манхэттенского проекта».

Административное руководство проектом осуществлял генерал Гровс, а научное - профессор Калифорнийского университета Роберт Оппенгеймер. Оба хорошо понимали огромную сложность стоящей перед ними задачи. Поэтому первой заботой Оппенгеймера стало комплектование высокоинтеллектуального научного коллектива. В США тогда было много физиков, эмигрировавших из фашистской Германии. Нелегко было привлечь их к созданию оружия, направленного против их прежней родины. Оппенгеймер лично говорил с каждым, пуская в ход всю силу своего обаяния. Вскоре ему удалось собрать небольшую группу теоретиков, которых он шутливо называл «светилами». И в самом деле, в нее входили крупнейшие специалисты того времени в области физики и химии. (Среди них 13 лауреатов Нобелевской премии, в том числе Бор, Ферми, Франк, Чедвик, Лоуренс.) Кроме них, было много других специалистов самого разного профиля.

Правительство США не скупилось на расходы, и работы с самого начала приняли грандиозный размах. В 1942 году была основана крупнейшая в мире исследовательская лаборатория в Лос-Аламосе. Население этого научного города вскоре достигло 9 тысяч человек. По составу ученых, размаху научных экспериментов, числу привлекаемых к работе специалистов и рабочих Лос-Аламосская лаборатория не имела себе равных в мировой истории. «Манхэттенский проект» имел свою полицию, контрразведку, систему связи, склады, поселки, заводы, лаборатории, свой колоссальный бюджет.

Главная цель проекта состояла в получении достаточного количества делящегося материала, из которого можно было бы создать несколько атомных бомб. Кроме урана-235 зарядом для бомбы, как уже говорилось, мог служить искусственный элемент плутоний-239, то есть бомба могла быть как урановой, так и плутониевой.

Гровс и Оппенгеймер согласились, что работы должны вестись одновременно по двум направлениям, поскольку невозможно наперед решить, какое из них окажется более перспективным. Оба способа принципиально отличались друг от друга: накопление урана-235 должно было осуществляться путем его отделения от основной массы природного урана, а плутоний мог быть получен только в результате управляемой ядерной реакции при облучении нейтронами урана-238. И тот и другой путь представлялся необычайно трудным и не сулил легких решений.

В самом деле, как можно отделить друг от друга два изотопа, которые лишь незначительно отличаются своим весом и химически ведут себя совершенно одинаково? Ни наука, ни техника никогда еще не сталкивались с такой проблемой. Производство плутония тоже поначалу казалось очень проблематичным. До этого весь опыт ядерных превращений сводился к нескольким лабораторным экспериментам. Теперь же предстояло в промышленном масштабе освоить производство килограммов плутония, разработать и создать для этого специальную установку - ядерный реактор, и научиться управлять течением ядерной реакции.

И там и здесь предстояло разрешить целый комплекс сложных задач. Поэтому «Манхэттенский проект» состоял из нескольких подпроектов, во главе которых стояли видные ученые. Сам Оппенгеймер был главой Лос-Аламосской научной лаборатории. Лоуренс заведовал Радиационной лабораторией Калифорнийского университета. Ферми вел в Чикагском университете исследования по созданию ядерного реактора.

Поначалу важнейшей проблемой было получение урана. До войны этот металл фактически не имел применения. Теперь, когда он потребовался сразу в огромных количествах, оказалось, что не существует промышленного способа его производства.

Компания «Вестингауз» взялась за его разработку и быстро добилась успеха. После очистки урановой смолы (в таком виде уран встречается в природе) и получения окиси урана, ее превращали в тетрафторид (UF4), из которого путем электролиза выделялся металлический уран. Если в конце 1941 года в распоряжении американских ученых было всего несколько граммов металлического урана, то уже в ноябре 1942 года его промышленное производство на заводах фирмы «Вестингауз» достигло 6000 фунтов в месяц.

Одновременно шла работа над созданием ядерного реактора. Процесс производства плутония фактически сводился к облучению урановых стержней нейтронами, в результате чего часть урана-238 должна была обратиться в плутоний. Источниками нейтронов при этом могли быть делящиеся атомы урана-235, рассеянные в достаточном количестве среди атомов урана-238. Но для того чтобы поддерживать постоянное воспроизводство нейтронов, должна была начаться цепная реакция деления атомов урана-235. Между тем, как уже говорилось, на каждый атом урана-235 приходилось 140 атомов урана-238. Ясно, что у разлетающихся во все стороны нейтронов было гораздо больше вероятности встретить на своем пути именно их. То есть, огромное число выделившихся нейтронов оказывалось без всякой пользы поглощенным основным изотопом. Очевидно, что при таких условиях цепная реакция идти не могла. Как же быть?

Сначала представлялось, что без разделения двух изотопов работа реактора вообще невозможна, но вскоре было установлено одно важное обстоятельство: оказалось, что уран-235 и уран-238 восприимчивы к нейтронам разных энергий. Расщепить ядро атома урана-235 можно нейтроном сравнительно небольшой энергии, имеющим скорость около 22 м/с. Такие медленные нейтроны не захватываются ядрами урана-238 - для этого те должны иметь скорость порядка сотен тысяч метров в секунду. Другими словами уран-238 бессилен помешать началу и ходу цепной реакции в уране-235, вызванной нейтронами, замедленными до крайне малых скоростей - не более 22 м/с. Это явление было открыто итальянским физиком Ферми, который с 1938 года жил в США и руководил здесь работами по созданию первого реактора. В качестве замедлителя нейтронов Ферми решил применить графит. По его расчетам, вылетевшие из урана-235 нейтроны, пройдя через слой графита в 40 см, должны были снизить свою скорость до 22 м/с и начать самоподдерживающуюся цепную реакцию в уране-235.

