Марковский процесс. Методы теории марковских процессов Марковские процессы для чайников примеры

МАРКОВСКИЙ ПРОЦЕСС

Процесс без последействия, - случайный процесс , эволюция к-рого после любого заданного значения временного параметра tне зависит от эволюции, предшествовавшей t, при условии, что значение процесса в этот фиксировано (короче: "будущее" н "прошлое" процесса не зависят друг от друга при известном "настоящем").

Определяющее М. п. свойство принято наз. марковским; впервые оно было сформулировано А. А. Марковым . Однако уже в работе Л. Башелье можно усмотреть попытку трактовать броуновское как М. п., попытку, получившую обоснование после исследований Н. Винера (N. Wiener, 1923). Основы общей теории М. п. с непрерывным временем были заложены А. Н. Колмогоровым .

Марковское свойство. Имеются существенно отличающиеся друг от друга определения М. п. Одним из наиболее распространенных является следующее. Пусть на вероятностном пространстве задан случайный процесс со значениями из измеримого пространства где Т - подмножество действительной оси Пусть N t (соответственно N t ).есть s-алгебра в порожденная величинами X(s).при где Другими словами, N t (соответственно N t ) - это совокупность событий, связанных с эволюцией процесса до момента t(начиная с t). Процесс X(t).наз. марковским процессом, если (почти наверное) для всех выполняется марковское свойство:

или, что то же самое, если для любых

М. п., для к-рого Тсодержится в множестве натуральных чисел, наз. Маркова цепью (впрочем, последний термин чаще всего ассоциируется со случаем не более чем счетного Е). Если Тявляется интервалом в а Ене более чем счетно, М. п. наз. цепью Маркова с непрерывным временем. Примеры М. п. с непрерывным временем доставляются диффузионными процессами и процессами с независимыми приращениями, в том числе пуассоновским и винеровским.

В дальнейшем для определенности речь будет идти только о случае Формулы (1) и (2) дают ясную интерпретацию принципа независимости "прошлого" и "будущего" при известном "настоящем", но основанное на них определение М. п. оказалось недостаточно гибким в тех многочисленных ситуациях, когда приходится рассматривать не одно, а набор условий типа (1) или (2), отвечающих различным, хотя и согласованным определенным образом, мерам Такого рода соображения привели к принятию следующего определения (см. , ).

Пусть заданы:

а) где s-алгебра содержит все одноточечные множества в Е;

б) измеримое снабженное семейством s-алгебр таких, что если

в) (" ") x t =x t (w), определяющая при любых измеримое отображение

г) для каждых и вероятностная мера на s-алгебре такая, что функция измерима относительно если и

Набор наз. (необрывающимся) марковским процессом, заданным в если -почти наверное

каковы бы ни были Здесь - пространство элементарных событий, - фазовое пространство или пространство состояний, Р(s, x, t, В ) - переходная функция или вероятность перехода процесса X(t). Если Енаделено топологией, а - совокупность борелевских множеств в Е, то принято говорить, что М. п. задан в Е. Обычно в определение М. п. включают требование, чтобы и тогда истолковывается как вероятность при условии, что x s =x.

Возникает вопрос: всякую ли марковскую переходную функцию Р(s, x ; t, В ), заданную в измеримом пространстве можно рассматривать как переходную функцию нек-рого М. п. Ответ положителен, если, напр., Еявляется сепарабельным локально компактным пространством, а - совокупностью борелевских множеств в Е. Более того, пусть Е - полное метрич. пространство и пусть

для любого где
а - дополнение e-окрестности точки х. Тогда соответствующий М. п. можно считать непрерывным справа и имеющим пределы слева (т. е. таковыми можно выбрать его траектории). Существование же непрерывного М. п. обеспечивается условием при (см. , ). В теории М. п. основное внимание уделяется однородным (по времени) процессам. Соответствующее определение предполагает заданной систему объектов а) - г) с той разницей, что для фигурировавших в ее описании параметров sи u теперь допускается лишь значение 0. Упрощаются и обозначения:

Далее, постулируется однородность пространства W, т. е. требуется, чтобы для любых существовало такое что (w) при Благодаря этому на s-алгебре N, наименьшей из s-алгебр в W, содержащих любое событие вида задаются операторы временного сдвига q t , к-рые сохраняют операции объединения, пересечения и вычитания множеств и для к-рых

Набор наз. (необрывающимся) однородным марковским процессом, заданным в если -почти наверное

для Переходной функцией процесса X(t).считается Р(t, x, В ), причем, если нет специальных оговорок, дополнительно требуют, чтобы Полезно иметь в виду, что при проверке (4) достаточно рассматривать лишь множества вида где и что в (4) всегда F t можно заменить s-алгеброй , равной пересечению пополнений F t по всевозможным мерам Нередко в фиксируют вероятностную меру m ("начальное ") и рассматривают марковскую случайную функцию где - мера на заданная равенством

М. п. наз. прогрессивно измеримым, если при каждом t>0 функция индуцирует измеримое в где есть s-алгебра

борелевских подмножеств в . Непрерывные справа М. п. прогрессивно измеримы. Существует способ сводить неоднородный случай к однородному (см. ), и в дальнейшем речь будет идти об однородных М. п.

Строго . Пусть в измеримом пространстве задан М. п.

Функция наз. марковским моментом, если для всех При этом относят к семейству F t , если при (чаще всего F t интерпретируют как совокупность событий, связанных с эволюцией X(t).до момента т). Для полагают

Прогрессивно измеримый М. п. Xназ. строго марковским процессом (с. м. п.), если для любого марковского момента т и всех и соотношение

(строго марковское свойство) выполняется -почти наверное на множестве W t . При проверке (5) достаточно рассматривать лишь множества вида где в этом случае С. м. п. является, напр., любой непрерывный справа феллеровский М. п. в топологич. пространстве Е. М. п. наз. феллеровским марковским процессом, если функция

непрерывна всякий раз, когда f непрерывна и ограничена.