Другим замедлителем могла служить так называемая «тяжелая» вода. Поскольку атомы водорода, входящие в нее, по размерам и массе очень близки к нейтронам, они могли лучше всего замедлять их. (С быстрыми нейтронами происходит примерно то же, что с шарами: если маленький шар ударяется о большой, он откатывается назад, почти не теряя скорости, при встрече же с маленьким шаром он передает ему значительную часть своей энергии - точно так же нейтрон при упругом столкновении отскакивает от тяжелого ядра лишь незначительно замедляясь, а при столкновении с ядрами атомов водорода очень быстро теряет всю свою энергию.) Однако обычная вода не подходит для замедления, так как ее водород имеет тенденцию поглощать нейтроны. Вот почему для этой цели следует использовать дейтерий, входящий в состав «тяжелой» воды.

В начале 1942 года под руководством Ферми в помещении теннисного корта под западными трибунами Чикагского стадиона началось строительство первого в истории ядерного реактора. Все работы ученые проводили сами. Управление реакцией можно осуществлять единственным способом - регулируя число нейтронов, участвующих в цепной реакции. Ферми предполагал добиться этого с помощью стержней, изготовленных из таких веществ, как бор и кадмий, которые сильно поглощают нейтроны. Замедлителем служили графитовые кирпичи, из которых физики возвели колоны высотой в 3 м и шириной в 1, 2 м. Между ними были установлены прямоугольные блоки с окисью урана. На всю конструкцию пошло около 46 тонн окиси урана и 385 тонн графита. Для замедления реакции служили введенные в реактор стержни из кадмия и бора.

Если бы этого оказалось недостаточно, то для страховки на платформе, расположенной над реактором, стояли двое ученых с ведрами, наполненными раствором солей кадмия - они должны были вылить их на реактор, если бы реакция вышла из-под контроля. К счастью, этого не потребовалось. 2 декабря 1942 года Ферми приказал выдвинуть все контрольные стержни, и эксперимент начался. Через четыре минуты нейтронные счетчики стали щелкать все громче и громче. С каждой минутой интенсивность нейтронного потока становилась больше. Это говорило о том, что в реакторе идет цепная реакция. Она продолжалась в течение 28 минут. Затем Ферми дал знак, и опущенные стержни прекратили процесс. Так впервые человек освободил энергию атомного ядра и доказал, что может контролировать ее по своей воле. Теперь уже не было сомнения, что ядерное оружие - реальность.

В 1943 году реактор Ферми демонтировали и перевезли в Арагонскую национальную лабораторию (50 км от Чикаго). Здесь был вскоре построен еще один ядерный реактор, в котором в качестве замедлителя использовалась тяжелая вода. Он состоял из цилиндрической алюминиевой цистерны, содержащей 6, 5 тонн тяжелой воды, в которую было вертикально погружено 120 стержней из металлического урана, заключенные в алюминиевую оболочку. Семь управляющих стержней были сделаны из кадмия. Вокруг цистерны располагался графитовый отражатель, затем экран из сплавов свинца и кадмия. Вся конструкция заключалась в бетонный панцирь с толщиной стенок около 2, 5 м.

Эксперименты на этих опытных реакторах подтвердили возможность промышленного производства плутония.

Главным центром «Манхэттенского проекта» вскоре стал городок Ок-Ридж в долине реки Теннеси, население которого за несколько месяцев выросло до 79 тысяч человек. Здесь в короткий срок был построен первый в истории завод по производству обогащенного урана. Тут же в 1943 году был пущен промышленный реактор, вырабатывавший плутоний. В феврале 1944 года из него ежедневно извлекали около 300 кг урана, с поверхности которого путем химического разделения получали плутоний. (Для этого плутоний сначала растворяли, а потом осаждали.) Очищенный уран после этого вновь возвращался в реактор. В том же году в бесплодной унылой пустыне на южном берегу реки Колумбия началось строительство огромного Хэнфордского завода. Здесь размещалось три мощных атомных реактора, ежедневно дававших несколько сот граммов плутония.

Параллельно полным ходом шли исследования по разработке промышленного процесса обогащения урана.

Рассмотрев разные варианты, Гровс и Оппенгеймер решили сосредоточить усилия на двух методах: газодиффузионном и электромагнитном.

Газодиффузионный метод основывался на принципе, известном под названием закона Грэхэма (он был впервые сформулирован в 1829 году шотландским химиком Томасом Грэхэмом и разработан в 1896 году английским физиком Рейли). В соответствии с этим законом, если два газа, один из которых легче другого, пропускать через фильтр с ничтожно малыми отверстиями, то через него пройдет несколько больше легкого газа, чем тяжелого. В ноябре 1942 года Юри и Даннинг из Колумбийского университета создали на основе метода Рейли газодиффузионный метод разделения изотопов урана.

Так как природный уран - твердое вещество, то его сначала превращали во фтористый уран (UF6). Затем этот газ пропускали через микроскопические - порядка тысячных долей миллиметра - отверстия в перегородке фильтра.

Так как разница в молярных весах газов была очень мала, то за перегородкой содержание урана-235 увеличивалось всего в 1, 0002 раза.

Для того чтобы увеличить количество урана-235 еще больше, полученную смесь снова пропускают через перегородку, и количество урана опять увеличивается в 1, 0002 раза. Таким образом, чтобы повысить содержание урана-235 до 99%, нужно было пропускать газ через 4000 фильтров. Это происходило на огромном газодиффузионном заводе в Ок-Ридж.

В 1940 году под руководством Эрнста Лоуренса в Калифорнийском университете начались исследования по разделению изотопов урана электромагнитным методом. Необходимо было найти такие физические процессы, которые позволили бы разделять изотопы, пользуясь разностью их масс. Лоуренс предпринял попытку разделить изотопы, используя принцип масс-спектрографа - прибора, с помощью которого определяют массы атомов.