В классе с. м. п. выделяются те или иные подклассы. Пусть марковская Р(t, x, В ), заданная в метрическом локально компактном пространстве Е, стохастически непрерывна:

для любой окрестности Uкаждой точки Тогда если операторы переводят в себя непрерывных и обращающихся в 0 в бесконечности функций, то функции Р(t, х, В ).отвечает стандартный М. п. X, т. е. непрерывный справа с. м. п., для к-рого

и - почти наверное на множестве а - неубывающие с ростом пмарковские моменты.

Обрывающийся марковский процесс. Нередко физич. системы целесообразно описывать с помощью необрывающегося М. п., но лишь на временном интервале случайной длины. Кроме того, даже простые преобразования М. п. могут привести к процессу с траекториями, заданными на случайном интервале (см. Функционал от марковского процесса). Руководствуясь этими соображениями, вводят понятие обрывающегося М. п.

Пусть - однородный М. п. в фазовом пространстве имеющий переходную функцию и пусть существуют точка и функция такие, что при и в противном случае (если нет специальных оговорок, считают ). Новая траектория x t (w) задается лишь для ) посредством равенства a F t определяется как в множестве

Набор где наз. обрывающимся марковским процессом (о. м. п.), полученным из с помощью обрыва (или убивания) в момент z. Величина z наз. моментом обрыва, или временем жизни, о. м. п. Фазовым пространством нового процесса служит где есть след s-алгебры в Е. Переходная функция о. м. п.- это сужение на множество Процесс X(t).наз. строго марковским процессом, или стандартным марковским процессом, если соответствующим свойством обладает Необрывающийся М. п. можно рассматривать как о. м. п. с моментом обрыва Неоднородный о. м. п. определяется аналогичным образом. М.

Марковские процессы и . М. п. типа броуновского движения тесно связаны с дифференциальными уравнениями параболич. типа. Переходная р(s, x, t, у ).диффузионного процесса удовлетворяет при нек-рых дополнительных предположениях обратному и прямому дифференциальным уравнениям Колмогорова:


Функция р(s, x, t, у ).есть функция Грина уравнений (6) - (7), и первые известные способы построения диффузионных процессов были основаны на теоремах существования этой функции для дифференциальных уравнений (6) - (7). Для однородного по времени процесса L(s, x ) = L (x).на гладких функциях совпадает с характеристич. оператором М. п. (см. Переходных операторов полугруппа ).

Математич. ожидания различных функционалов от диффузионных процессов служат решениями соответствующих краевых задач для дифференциального уравнения (1). Пусть - математич. ожидание по мере Тогда функция удовлетворяет при s уравнению (6) и условию

Аналогично, функция

удовлетворяет при s уравнению

и условию и 2 ( Т, x ) = 0.

Пусть тt - момент первого достижения границы дD области траекторией процесса Тогда при нек-рых условиях функция

удовлетворяет уравнению

и принимает значения ср на множестве

Решение 1-й краевой задачи для общего линейного параболич. уравнения 2-го порядка


при довольно общих предположениях может быть записано в виде


В случае, когда Lи функции с, f не зависят от s, аналогичное (9) представление возможно и для решения линейного эллиптич. уравнения. Точнее, функция


при нек-рых предположениях есть задачи

В случае, когдгг оператор Lвырождается (del b(s, х ) = 0 ).или дD недостаточно "хорошая", граничные значения могут и не приниматься функциями (9), (10) в отдельных точках или на целых множествах. Понятие регулярной граничной точки для оператора L имеет вероятностную интерпретацию. В регулярных точках границы граничные значения достигаются функциями (9), (10). Решение задач (8), (11) позволяет изучать свойства соответствующих диффузионных процессов и функционалов от них.

Существуют методы построения М. п., не опирающиеся на построение решений уравнений (6), (7), напр. метод стохастических дифференциальных уравнений, абсолютно непрерывная замена меры и др. Это обстоятельство вместе с формулами (9), (10) позволяет вероятностным путем строить и изучать свойства краевых задач для уравнения (8), а также свойства решении соответствующего эллиптич. уравнения.

Так как решение стохастического дифференциального уравнения нечувствительно к вырождению матрицы b(s, x ), то вероятностные методы применялись для построения решений вырождающихся эллиптических и параболических дифференциальных уравнений. Распространение принципа усреднения Н. М. Крылова и Н. Н. Боголюбова на стохастические дифференциальные уравнения позволило с помощью (9) получить соответствующие результаты для эллиптических и параболических дифференциальных уравнений. Нек-рые трудные задачи исследования свойств решений уравнений такого типа с малым параметром при старшей производной оказалось возможным решить с помощью вероятностных соображений. Вероятностный смысл имеет и решение 2-й краевой задачи для уравнения (6). Постановка краевых задач для неограниченной области тесно связана с возвратностью соответствующего диффузионного процесса.

В случае однородного по времени процесса (Lне зависит от s) положительное решение уравнения с точностью до мультипликативной постоянной совпадает при нек-рых предположениях со стационарной плотностью распределения М. п. Вероятностные соображения оказываются полезными и при рассмотрении краевых задач для нелинейных параболич. уравнений. Р. 3. Хасьминский.