Принцип его действия сводился к следующему: предварительно ионизированные атомы ускорялись электрическим полем, а затем пропускались через магнитное поле, в котором они описывали окружности, расположенные в плоскости, перпендикулярной направлению поля. Так как радиусы этих траекторий были пропорциональны массе, легкие ионы оказывались на окружностях меньшего радиуса, чем тяжелые. Если на пути атомов размещали ловушки, то можно было таким образом раздельно собирать различные изотопы.

Таков был метод. В лабораторных условиях он дал неплохие результаты. Но строительство установки, на которой разделение изотопов могло бы производиться в промышленных масштабах, оказалось чрезвычайно сложным. Однако Лоуренсу в конце концов удалось преодолеть все трудности. Результатом его усилий стало появление калутрона, который был установлен на гигантском заводе в Ок-Ридже.

Этот электромагнитный завод был построен в 1943 году и оказался едва ли не самым дорогостоящим детищем «Манхэттенского проекта». Метод Лоуренса требовал большого количества сложных, еще не разработанных устройств, связанных с высоким напряжением, высоким вакуумом и сильными магнитными полями. Масштабы затрат оказались огромны. Калутрон имел гигантский электромагнит, длина которого достигала 75 м при весе около 4000 тонн.

На обмотки для этого электромагнита пошло несколько тысяч тонн серебряной проволоки.

Все работы (не считая стоимости серебра на сумму 300 миллионов долларов, которое государственное казначейство предоставило только на время) обошлись в 400 миллионов долларов. Только за электроэнергию, затраченную калутроном, министерство обороны заплатило 10 миллионов. Большая часть оборудования ок-риджского завода превосходила по масштабам и точности изготовления все, что когда-либо разрабатывалось в этой области техники.

Но все эти затраты оказались не напрасными. Издержав в общей сложности около 2 миллиардов долларов, ученые США к 1944 году создали уникальную технологию обогащения урана и производства плутония. Тем временем в Лос-Аламосской лаборатории работали над проектом самой бомбы. Принцип ее действия был в общих чертах ясен уже давно: делящееся вещество (плутоний или уран-235) следовало в момент взрыва перевести в критическое состояние (для осуществления цепной реакции масса заряда должна быть даже заметно больше критической) и облучить пучком нейтронов, что влекло за собой начало цепной реакции.

По расчетам, критическая масса заряда превосходила 50 килограмм, но ее смогли значительно уменьшить. Вообще на величину критической массы сильно влияют несколько факторов. Чем больше поверхностная площадь заряда - тем больше нейтронов бесполезно излучается в окружающее пространство. Наименьшей площадью поверхности обладает сфера. Следовательно, сферические заряды при прочих равных условиях имеют наименьшую критическую массу. Кроме того, величина критической массы зависит от чистоты и вида делящихся материалов. Она обратно пропорциональна квадрату плотности этого материала, что позволяет, например, при увеличении плотности вдвое, уменьшить критическую массу в четыре раза. Нужную степень подкритичности можно получить, к примеру, уплотнением делящегося материала за счет взрыва заряда обычного взрывчатого вещества, выполненного в виде сферической оболочки, окружающей ядерный заряд. Критическую массу, кроме того, можно уменьшить, окружив заряд экраном, хорошо отражающим нейтроны. В качестве такого экрана могут быть использованы свинец, бериллий, вольфрам, природный уран, железо и многие другие.

Одна из возможных конструкций атомной бомбы состоит из двух кусков урана, которые, соединяясь, образуют массу больше критической. Для того чтобы вызвать взрыв бомбы, надо как можно быстрее сблизить их. Второй метод основан на использовании сходящегося внутрь взрыва. В этом случае поток газов от обычного взрывчатого вещества направлялся на расположенный внутри делящийся материал и сжимал его до тех пор, пока он не достигал критической массы. Соединение заряда и интенсивное облучение его нейтронами, как уже говорилось, вызывает цепную реакцию, в результате которой в первую же секунду температура возрастает до 1 миллиона градусов. За это время успевало разделиться всего около 5% критической массы. Остальная часть заряда в бомбах ранней конструкции испарялась без
всякой пользы.

Первая в истории атомная бомба (ей было дано имя «Тринити») была собрана летом 1945 года. А 16 июня 1945 года на атомном полигоне в пустыне Аламогордо (штат Нью-Мексико) был произведен первый на Земле атомный взрыв. Бомбу поместили в центре полигона на вершине стальной 30-метровой башни. Вокруг нее на большом расстоянии размещалась регистрирующая аппаратура. В 9 км находился наблюдательный пункт, а в 16 км - командный. На всех свидетелей этого события атомный взрыв произвел потрясающее впечатление. По описанию очевидцев, было такое ощущение, будто множество солнц соединилось в одно и разом осветило полигон. Затем над равниной возник огромный огненный шар и к нему медленно и зловеще стало подниматься круглое облако пыли и света.

Оторвавшись от земли, этот огненный шар за несколько секунд взлетел на высоту более трех километров. С каждым мгновением он разрастался в размерах, вскоре его диаметр достиг 1, 5 км, и он медленно поднялся в стратосферу. Затем огненный шар уступил место столбу клубящегося дыма, который вытянулся на высоту 12 км, приняв форму гигантского гриба. Все это сопровождалось ужасным грохотом, от которого дрожала земля. Мощность взорвавшейся бомбы превзошла все ожидания.

Как только позволила радиационная обстановка, несколько танков «Шерман», выложенные изнутри свинцовыми плитами, ринулись в район взрыва. На одном из них находился Ферми, которому не терпелось увидеть результаты своего труда. Его глазам предстала мертвая выжженная земля, на которой в радиусе 1, 5 км было уничтожено все живое. Песок спекся в стекловидную зеленоватую корку, покрывавшую землю. В огромной воронке лежали изуродованные остатки стальной опорной башни. Сила взрыва была оценена в 20000 тонн тротила.