Лит. : Марков А. А., "Изв. физ.-мат. об-ва Казан. ун-та", 1906, т. 15, №4, с. 135-56; В а с h e l i е r L., "Ann. scient. Ecole norm, super.", 1900, v. 17, p. 21-86; Колмогоров А. Н., "Math. Ann.", 1931, Bd 104, S. 415- 458; рус. пер.-"Успехи матем. наук", 1938, в. 5, с. 5-41; Ч ж у н К а й - л а й, Однородные цепи Маркова, пер. с англ., М., 1964; Р е 1 1 е r W., "Ann. Math.", 1954, v. 60, p. 417-36; Д ы н к и н Е. Б., Ю ш к е в и ч А. А., "Теория вероятн. и ее примен.", 1956, т. 1, в. 1, с. 149-55; X а н т Дж.-А., Марковские процессы и потенциалы, пер. с англ., М., 1962; Д е л л а ш е р и К., Емкости и случайные процессы, пер. с франц., М., 1975; Д ы н к и н Е. В., Основания теории марковских процессов, М., 1959; его же, Марковские процессы, М., 1963; Г и х м а н И. И., С к о р о х о д А. В., Теория случайных процессов, т. 2, М., 1973; Фрейдлин М. И., в кн.: Итоги науки. Теория вероятностей, - важный специальный вид случайных процессов. Примером марковского процесса может служить распад радиоактивного вещества, где вероятность распада данного атома за малый промежуток времени не зависит от течения процесса в предшествующий период.… … Большой Энциклопедический словарь

Марковский процесс случайный процесс, эволюция которого после любого заданного значения временного параметра не зависит от эволюции, предшествовавшей, при условии, что значение процесса в этот момент фиксировано («будущее» процесса не… … Википедия

Марковский процесс - 36. Марковский процесс Примечания: 1. Условную плотность вероятности называют плотностью вероятности перехода из состояния xn 1в момент времени tn 1 в состояние хпв момент времени tn. Через нее выражаются плотности вероятностей произвольного… … Словарь-справочник терминов нормативно-технической документации

марковский процесс - Markovo procesas statusas T sritis automatika atitikmenys: angl. Markovprocess vok. Markovprozeß, m rus. марковский процесс, m; процесс Маркова, m pranc. processus markovien, m … Automatikos terminų žodynas

марковский процесс - Markovo vyksmas statusas T sritis fizika atitikmenys: angl. Markov process; Markovian process vok. Markow Prozeß, m; Markowscher Prozeß, m rus. марковский процесс, m; процесс Маркова, m pranc. processus de Markoff, m; processus marcovien, m;… … Fizikos terminų žodynas

Важный специальный вид случайных процессов. Примером Марковского процесса может служить распад радиоактивного вещества, где вероятность распада данного атома за малый промежуток времени не зависит от течения процесса в предшествующий период.… … Энциклопедический словарь

Важный специальный вид случайных процессов (См. Случайный процесс), имеющих большое значение в приложениях теории вероятностей к различным разделам естествознания и техники. Примером М. п. может служить распад радиоактивного вещества.… … Большая советская энциклопедия

Выдающееся открытие в области математики, сделанное в 1906 русским ученым А.А. Марковым.

Марковские случайные процессы.

Предположим, что нам необходимо изучить некоторую «физическая систему» S (процесс функционирования которой можно описать явным образом), которая может с течением времени изменять свое состояние (переходит из одного состояния в другое) заранее неизвестным, случайным образом. Под «физической системой» можно понимать что угодно: техническое устройство, группу таких устройств, предприятие, отрасль промышленности, живой организм, популяцию и так далее.

Полагаем, что исследуемая система S может быть описана некоторым множеством возможных, заранее известных состояний системы S i , которые можно определить исходя из «физической природы» исследуемого процесса функционирования системы, т.е. .

- i -тое состояние системы зависит от k параметров.



В реальной ситуации состояние системы может зависеть от причинно-следственных связей между состояниями и процессами, протекающими в системе. То есть на характер поведения системы накладывается отпечаток «предыстории» характера поведения системы и набор некоторых случайных факторов (внешних или внутренних процессов-возмущений). Мы сталкиваемся с множеством «предполагаемых сценариев» протекания процесса функционирования системы. И сам «выбор» доминирующего «сценария поведения» (как поведет себя исследуемая система) носит случайный характер.

Следует учесть, что переход из состояния S i в состояние S j носит стохастический характер. Функционирование системы начинаем рассматривать с начального состояния S 0 , которому соответствует момент времени t 0 . То есть, то, что было с системой до момента времени t 0 , относится к «прошлому оной», к предыстории.

Определение: Случайный процесс, протекающий в системе, называется марковским, если для любого момента времени t 0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t 0 и не зависят от того, когда и как система пришла в это состояние.

Полагаем, что состояние системы описывается функцией S (t ), аргумент этой функции, - время t непрерывно, известны моменты времени перехода системы из одного состояния в другое t : t 1 <t 2 < … <t n . Причем переход из одного состояния в другое происходит «скачком», практически мгновенно.

Пришли к тому, что процессу функционирования системы ставится в соответствие цепь дискретных состояний: S 1 ®S 2 ® … ®S n-1 ®S n (последовательный переход из одного состояния в другое, без «перескакивания» через какое-либо состояние). То есть, рассматриваемая система описывается марковским случайным процессом с дискретными состояниями и непрерывным временем.

Из теории вероятности мы знаем, что функция плотности вероятности для n -го состояния ищется как совместная функция плотности для всей «предыстории» процесса прихода системы в это состояние: .

На практике марковские процессы в чистом виде не встречаются, но нередко приходится иметь дело с процессами, для которых влияние предыстории можно пренебречь. При изучении таких процессов можно применять марковские модели.

При переходе рассмотрения процесса как марковского аналитическое описание модели упрощается, так как полагаем, что состояние системы зависит только от одного предыдущего состояния: .

Цепи Маркова задаются набором четко определенных состояний: . По тому, когда и каким образом происходят «переходы», цепи Маркова делятся на дискретные, для которых время перехода из одного состояния в другое фиксировано, и определяется вероятностью этого перехода, и непрерывные, для которых состояния дискретны, время непрерывно и переходы из одного состояния в другое происходят в случайные, заранее не известные, моменты времени.

При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой – так называемым графом состояний.

Определение. Граф – это совокупность множества вершин V и множество упорядоченных пар вершин A ={(a 1 a i) (a 2 a j) … }, элементы которого называются ребрами G (V ,A ).

Состояниям системы ставятся в соответствие вершины графа, а переходам из одного состояния в другое – верви с указанием «направления протекания» процесса.

На следующем примере рассмотрим методику исследования цепей Маркова с помощью размеченного графа состояний.

Пример №1. ТЭА техническая эксплуатация автомобиля.

Упрощенная модель ТЭА подразумевает наличие хотя бы четырех следующих состояний: S 1 – диагностика состояния автомобиля, S 2 – работа на линии (автомобиль исправен), S 3 – техническое обслуживание, S 4 – устранение неисправности (ремонт).

Соответствующий данной системе размеченный граф

m ij плотность вероятности перехода из состояния S i в состояние S j (S i ®S j ), где P ij (Dt ) – вероятность того, что за промежуток времени Dt произойдет данный переход.

Для малых значений Dt справедливо следующее приближенное равенство .

Значения вероятностей переходов определяются из системы дифференциальных уравнений (Колмогорова) по следующим правилам:

1) каждой вершине ставится в соответствие соответствующее состояние, описываемое вероятностью нахождения системы в оном, поэтому количество состояний определяет количество уравнений в системе;

2) в левой части уравнения – производная вероятности соответствующего состояния;

3) в правой части столько слагаемых, сколько переходов (ветвей) в размеченном графе связано с данным состоянием;

4) каждый элемент правой части равен произведению плотности вероятности перехода на плотность вероятности того состояния, из которого осуществлялся переход;

5) в правой части со знаком «+» идут (складываются) элементы, описывающие попадание системы в данное состояние, и со знаком «-» (вычитаются) элементы, описывающие «выход» системы из данного состояния;

6) для упрощения «решаемости» в систему вводится нормирующее уравнение, описывающее полную группу событий: , где N-количество вершин в размеченном графе состояний.


Для рассматриваемого графа состояний получаем следующую систему уравнения:

Данная система уравнений будет легче решаема в случае, когда она описывает стационарный процесс работы исследуемой технической системы (обычно вхождение системы в стационарный режим функционирования занимает от 2-х до 4-х тактов).

На практике считаем, что предположение о стационарности функционирования системы правомерно, если время функционирования системы в целом на порядок выше, чем (20¸40)×тактов работы системы («последовательное» одинарное прохождение по ветвям графа).

Стационарность режима работы предполагает равенство нулю от производных по времени от вероятностей состояния, т.е. .


Система уравнений приводится к следующему виду:

и его решение уже не представляет особой сложности.

Система уравнений по Колмогорову позволяет решить задачу нахождения значений вероятностей для стационарного режима (финальных вероятностей) по известным плотностям вероятностей переходов по ветвям графа, равно как и обратную ей, т.е. нахождение плотностей вероятностей при заданных финальных вероятностях.

Пример №2.

Рассмотрим техническую систему S , состоящую из двух параллельно работающих узлов (два поста на СТО, два заправочных автомата на АЗС). Будем полагать, что переходы системы из одного состояния в другое происходят мгновенно, в случайные моменты времени. Как только узел выходит из строя, он «мгновенно» поступает на ремонт и после приведения его в рабочее состояние он также «мгновенно» начинает эксплуатироваться.

Полагаем, что данная система полностью описывается всего четырьмя состояниями: S 0 – оба узла исправны; S 1 – первый узел ремонтируется, второй исправен; S 2 – второй узел ремонтируется, первый исправен; S 3 – ремонтируются оба узла.

l 1 , l 2 – плотность вероятности выхода из строя первого и второго поста, m 1 , m 2 – плотность вероятности восстановления первого и второго узла соответственно.

Составим систему дифференциальных уравнений по Колмогорову для вероятностей состояний данной системы.

Чтобы решить уравнения Колмогорова и найти численные значения для вероятностей соответствующих состояний, необходимо задаться начальными условиями.

Будем полагать, что в начальный момент времени оба узла исследуемой системы исправны, система находится в состоянии S 0 , т.е. P 0 (t =0)=1, а все остальные начальные вероятности равны нулю: P 1 (0)=P 2 (0)=P 3 (0)=0.

Данная система уравнений легко решается в случае, если система функционирует в установившемся режиме и все процессы, протекающие в ней, стационарные.


Стационарность режима работы предполагает равенство нулю от производных по времени от вероятностей состояния, т.е., i =1, 2, … , n , , где n – количество возможных состояний. А с учётом полной группы событий добавляется уравнение

Последнее, так называемое нормировочное условие, позволяет исключить из системы одно из уравнений…

Решим данную систему при следующих данных: l 1 =1, l 2 =2, m 1 =2, m 2 =3. Запишем систему без четвертого уравнения.

Решая их, получим: P 0 =0,4; P 1 =0,2; P 2 @0,27; P 3 @0,13.

Т.е. в стационарном режиме работы наша система в среднем 40% времени будет находиться в состоянии S 0 – оба узла исправны, и т.д..

Значения этих финальных вероятностей могут помочь оценить среднюю эффективность работы системы и загрузку ремонтных органов. Предположим, что система S в состоянии S 0 приносит доход 8 условных единиц (у.е.) в единицу времени, в состоянии S 1 3у.е., в S 2 5у.е., а в состоянии S 3 не приносит дохода.

Марковские процессы были выведены учеными в 1907 году. Ведущие математики того времени развивали эту теорию, некоторые совершенствуют ее до сих пор. Эта система распространяется и в других научных областях. Практические цепи Маркова применяются в различных сферах, где человеку необходимо прибывать в состоянии ожидания. Но, чтобы четко понимать систему, нужно владеть знаниями о терминах и положениях. Главным фактором, который определяет Марковский процесс, считаются случайности. Правда, он не схож с понятием неопределенности. Для него присущи определенные условия и переменные.