Следующим шагом должно было стать боевое применение атомной бомбы против Японии, которая после капитуляции фашистской Германии одна продолжала войну с США и их союзниками. Ракет-носителей тогда еще не было, поэтому бомбардировку предстояло осуществить с самолета. Компоненты двух бомб были с большой осторожностью доставлены крейсером «Индианаполис» на остров Тиниан, где базировалась 509-я сводная группа ВВС США. По типу заряда и конструкции эти бомбы несколько отличались друг от друга.

Первая атомная бомба - «Малыш» - представляла собой крупногабаритную авиационную бомбу с атомным зарядом из сильно обогащенного урана-235. Длина ее была около 3 м, диаметр - 62 см, вес - 4, 1 т.

Вторая атомная бомба - «Толстяк» - с зарядом плутония-239 имела яйцеобразную форму с крупногабаритным стабилизатором. Длина ее
составляла 3, 2 м, диаметр 1, 5 м, вес - 4, 5 т.

6 августа бомбардировщик Б-29 «Энола Гэй» полковника Тиббетса сбросил «Малыша» на крупный японский город Хиросиму. Бомба опускалась на парашюте и взорвалась, как это и было предусмотрено, на высоте 600 м от земли.

Последствия взрыва были ужасны. Даже на самих пилотов вид уничтоженного ими в одно мгновение мирного города произвел гнетущее впечатление. Позже один из них признался, что они видели в эту секунду самое плохое, что только может увидеть человек.

Для тех же, кто находился на земле, происходящее напоминало подлинный ад. Прежде всего, над Хиросимой прошла тепловая волна. Ее действие длилось всего несколько мгновений, но было настолько мощным, что расплавило даже черепицу и кристаллы кварца в гранитных плитах, превратило в уголь телефонные столбы на расстоянии 4 км и, наконец, настолько испепелило человеческие тела, что от них остались только тени на асфальте мостовых или на стенах домов. Затем из-под огненного шара вырвался чудовищный порыв ветра и промчался над городом со скоростью 800 км/ч, сметая все на своем пути. Не выдержавшие его яростного натиска дома рушились как подкошенные. В гигантском круге диаметром 4 км не осталось ни одного целого здания. Через несколько минут после взрыва над городом прошел черный радиоактивный дождь - это превращенная в пар влага сконденсировалась в высоких слоях атмосферы и выпала на землю в виде крупных капель, смешанных с радиоактивной пылью.

После дождя на город обрушился новый порыв ветра, на этот раз дувший в направлении эпицентра. Он был слабее первого, но все же достаточно силен, чтобы вырывать с корнем деревья. Ветер раздул гигантский пожар, в котором горело все, что только могло гореть. Из 76 тысяч зданий полностью разрушилось и сгорело 55 тысяч. Свидетели этой ужасной катастрофы вспоминали о людях-факелах, с которых сгоревшая одежда спадала на землю вместе с лохмотьями кожи, и о толпах обезумевших людей, покрытых ужасными ожогами, которые с криком метались по улицам. В воздухе стоял удушающий смрад от горелого человеческого мяса. Всюду валялись люди, мертвые и умирающие. Было много таких, которые ослепли и оглохли и, тычась во все стороны, не могли ничего разобрать в царившем вокруг хаосе.

Несчастные, находившиеся от эпицентра на расстоянии до 800 м, за доли секунды сгорели в буквальном смысле слова - их внутренности испарились, а тела превратились в комки дымящихся углей. Находившиеся от эпицентра на расстоянии 1 км, были поражены лучевой болезнью в крайне тяжелой форме. Уже через несколько часов у них началась сильнейшая рвота, температура подскочила до 39-40 градусов, появились одышка и кровотечения. Затем на коже высыпали незаживающие язвы, состав крови резко изменился, волосы выпали. После ужасных страданий, обычно на второй или третий день, наступала смерть.

Всего от взрыва и лучевой болезни погибло около 240 тысяч человек. Около 160 тысяч получили лучевую болезнь в более легкой форме - их мучительная смерть оказалась отсроченной на несколько месяцев или лет. Когда известие о катастрофе распространилось по стране, вся Япония была парализована страхом. Он еще увеличился, после того как 9 августа самолет «Бокс Кар» майора Суини сбросил вторую бомбу на Нагасаки. Здесь также погибло и было ранено несколько сот тысяч жителей. Не в силах противостоять новому оружию, японское правительство капитулировало - атомная бомба положила конец Второй мировой войне.

Война закончилась. Она продолжалась всего шесть лет, но успела изменить мир и людей почти до неузнаваемости.

Человеческая цивилизация до 1939 года и человеческая цивилизация после 1945 года разительно не похожи друг на друга. Тому есть много причин, но одна из важнейших - появление ядерного оружия. Можно без преувеличений сказать, что тень Хиросимы лежит на всей второй половине XX века. Она стала глубоким нравственным ожогом для многих миллионов людей, как бывших современниками этой катастрофы, так и родившихся через десятилетия после нее. Современный человек уже не может думать о мире так, как думали о нем до 6 августа 1945 года - он слишком ясно понимает, что этот мир может за несколько мгновений превратиться в ничто.

Современный человек не может смотреть на войну, так как смотрели его деды и прадеды - он достоверно знает, что эта война будет последней, и в ней не окажется ни победителей, ни побежденных. Ядерное оружие наложило свой отпечаток на все сферы общественной жизни, и современная цивилизация не может жить по тем же законам, что шестьдесят или восемьдесят лет назад. Никто не понимал этого лучше самих создателей атомной бомбы.