Особенности фактора случайности

Это условие подчиняется статической устойчивости, точнее, ее закономерностям, которые не учитываются при неопределенности. В свою очередь, данный критерий позволяет использовать математические методы в теории Марковских процессов, как отмечал ученый, изучавший динамику вероятностей. Созданная им работа касалась непосредственно этих переменных. В свою очередь, изученный и развившийся случайный процесс, имеющий понятия состояния и перехода, а также применяемый в стохастических и математических задачах, при этом дает возможность этим моделям функционировать. Кроме всего прочего, он дает возможность совершенствоваться другим важным прикладным теоретическим и практическим наукам:

  • диффузионная теория;
  • теория массового обслуживания;
  • теория надежности и прочего;
  • химия;
  • физика;
  • механика.

Сущностные особенности не запланированного фактора

Этот Марковский процесс обусловлен случайной функцией, то есть любое значение аргумента считается данной величиной или той, что принимает заранее заготовленный вид. Примерами служат:

  • колебания в цепи;
  • скорость движения;
  • шероховатость поверхности на заданном участке.

Также принято считать, что фактом случайной функции выступает время, то есть происходит индексация. Классификация имеет вид состояния и аргумент. Этот процесс может быть с дискретными, а также непрерывными состояниями или временем. Причем случаи разные: все происходит или в одном, или в другом виде, или одновременно.

Детальный разбор понятия случайности

Построить математическую модель с необходимыми показателями эффективности в явно аналитическом виде было достаточно сложно. В дальнейшем реализовать данную задачу стало возможно, ведь возник Марковский случайный процесс. Разбирая детально это понятие, необходимо вывести некоторую теорему. Марковский процесс - это физическая система, изменившая свое положение и состояние, которые заранее не были запрограммированы. Таким образом, выходит, что в ней протекает случайный процесс. Например: космическая орбита и корабль, который выводится на нее. Результат достигнут лишь благодаря каким-то неточностям и корректировкам, без этого не реализуется заданный режим. Большинству происходящих процессов присущи случайность, неопределенность.

По существу вопроса, практически любой вариант, который можно рассмотреть, будет подвержен этому фактору. Самолет, техническое устройство, столовая, часы - все это подвержено случайным изменениям. Причем данная функция присуща любому происходящему процессу в реальном мире. Однако пока это не касается индивидуально настроенных параметров, происходящие возмущения воспринимаются как детерминированные.

Понятие Марковского случайного процесса

Проектировка какого-либо технического или механического прибора, устройства вынуждает создателя учитывать различные факторы, в частности неопределенности. Вычисление случайных колебаний и возмущений возникает в момент личной заинтересованности, например, при реализации автопилота. Некоторые процессы, изучаемые в науках вроде физики и механики, являются таковыми.

Но обращать на них внимание и проводить скрупулезные исследования следует начинать в тот момент, когда это непосредственно нужно. Марковский случайный процесс имеет следующее определение: характеристика вероятности будущего вида зависит от состояния, в котором он находится в данный момент времени, и не имеет отношения к тому, как выглядела система. Итак, данное понятие указывает на то, что результат можно предсказать, учитывая лишь вероятность и забыв про предысторию.

Подробное токование понятия

В настоящий момент система находится в определенном состоянии, она переходит и меняется, предсказать, что будет дальше, по сути, невозможно. Но, учитывая вероятность, можно сказать, что процесс будет завершен в определенном виде или сохранит предыдущий. То есть будущее возникает из настоящего, забывая о прошлом. Когда система или процесс переходит в новое состояние, то предысторию обычно опускают. Вероятность в Марковских процессах играет немаловажную роль.

Например, счетчик Гейгера показывает число частиц, которое зависит от определенного показателя, а не от того, в какой именно момент оно пришло. Здесь главным выступает вышеуказанный критерий. В практическом применении могут рассматриваться не только Марковские процессы, но и подобные им, к примеру: самолеты участвуют в бою системы, каждая из которых обозначена каким-либо цветом. В данном случае главным критерием вновь выступает вероятность. В какой момент произойдет перевес в числе, и для какого цвета, неизвестно. То есть этот фактор зависит от состояния системы, а не от последовательности гибели самолетов.

Структурный разбор процессов

Марковским процессом называется любое состояние системы без вероятностного последствия и без учета предыстории. То есть, если включить будущее в настоящее и опустить прошлое. Перенасыщение данного времени предысторией приведет к многомерности и выведет сложные построения цепей. Поэтому лучше эти системы изучать простыми схемами с минимальными числовыми параметрами. В результате эти переменные считаются определяющими и обусловленными какими-либо факторами.

Пример Марковских процессов: работающий технический прибор, который в этот момент исправен. В данном положении вещей интерес представляет вероятность того, что устройство будет функционировать еще длительный период времени. Но если воспринимать оборудование как отлаженное, то этот вариант уже не будет принадлежать к рассматриваемому процессу ввиду того, что нет сведений о том, сколько аппарат работал до этого и производился ли ремонт. Однако если дополнить эти две переменные времени и включить их в систему, то ее состояние можно отнести к Марковскому.

Описание дискретного состояния и непрерывности времени

Модели Марковских процессов применяются в тот момент, когда необходимо пренебречь предысторией. Для исследования в практике наиболее часто встречаются дискретные, непрерывные состояния. Примерами такой ситуации являются: в структуру оборудования входят узлы, которые в условиях рабочего времени могут выйти из строя, причем происходит это как незапланированное, случайное действие. В результате состояние системы подвергается ремонту одного или другого элемента, в этот момент какой-то из них будет исправен или они оба будут отлаживаться, или наоборот, являются полностью налаженными.

Дискретный Марковский процесс основан на теории вероятности, а также является переходом системы из одного состояния в другое. Причем данный фактор происходит мгновенно, даже если происходят случайные поломки и ремонтные работы. Чтобы провести анализ такого процесса, лучше использовать графы состояний, то есть геометрические схемы. Системные состояния в таком случае обозначены различными фигурами: треугольниками, прямоугольниками, точками, стрелками.

Моделирование данного процесса

Марковские процессы с дискретными состояниями - возможные видоизменения систем в результате перехода, осуществляющегося мгновенно, и которые можно пронумеровать. Для примера можно построить график состояния из стрелок для узлов, где каждая будет указывать путь различно направленных факторов выхода из строя, рабочего состояния и т. д. В дальнейшем могут возникать любые вопросы: вроде того, что не все геометрические элементы указывают верное направление, ведь в процессе способен испортиться каждый узел. При работе важно учитывать и замыкания.

Марковский процесс с непрерывным временем происходит тогда, когда данные заранее не фиксируются, они происходят случайно. Переходы ранее были не запланированы и происходят скачками, в любой момент. В данном случае вновь главную роль играет вероятность. Однако, если сложившаяся ситуация относится к указанной выше, то для описания потребуется разработать математическую модель, но важно разбираться в теории возможности.

Вероятностные теории

Данные теории рассматривают вероятностные, имеющие характерные признаки вроде случайного порядка, движения и факторов, математические задачи, а не детерминированные, которые являются определенными сейчас и потом. Управляемый Марковский процесс имеет фактор возможности и основан на нем. Причем данная система способна переходить в любое состояние мгновенно в различных условиях и временном промежутке.

Чтобы применять эту теорию на практике, необходимо владеть важными знаниями вероятности и ее применения. В большинстве случаев каждый пребывает в состоянии ожидания, которое в общем смысле и есть рассматриваемая теория.

Примеры теории вероятности

Примерами Марковских процессов в данной ситуации могут выступать:

  • кафе;
  • билетные кассы;
  • ремонтных цеха;
  • станции различного назначения и пр.

Как правило, люди ежедневно сталкиваются с этой системой, сегодня она носит название массового обслуживания. На объектах, где присутствует подобная услуга, есть возможность требования различных запросов, которые в процессе удовлетворяются.

Скрытые модели процесса

Такие модели являются статическими и копируют работу оригинального процесса. В данном случае основной особенностью является функция наблюдения за неизвестными параметрами, которые должны быть разгаданы. В результате эти элементы могут использоваться в анализе, практике или для распознавания различных объектов. Обычные Марковские процессы основаны на видимых переходах и на вероятности, в скрытой модели наблюдаются только неизвестные переменные, на которые оказывает влияние состояние.

Сущностное раскрытие скрытых Марковских моделей

Также она имеет распределение вероятности среди других значений, в результате исследователь увидит последовательность символов и состояний. Каждое действие имеет распределение по вероятности среди других значений, ввиду этого скрытая модель дает информацию о сгенерированных последовательных состояниях. Первые заметки и упоминания о них появились в конце шестидесятых годов прошлого столетия.

Затем их стали применять для распознавания речи и в качестве анализаторов биологических данных. Кроме того, скрытые модели распространились в письме, движениях, информатике. Также эти элементы имитируют работу основного процесса и пребывают в статике, однако, несмотря на это, отличительных особенностей значительно больше. В особенности данный факт касается непосредственного наблюдения и генерирования последовательности.

Стационарный Марковский процесс

Данное условие существует при однородной переходной функции, а также при стационарном распределении, считающимся основным и, по определению, случайным действием. Фазовым пространством для данного процесса является конечное множество, но при таком положении вещей начальная дифференциация существует всегда. Переходные вероятности в данном процессе рассматриваются при условиях времени или дополнительных элементах.

Детальное изучение Марковских моделей и процессов выявляет вопрос об удовлетворении равновесия в различных сферах жизни и деятельности общества. С учетом того, что данная отрасль затрагивает науку и массовое обслуживание, ситуацию можно исправить, проанализировав и спрогнозировав исход каких-либо событий или действий тех же неисправных часов или техники. Чтобы полностью использовать возможности Марковского процесса, стоит детально в них разбираться. Ведь этот аппарат нашел широкое применение не только в науке, но и в играх. Эта система в чистом виде обычно не рассматривается, а если и используется, то только на основе вышеупомянутых моделей и схем.

Пусть в некоторой системе происходит с.п. с дискретными состояниями
и дискретным временем, т.е. переход системы из одного состояния в другое происходит только в определённые моменты времени
. Эти моменты называютшагами процесса (обычно разности смежных моментов наблюдения
равны постоянному числу – длине шага, принимаемого в качестве единицы времени);
начало процесса.

Этот с.п. можно рассматривать как последовательность (цепь) событий
.

начальное состояние системы, т.е. перед 1-м шагом;
состояние системы после 1-го шага,
состояние системы после 2-го шага и т.д.), т.е. событий вида
где.

Марковский случайный процесс с дискретными состояниями и дискретным временем называют марковской цепью (цепь Маркова).

Отметим, что марковский цепь , в которой условные вероятности состояний в будущем зависят только от состояния на последнем этапе (и не зависят от предыдущих), называютпростой цепью Маркова . (А.А. Марков 1856-1922- русский математик).

Примером такой системы может служить техническое устройство, возможные состояния которого следующие:

исправная работа;

профилактический осмотр и обслуживание;

ремонтная работа;

списание за негодностью;

Граф состояние работы изображен на рисунке

Рис. 1.11.(А.А. Белов, и др.)

Из анализа графа видно, что из состояния нормальной работы вершины система может переходить в состояние профилактического обслуживания, а затем опять возвращаться в. Или переходить изв состояние ремонта, после чего либо возвращается в, либо переходить в состояние списания. Состояниеявляется конечным, так как переход из него невозможен. Переход изопять возначает задержку в этом состоянии.