«Люди нашей планеты , - писал Роберт Оппенгеймер, - должны объединиться. Ужас и разрушение, посеянные последней войной, диктуют нам эту мысль. Взрывы атомных бомб доказали ее со всей жестокостью. Другие люди в другое время уже говорили подобные слова - только о другом оружии и о других войнах. Они не добились успеха. Но тот, кто и сегодня скажет, что эти слова бесполезны, введен в заблуждение превратностями истории. Нас нельзя убедить в этом. Результаты нашего труда не оставляют человечеству другого выбора, кроме как создать объединенный мир. Мир, основанный на законности и гуманизме».

В конце концов вещество все же разлетается, прекращается деление, но процесс на этом не завершается: энергия перераспределяется между ионизованными осколками разделившихся ядер и другими испущенными при делении частицами. Их энергия — порядка десятков и даже сотен МэВ, но только электрически нейтральные гамма-кванты больших энергий и нейтроны имеют шансы избежать взаимодействия с веществом и «ускользнуть». Заряженные же частицы быстро теряют энергию в актах столкновений и ионизаций. При этом испускается излучение — правда, уже не жесткое ядерное, а более мягкое, с энергией на три порядка меньшей, но все же более чем достаточной, чтобы выбить у атомов электроны — не только с внешних оболочек, но и вообще все. Мешанина из голых ядер, ободранных с них электронов и излучения с плотностью в граммы на кубический сантиметр (попытайтесь представить, как хорошо можно загореть под светом, приобретшим плотность алюминия!) — все то, что мгновение назад было зарядом, — приходит в некое подобие равновесия. В совсем молодом огненном шаре устанавливается температура порядка десятков миллионов градусов.

Огненный шар

Казалось бы, даже и мягкое, но двигающееся со скоростью света излучение должно оставить далеко позади вещество, которое его породило, но это не так: в холодном воздухе пробег квантов кэвных энергий составляет сантиметры, и двигаются они не по прямой, а меняя направление движения, переизлучаясь при каждом взаимодействии. Кванты ионизируют воздух, распространяются в нем, подобно вишневому соку, вылитому в стакан с водой. Это явление называют радиационной диффузией.

Молодой огненный шар взрыва мощностью в 100 кт через несколько десятков наносекунд после завершения вспышки делений имеет радиус 3 м и температуру почти 8 млн кельвинов. Но уже через 30 микросекунд его радиус составляет 18 м, правда, температура спускается ниже миллиона градусов. Шар пожирает пространство, а ионизованный воздух за его фронтом почти не двигается: передать ему значительный импульс при диффузии излучение не может. Но оно накачивает в этот воздух огромную энергию, нагревая его, и, когда энергия излучения иссякает, шар начинает расти за счет расширения горячей плазмы, распираемой изнутри тем, что раньше было зарядом. Расширяясь, подобно надуваемому пузырю, плазменная оболочка истончается. В отличие от пузыря, ее, конечно, ничто не надувает: с внутренней стороны почти не остается вещества, все оно летит от центра по инерции, но через 30 микросекунд после взрыва скорость этого полета — более 100 км/с, а гидродинамическое давление в веществе — более 150 000 атм! Стать чересчур уж тонкой оболочке не суждено, она лопается, образуя «волдыри».

В вакуумной нейтронной трубке между насыщенной тритием мишенью (катодом) 1 и анодным узлом 2 прикладывается импульсное напряжение в сотню киловольт. Когда напряжение максимально, необходимо, чтобы между анодом и катодом оказались ионы дейтерия, которые и требуется ускорить. Для этого служит ионный источник. На его анод 3 подается поджигающий импульс, и разряд, проходя по поверхности насыщенной дейтерием керамики 4, образует ионы дейтерия. Ускорившись, они бомбардируют мишень, насыщенную тритием, в результате чего выделяется энергия 17,6 МэВ и образуются нейтроны и ядра гелия-4. По составу частиц и даже по энергетическому выходу эта реакция идентична синтезу — процессу слияния легких ядер. В 1950-х многие так и считали, но позже выяснилось, что в трубке происходит «срыв»: либо протон, либо нейтрон (из которых состоит ион дейтерия, разогнанный электрическим полем) «увязает» в ядре мишени (трития). Если увязает протон, то нейтрон отрывается и становится свободным.

Какой из механизмов передачи энергии огненного шара окружающей среде превалирует, зависит от мощности взрыва: если она велика — основную роль играет радиационная диффузия, если мала — расширение плазменного пузыря. Понятно, что возможен и промежуточный случай, когда эффективны оба механизма.

Процесс захватывает новые слои воздуха, энергии на то, чтобы ободрать все электроны с атомов, уже не хватает. Иссякает энергия ионизованного слоя и обрывков плазменного пузыря, они уже не в силах двигать перед собой огромную массу и заметно замедляются. Но то, что до взрыва было воздухом, движется, оторвавшись от шара, вбирая в себя все новые слои воздуха холодного… Начинается образование ударной волны.

Ударная волна и атомный гриб

При отрыве ударной волны от огненного шара меняются характеристики излучающего слоя и резко возрастает мощность излучения в оптической части спектра (так называемый первый максимум). Далее конкурируют процессы высвечивания и изменения прозрачности окружающего воздуха, что приводит к реализации и второго максимума, менее мощного, но значительно более длительного — настолько, что выход световой энергии больше, чем в первом максимуме.


Вблизи взрыва все окружающее испаряется, подальше — плавится, но и еще дальше, где тепловой поток уже недостаточен для плавления твердых тел, грунт, скалы, дома текут, как жидкость, под чудовищным, разрушающим все прочностные связи напором газа, раскаленного до нестерпимого для глаз сияния.

Наконец, ударная волна уходит далеко от точки взрыва, где остается рыхлое и ослабевшее, но расширившееся во много раз облако из конденсировавшихся, обратившихся в мельчайшую и очень радиоактивную пыль паров того, что побывало плазмой заряда, и того, что в свой страшный час оказалось близко к месту, от которого следовало бы держаться как можно дальше. Облако начинает подниматься вверх. Оно остывает, меняя свой цвет, «надевает» белую шапку сконденсировавшейся влаги, за ним тянется пыль с поверхности земли, образуя «ножку» того, что принято называть «атомным грибом».

Нейтронное инициирование

Внимательные читатели могут с карандашом в руках прикинуть энерговыделение при взрыве. При времени нахождения сборки в сверхкритическом состоянии порядка микросекунд, возрасте нейтронов порядка пикосекунд и коэффициенте размножения менее 2 выделяется около гигаджоуля энергии, что эквивалентно… 250 кг тротила. А где же кило- и мегатонны?

Нейтроны — медленные и быстрые

В неделящемся веществе, «отскакивая» от ядер, нейтроны передают им часть своей энергии, тем большую, чем легче (ближе им по массе) ядра. Чем в большем числе столкновений поучаствовали нейтроны, тем более они замедляются, и, наконец, приходят в тепловое равновесие с окружающим веществом — термализуются (это занимает миллисекунды). Скорость тепловых нейтронов — 2200 м/с (энергия 0,025 эВ). Нейтроны могут ускользнуть из замедлителя, захватываются его ядрами, но с замедлением их способность вступать в ядерные реакции существенно возрастает, поэтому нейтроны, которые «не потерялись», с лихвой компенсируют убыль численности.
Так, если шар делящегося вещества окружить замедлителем, многие нейтроны покинут замедлитель или будут поглощены в нем, но будут и такие, которые вернутся в шар («отразятся») и, потеряв свою энергию, с гораздо большей вероятностью вызовут акты деления. Если шар окружить слоем бериллия толщиной 25 мм, то, можно сэкономить 20 кг U235 и все равно достичь критического состояния сборки. Но за такую экономию платят временем: каждое последующее поколение нейтронов, прежде чем вызвать деление, должно сначала замедлиться. Эта задержка уменьшает число поколений нейтронов, рождающихся в единицу времени, а значит, энерговыделение затягивается. Чем меньше делящегося вещества в сборке, тем больше требуется замедлителя для развития цепной реакции, а деление идет на все более низкоэнергетичных нейтронах. В предельном случае, когда критичность достигается только на тепловых нейтронах, например — в растворе солей урана в хорошем замедлителе — воде, масса сборок — сотни граммов, но раствор просто периодически вскипает. Выделяющиеся пузырьки пара уменьшают среднюю плотность делящегося вещества, цепная реакция прекращается, а, когда пузырьки покидают жидкость — вспышка делений повторяется (если закупорить сосуд, пар разорвет его — но это будет тепловой взрыв, лишенный всех типичных «ядерных» признаков).

Дело в том, что цепь делений в сборке начинается не с одного нейтрона: в нужную микросекунду их впрыскивают в сверхкритическую сборку миллионами. В первых ядерных зарядах для этого использовались изотопные источники, расположенные в полости внутри плутониевой сборки: полоний-210 в момент сжатия соединялся с бериллием и своими альфа-частицами вызывал нейтронную эмиссию. Но все изотопные источники слабоваты (в первом американском изделии генерировалось менее миллиона нейтронов за микросекунду), а полоний уж очень скоропортящийся — всего за 138 суток снижает свою активность вдвое. Поэтому на смену изотопам пришли менее опасные (не излучающие в невключенном состоянии), а главное — излучающие более интенсивно нейтронные трубки (см. врезку): за несколько микросекунд (столько длится формируемый трубкой импульс) рождаются сотни миллионов нейтронов. А вот если она не сработает или сработает не вовремя, произойдет так называемый хлопок, или «пшик» — маломощный тепловой взрыв.

Северная Корея угрожает США испытаниями сверхмощной водородной бомбы в Тихом океане. Япония, которая может пострадать из-за испытаний, назвала планы КНДР абсолютно неприемлемыми. Президенты Дональд Трамп и Ким Чен Ын ругаются в интервью и говорят об открытом военном конфликте. Для тех, кто не разбирается в ядерном оружии, но хочет быть в теме, «Футурист» составил путеводитель.

Как работает ядерное оружие?

Как и в обычной динамитной шашке, в ядерной бомбе используется энергия. Только высвобождается она не в ходе примитивной химической реакции, а в сложных ядерных процессах. Существует два основных способа выделения ядерной энергии из атома. В ядерном делении ядро ​​атома распадается на два меньших фрагмента с нейтроном. Ядерный синтез – процесс, с помощью которого Солнце вырабатывает энергию – включает объединение двух меньших атомов с образованием более крупного. В любом процессе, делении или слиянии выделяются большие количества тепловой энергии и излучения. В зависимости от того, используется деление ядер или их синтез, бомбы делятся на ядерные (атомные) и термоядерные .

А можно поподробнее про ядерное деление?

Взрыв атомной бомбы над Хиросимой (1945 г)

Как вы помните, атом состоит из трех типов субатомных частиц: протонов, нейтронов и электронов. Центр атома, называемый ядром , состоит из протонов и нейтронов. Протоны положительно заряжены, электроны – отрицательно, а нейтроны вообще не имеют заряда. Отношение протон-электрон всегда один к одному, поэтому атом в целом имеет нейтральный заряд. Например, атом углерода имеет шесть протонов и шесть электронов. Частицы удерживаются вместе фундаментальной силой – сильным ядерным взаимодействием .

Свойства атома могут значительно меняться в зависимости от того, сколько различных частиц в нем содержится. Если изменить количество протонов, у вас будет уже другой химический элемент. Если же изменить количество нейтронов, вы получите изотоп того же элемента, что у вас в руках. Например, углерод имеет три изотопа: 1) углерод-12 (шесть протонов + шесть нейтронов), стабильную и часто встречающуюся форму элемента, 2) углерод-13 (шесть протонов + семь нейтронов), который является стабильным, но редким и 3) углерод-14 (шесть протонов + восемь нейтронов), который является редким и неустойчивым (или радиоактивным).