На практике часто встречаются системы, состояния которых образует цепь, в которой каждое состояние (кроме крайнихи) связано прямой и обратной связи с двумя соседними,
а крайние состояния – с одним соседним (см. рис.)

Рис.1.12(Белов…)

Примером такой системы может служить техническое устройство, состоящее из однотипных узлов. Каждое состояние системы характеризуется числом неисправных узлов в момент проверки.

Основной задачей исследования является нахождение вероятностей состояния на любом
м шаге. Будем вычислять вероятности состояний дискретной системы

Мы здесь будем рассматривать только простые цепи Маркова. Далее, кратко будем также рассматривать понятия о непрерывных Марковских процессах.

При дискретном времени изменения состояний системы каждый переход от одного состояния к другому называют шагом.

Из определения марковской цепи следует, что для нее вероятность перехода системы в состояние на
м шаге зависит только от того, в каком состояниинаходилась система на предыдущем
шаге.

где
безусловная вероятность того, что на
м шаге система именно будет находиться в состояние. Для нахождения этих вероятностей необходимо знать начальное распределение вероятностейт.е. вероятности состояний
в момент времени
(начало процесса) и так называемыепереходные вероятности
марковской цепи на
м шаге.

Переходной вероятностью
называют условную вероятность перехода системына

м шаге, в состояние
м шаге она была в состоянии, т.е.

(43),

где первый индекс указывает на номер предшествующего, а второй индекс на номер последующего состояния системы.

Цепь Маркова называется однородной , если величина,
т.е. условные вероятности
не зависят от номера испытаний, в противном случае называется неоднородной.

Далее, мы будем рассматривать только однородные цепи, которые могут быть заданы с помощью вектора - вероятности состояний в момент времени
и матрицы (называемой матрицей перехода )

(44)
.

Элементы матрицы
обладают основными свойствами обычных квадратных матриц и дополнительно следующими свойствами:

а)
, б)
при каждом фиксированном
, т.е. сумма элементов каждой строкиматрицы перехода равна единице (как вероятности событий перехода из одного состоянияв любое другое возможное состояние- образующих полную группу событий).

Вероятность состояния системы на следующем шаге определяется по рекуррентной формуле:

При некоторых условиях (эргодичность, однородность, отсутствие циклов) в цепи Маркова устанавливается стационарный режим , в котором вероятности состояний системы уже от номера шага не зависят. Такие вероятности называютпредельными (или финальными) вероятностями цепи Маркова:

.

Имеет место утверждение.

Теорема 17.1. Для матрицы перехода вероятностей за шагов
справедлива формула

(45)
,

Доказательство. По правилу умножения двух квадратных матриц
го порядка имеем

где

при этом, по определению матрицы перехода известно, что
при любом
.

Просуммируем обе части равенства
по всем
, и заменяя порядок суммирования после дважды применения свойство а) получим, что
матрица перехода за два шага. Аналогично, последовательно рассуждая шаг за шагом, получим наше утверждение в общем случае.

Пример 3. Задана матрица перехода

.

Найти матрицы переходных вероятностей
.

На основании правила умножения двух матриц получим

.

Задание. Проверьте, что верно равенство

Следует отметить, что конечная дискретная цепь Маркова представляет с собой дальнейшее обобщение схемы Бернулли, к тому же на случай зависимых испытаний; независимые испытания являются частным случаем марковской цепи. Здесь под «событием»

понимается состояние системы, а под «испытанием» понимается изменение состояния системы.

Если «испытания » (опыты) являются независимыми, то появление определённого события в любом опыте не зависит от результатов ранее произведённых испытаний.

Задания. а) Заданы матрицы переходов

1.
;

2.
;

3.
.

Найти в каждом случае матрицу
.

Ответы: а) 1.
;

2.
;

3.

в)Заданы матрицы переходов

;
.

Найти
.

Ответы: в) 1.
;2.
;

3.
.

Замечание. В общем случаедискретная марковская цепь
представляет собой марковский случайный процесс, пространство состояний которого конечно или счётное, а множество индексов
- множество всех неотрицательных целых чисел или его некоторое подмножество (конечное или счётное). Мы можем говорить обкак об исходе
го испытания.

Часто пространство состояний процесса удобно отожествить с множеством неотрицательных целых чисел
и в этих случаях говорят, чтонаходится в состоянии, если
.

Вероятность попасть случайной величины
в состояние(называемая одношаговой переходной вероятностью ), как уже было упомянуто выше, обозначается
, т.е.

В таком обозначении подчёркивается, что в общем случае переходные вероятности зависят не только от начального и конечного состояний, но и от момента осуществления перехода.

В случаях, когда одношаговые переходные вероятности не зависят от временной переменной (т.е. от значения , то говорят, что марковский процесс обладаетстационарными переходными вероятностями . Итак, для дальнейшего отметим, что имеет место равенство, который не зависит от, иобозначает вероятность перехода за одно испытание из состоянияв состояние.

Обычно вероятности объединяют в квадратную матрицу (конечную или счётную) в зависимости от рассматриваемого процесса:

,

и называют марковской матрицей, или матрицей переходных вероятностей марковской цепи.

В матрице
я строка представляет собой распределение вероятностей с.в.
при условии, что
. Если число состояний, конечно, то- конечная квадратная матрица, порядок которой (число строк) равен числу состояний.

Естественно, что вероятности удовлетворяют следующим двум условиям:

а)
,

б)
при каждом фиксированном

Условие б) отражает тот факт, что каждое испытание вызывает некоторый переход из одного состояния в другое состояние. Для удобства обычно говорят также о переходе и в том случае, когда состояние остаётся неизменным. Имеет место утверждение.

Теорема 17.2. Процесс полностью определён, если заданы вероятности (46), т.е.

и распределение вероятностей случайной величины .