Большинство атомных ядер стабильны, но некоторые из них неустойчивы (радиоактивны). Эти ядра спонтанно излучают частицы, которые ученые называют радиацией. Этот процесс называется радиоактивным распадом . Существует три типа распада:

Альфа-распад : ядро ​​выбрасывает альфа-частицу – два протона и два нейтрона, связанных вместе. Бета-распад : нейтрон превращается в протон, электрон и антинейтрино. Выброшенный электрон является бета-частицей. Спонтанное деление: ядро распадается на несколько частей и выбрасывает нейтроны, а также излучает импульс электромагнитной энергии – гамма-луч. Именно последний тип распада используется в ядерной бомбе. Свободные нейтроны, выброшенные в результате деления, начинают цепную реакцию , которая высвобождает колоссальное количество энергии.

Из чего делают ядерные бомбы?

Их могут делать из урана-235 и плутония-239. Уран в природе встречается в виде смеси трех изотопов: 238 U (99,2745 % природного урана), 235 U (0,72 %) и 234 U (0,0055 %). Наиболее распространенный 238 U не поддерживает цепную реакцию: на это способен лишь 235 U. Чтобы достичь максимальной мощности взрыва, необходимо, чтобы содержание 235 U в «начинке» бомбы составляло не менее 80%. Поэтому уран приходится искусственно обогащать . Для этого смесь урановых изотопов разделяют на две части так, чтобы в одной из них оказалось больше 235 U.

Обычно при разделении изотопов остается много обедненного урана, не способного вступить в цепную реакцию – но есть способ заставить его это сделать. Дело в том, что плутоний-239 в природе не встречается. Зато его можно получить, бомбардируя нейтронами 238 U.

Как измеряется их мощность?

​Мощность ядерного и термоядерного заряда измеряется в тротиловом эквиваленте - количестве тринитротолуола, которое нужно взорвать для получения аналогичного результата. Она измеряется в килотоннах (кт) и мегатоннах (Мт). Мощность сверхмалых ядерных боеприпасов составляет менее 1 кт, в то время как сверхмощные бомбы дают более 1 Мт.

Мощность советской «Царь-бомбы» составляла по разным данным от 57 до 58,6 мегатонн в тротиловом эквиваленте, мощность термоядерной бомбы, которую в начале сентября испытала КНДР, составила около 100 килотонн.

Кто создал ядерное оружие?

Американский физик Роберт Оппенгеймер и генерал Лесли Гровс

В 1930-х годах итальянский физик Энрико Ферми продемонстрировал, что элементы, подвергшиеся бомбардировке нейтронами, могут быть преобразованы в новые элементы. Результатом этой работы стало обнаружение медленных нейтронов , а также открытие новых элементов, не представленных на периодической таблице. Вскоре после открытия Ферми немецкие ученые Отто Ган и Фриц Штрассман бомбардировали уран нейтронами, в результате чего образовался радиоактивный изотоп бария. Они пришли к выводу, что низкоскоростные нейтроны заставляют ядро ​​урана разрываться на две более мелкие части.

Эта работа взбудоражила умы всего мира. В Принстонском университете Нильс Бор работал с Джоном Уилером для разработки гипотетической модели процесса деления. Они предположили, что уран-235 подвергается делению. Примерно в то же время другие ученые обнаружили, что процесс деления привел к образованию еще большего количества нейтронов. Это побудило Бора и Уилера задать важный вопрос: могли ли свободные нейтроны, созданные в результате деления, начать цепную реакцию, которая высвободила бы огромное количество энергии? Если это так, то можно создать оружие невообразимой силы. Их предположения подтвердил французский физик Фредерик Жолио-Кюри . Его заключение стало толчком для разработок по созданию ядерного оружия.

Над созданием атомного оружия трудились физики Германии, Англии, США, Японии. Перед началом Второй мировой войны Альберт Эйнштейн написал президенту США Франклину Рузвельту о том, что нацистская Германия планирует очистить уран-235 и создать атомную бомбу. Сейчас выяснилось, что Германия была далека от проведения цепной реакции: они работали над «грязной», сильно радиоактивной бомбой. Как бы то ни было, правительство США бросило все силы на создание атомной бомбы в кратчайшие сроки. Был запущен «Манхэттенский проект», которым руководили американский физик Роберт Оппенгеймер и генерал Лесли Гровс . В нем участвовали крупные ученые, эмигрировавшие из Европы. К лету 1945 года было создано атомное оружие, основанное на двух видах делящегося материала - урана-235 и плутония-239. Одну бомбу, плутониевую «Штучку», взорвали на испытаниях, а еще две, уранового «Малыша» и плутониевого «Толстяка» сбросили на японские города Хиросиму и Нагасаки.

Как работает термоядерная бомба и кто ее изобрел?


Термоядерная бомба основана на реакции ядерного синтеза . В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Атомные ядра заряжены положительно - поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре - порядка нескольких миллионов кельвинов (отсюда и название). Термоядерные реакции бывают трех видов: самоподдерживающиеся (проходят в недрах звезд), управляемые и неуправляемые или взрывные – они используются в водородных бомбах.

Идею бомбы с термоядерным синтезом, инициируемым атомным зарядом, предложил Энрико Ферми своему коллеге Эдварду Теллеру еще в 1941 году, в самом начале Манхэттенского проекта. Однако тогда эта идея оказалась не востребована. Разработки Теллера усовершенствовал Станислав Улам , сделав идею термоядерной бомбы осуществимой на практике. В 1952 году на атолле Эниветок в ходе операции Ivy Mike испытали первое термоядерное взрывное устройство. Однако это был лабораторный образец, непригодный в боевых действиях. Год спустя Советский Союз взорвал первую в мире термоядерную бомбу, собранную по конструкции физиков Андрея Сахарова и Юлия Харитона . Устройство напоминало слоёный пирог, поэтому грозное оружие прозвали «Слойкой». В ходе дальнейших разработок на свет появилась самая мощная бомба на Земле, «Царь-бомба» или «Кузькина мать». В октябре 1961 года ее испытали на архипелаге Новая Земля.

Из чего делают термоядерные бомбы?

Если вы думали, что водородные и термоядерные бомбы - это разные вещи, вы ошибались. Эти слова синонимичны. Именно водород (а точнее, его изотопы - дейтерий и тритий) требуется для проведения термоядерной реакции. Однако есть сложность: чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру - лишь тогда атомные ядра начнут реагировать. Поэтому в случае с термоядерной бомбой большую роль играет конструкция.

Широко известны две схемы. Первая - сахаровская «слойка». В центре располагался ядерный детонатор, который был окружен слоями дейтерида лития в смеси с тритием, которые перемежались со слоями обогащенного урана. Такая конструкция позволяла достичь мощности в пределах 1 Мт. Вторая - американская схема Теллера - Улама, где ядерная бомба и изотопы водорода располагались раздельно. Выглядело это так: снизу - емкость со смесью жидких дейтерия и трития, по центру которой располагалась «свеча зажигания» - плутониевый стержень, а сверху - обычный ядерный заряд, и все это в оболочке из тяжелого металла (например, обедненного урана). Быстрые нейтроны, образовавшиеся при взрыве, вызывают в урановой оболочке реакции деления атомов и добавляют энергию в общую энергию взрыва. Надстраивание дополнительных слоев дейтерида лития урана-238 позволяет создавать снаряды неограниченной мощности. В 1953 году советский физик Виктор Давиденко случайно повторил идею Теллера - Улама, и на ее основе Сахаров придумал многоступенчатую схему, которая позволила создавать оружие небывалых мощностей. Именно по такой схеме работала «Кузькина мать».

Какие еще бомбы бывают?

Еще бывают нейтронные, но это вообще страшно. По сути, нейтронная бомба - это маломощная термоядерная бомба, 80% энергии взрыва которой составляет радиация (нейтронное излучение). Это выглядит как обычный ядерный заряд малой мощности, к которому добавлен блок с изотопом бериллия - источником нейтронов. При взрыве ядерного заряда запускается термоядерная реакция. Этот вид оружия разрабатывал американский физик Сэмюэль Коэн . Считалось, что нейтронное оружие уничтожает все живое даже в укрытиях, однако дальность поражения такого оружия невелика, так как атмосфера рассеивает потоки быстрых нейтронов, и ударная волна на больших расстояниях оказывается сильнее.

А как же кобальтовая бомба?

Нет, сынок, это фантастика. Официально кобальтовых бомб нет ни у одной страны. Теоретически это термоядерная бомба с оболочкой из кобальта, которая обеспечивает сильное радиоактивное заражение местности даже при сравнительно слабом ядерном взрыве. 510 тонн кобальта способны заразить всю поверхность Земли и уничтожить все живое на планете. Физик Лео Силард , описавший эту гипотетическую конструкцию в 1950 году, назвал ее «Машиной судного дня».

Что круче: ядерная бомба или термоядерная?


Натурный макет «Царь-бомбы"

Водородная бомба является гораздо более продвинутой и технологичной, чем атомная. Ее мощность взрыва намного превосходит атомную и ограничена только количеством имеющихся в наличии компонентов. При термоядерной реакции на каждый нуклон (так называются составляющие ядра, протоны и нейтроны) выделяется намного больше энергии, чем при ядерной реакции. К примеру, при делении ядра урана на один нуклон приходится 0,9 МэВ (мегаэлектронвольт), а при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ.

Как бомбы доставляют до цели?

Поначалу их сбрасывали с самолетов, однако средства противовоздушной обороны постоянно совершенствовались, и доставлять ядерное оружие таким образом оказалось неразумным. С ростом производства ракетной техники все права на доставку ядерного оружия перешли к баллистическим и крылатым ракетам различного базирования. Поэтому под бомбой теперь подразумевается не бомба, а боеголовка.

Есть мнение, что северокорейская водородная бомба слишком большая , чтобы ее можно было установить на ракете - поэтому, если КНДР решит воплотить угрозу в жизнь, ее повезут на корабле к месту взрыва.

Каковы последствия ядерной войны?

Хиросима и Нагасаки - это лишь малая часть возможного апокалипсиса. ​Например, известна гипотеза "ядерной зимы", которую выдвигали американский астрофизик Карл Саган и советский геофизик Георгий Голицын. Предполагается, что при взрыве нескольких ядерных боезарядов (не в пустыне или воде, а в населенных пунктах) возникнет множество пожаров, и в атмосферу выплеснется большое количество дыма и сажи, что приведет к глобальному похолоданию. Гипотезу критикуют, сравнивая эффект с вулканической активностью, которая оказывает незначительный эффект на климат. Кроме того, некоторые ученые отмечают, что скорее наступит глобальное потепление,чем похолодание - впрочем, обе стороны надеются, что мы этого никогда не узнаем.

Разрешено ли использовать ядерное оружие?

После гонки вооружений в XX веке страны одумались и решили ограничить использование ядерного оружия. ООН были приняты договоры о нераспространении ядерного оружия и запрещении ядерных испытаний (последний не был подписан молодыми ядерными державами Индией, Пакистаном, и КНДР). В июле 2017 года был принят новый договор о запрещении ядерного оружия.

"Каждое государство-участник обязуется никогда и ни при каких обстоятельствах не разрабатывать, не испытывать, не производить, не изготавливать, не приобретать иным образом, не иметь во владении и не накапливать ядерное оружие или другие ядерные взрывные устройства," - гласит первая статья договора.

Однако документ не вступит в силу до тех пор, пока его не ратифицируют 50 государств.

mob_info