Доказательство. Покажем, что для любого конечногокак вычисляются вероятности

так как по формуле полной вероятности любые другие вероятности, относящиеся случайным величинам , могут быть получены суммированием слагаемых (членов) вида (47).

По определению условной вероятности имеем

Но по определению марковского процесса получим

Поставляя равенство (49) в (48) получим

Продолжая этот процесс последовательно, получим:

Процесс полностью определён. Что требовалась доказать.

В этом параграфе мы используем метод марковских процессов для отыскания оптимального демодулятора. Наше изложение носит поверхностный характер, поэтому для более подробного рассмотрения интересующимся читателям следует обратиться к дополнительным источникам (в частности, ). И на этот раз будем предполагать, что сообщение является гауссовым случайным процессом с конечным представлением в переменных состояния, т. е.

где белый гауссов случайный процесс с ковариационной функцией

Хотя мы и не используем этот факт по ходу изложения, следует указать, что изложенную в данном параграфе процедуру можно также выполнить, когда уравнение состояния и уравнение наблюдения нелинейны и имеют форму

Отметим, что при некоторых ограничениях, налагаемых на является векторным марковским процессом, который необязательно является гауссовым. Ни один из ранее рассмотренных методов не позволяет решать задачи с сообщениями этого класса. Большинство результатов, которые будут получены в этом параграфе, можно также получить и для более общего процесса, описываемого уравнениями (78) и (79).

Вернемся теперь к модели в виде случайного процесса, описываемого соотношениями Ради простоты записи будем рассматривать сообщение, которое является скалярным гауссовым марковским процессом и которым передаваемое колебание модулировано каким-либо безынерционным видом модуляции. Принятое колебание записывается в виде

Процесс сообщения удовлетворяет дифференциальному уравнению первого порядка

Таким образом, при любых конечных сообщение является стационарным процессом и имеет спектр Баттерворта первого порядка. Далее, ввиду того, что марковский процесс первого порядка, его плотность вероятности при отсутствии всяких наблюдений удовлетворяет уравнению Фоккера-Планка [см. (3.79)]

Однако, поскольку наблюдалось в течение интервала времени интересующая нас плотность вероятности является не безусловной плотностью, а плотностью, обусловленной наблюдаемым колебанием Обозначим эту плотность через

Заметим, что (86) есть плотность вероятности одной случайной величины (величины, обозначающей значение а в момент времени обусловленной наблюдаемым колебанием, и представляет собой четко определенную характеристику. Можно показать , что эта плотность вероятности удовлетворяет уравнению

где математические ожидания берутся по плотности Если формально ввести производную

то (87) можно формально записать в виде дифференциального уравнения

Соотношение между апостериорной плотностью и оценкой по минимуму среднеквадратической ошибки хорошо известно. Оценка по минимуму среднеквадратической ошибки есть условное среднее апостериорной плотности (см. стр. 73 первого тома), т. е.

Умножая обе части (89) на А, интегрируя по и учитывая соответствующие условия на концах интервала, получаем (см. задачу 7.2.2)

Заметим, что (91) все еще содержит математическое ожидание по Как и следовало ожидать, это уравнение не решается для общего случая модуляции. В случае линейных методов модуляции легко показать (например, 18] или задача 7.2.1), что оно сводится к Для многих задач нелинейной модуляции добиться успеха можно путем разложения в ряд различных членов уравнения (91). Тогда, если предположить, что ошибка оценивания мала и наложить некоторые условия на моменты высших порядков, можно пренебречь членами второго и более высоких порядков и получить следующее приближенное уравнение (подробный вывод дан в гл. 4 книги ):

где через обозначена приближенная оценка по минимуму среднеквадратической ошибки. Функция есть приближенный условный [по средний квадрат ошибки, который удовлетворяет дифференциальному уравнению

с граничным условием

Заметим, что уравнение оценки (92) и дисперсионное уравнение (93) являются связанными. Заметим далее, что условная среднеквадратическая ошибка [т. е. ошибка при условии, что принято Приближения, которые необходимо допустить, чтобы получить справедливы, когда ошибка мала.

Мы видим, что уравнение (92) можно реализовать в виде структурной схемы, показанной на рис. 7.3. Эта реализация очень сходна со структурой устройства оценки по максимуму апостериорной вероятности, синтезированного в гл. 2, с той лишь разницей, что теперь фильтр в петле является автоматически реализуемым. Недостаток этой реализации - наличие связи между петлями.

В случае угловой модуляции можно показать, что этой связью обычно можно пренебречь. Например, при фазовой модуляции

Предполагается, что много больше наивысшей частоты в спектре сообщения и что система находится в статистически стационарном состоянии. В этом случае показано , что

удовлетворяет дисперсионному уравнению при подстановке

Для марковского процесса первого порядка это уравнение имеет вид

Структурная схема приемника показана на рис. 7.4. Эта структура точно совпадает с реализуемой частью приближенного приемника по максимуму апостериорной вероятности, который был синтезирован ранее (см. задачу в (68) можно теперь интерпретировать как приближенную условную среднеквадратическую ошибку.

Рис. 7.4. Оптимальный приемник: фазовая модуляция, сообщение со спектром Баттерворта первого порядка.

Ввиду того, что большая часть подробностей вывода была опущена, важно обратить внимание на ограничения полученного результата. Дифференциальное уравнение (91), определяющее условное среднее, является точным. Однако приближения, связанные с получением (92)-(93), соответствуют линеаризирующему допущению. Поэтому наш результат является приближенной оценкой по минимуму среднеквадратической ошибки, соответствующей первому члену разложения в ряд точной оценки. Чтобы получить лучшее приближение, можно удержать большее число членов разложения (см., например, ). Трудность, связанная с этой процедурой, заключается в том, что двучленное приближение является уже столь сложным, что, вероятно, не представляет практического интереса.


mob_info