Производная и ее применение в жизни. Применение производной в науке и в жизни. Подставить в полученную формулу заданное значение времени

Сведения из истории появления производной:Лозунгом многих математиков XVII в. был: «Двигайтесь вперёд, и вера в правильность результатов к вам
придёт».
Термин «производная» - (франц. deriveе - позади, за) ввёл в 1797 г. Ж. Лагранж. Он же ввёл
современные обозначения y " , f ‘.
обозначение lim –сокращение латинского слова limes (межа, граница). Термин «предел» ввёл И. Ньютон.
И. Ньютон называл производную флюксией, а саму функцию - флюентой.
Г. Лейбниц говорил о дифференциальном отношении и обозначал производную так:
Лагранж Жозеф Луи (1736-1813)
французский математик и механик

Ньютон:

« Был этот мир глубокой тьмой окутан. Да будет свет! И вот
явился Ньютон.» А.Поуг.
Исаак Ньютон (1643-1727) один из создателей
дифференциального исчисления.
Главный его труд- «Математические начала
натуральной философии»-оказал колоссальное
влияние на развитие естествознания, стал
поворотным пунктом в истории естествознания.
Ньютон ввёл понятие производной, изучая законы
механики, тем самым раскрыл её механический
смысл.

Что называется производной функции?

Производной функции в данной точке называется предел
отношения приращения функции в этой точке к
приращению аргумента, когда приращение аргумента
стремится к нулю.

Физический смысл производной.

Скорость есть производная от пути по времени:
v(t) = S′(t)
Ускорение есть производная
скорости по времени:
a(t) = v′(t) = S′′(t)

Геометрический смысл производной:

Угловой коэффициент касательной к графику
функции равен производной этой функции,
вычисленной в точке касания.
f′(x) = k = tga

Производная в электротехнике:

В наших домах, на транспорте, на заводах: всюду работает
электрический ток. Под электрическим током понимают
направленное движение свободных электрически заряженных
частиц.
Количественной характеристикой электрического тока является сила
тока.
В
цепи электрического тока электрический заряд меняется с
течением времени по закону q=q (t). Сила тока I есть производная
заряда q по времени.
В электротехнике в основном используется работа переменного тока.
Электрический ток, изменяющийся со временем, называют
переменным. Цепь переменного тока может содержать различные
элементы: нагревательные приборы, катушки, конденсаторы.
Получение переменного электрического тока основано на законе
электромагнитной индукции, формулировка которого содержит
производную магнитного потока.

Производная в химии:

◦ И в химии нашло широкое применение дифференциальное
исчисление для построения математических моделей химических
реакций и последующего описания их свойств.
◦ Химия – это наука о веществах, о химических превращениях
веществ.
◦ Химия изучает закономерности протекания различных реакций.
◦ Скоростью химической реакции называется изменение
концентрации реагирующих веществ в единицу времени.
◦ Так как скорость реакции v непрерывно изменяется в ходе
процесса, ее обычно выражают производной концентрации
реагирующих веществ по времени.

Производная в географии:

Идея социологической модели Томаса Мальтуса состоит в том, что прирост населения
пропорционально числу населения в данный момент времени t через N(t), . Модель
Мальтуса неплохо действовала для описания численности населения США с 1790 по 1860
годы. Ныне эта модель в большинстве стран не действует.

Интеграл и его применение:

Немного из истории:

История понятия интеграла уходит корнями
к математикам Древней Греции и Древнего
Рима.
Известны работы учёного Древней Греции Евдокса Книдского (ок.408-ок.355 до н.э.) на
нахождение объёмов тел и вычисления
площадей плоских фигур.

Большое распространение интегральное исчисление получило в XVII веке. Учёные:
Г. Лейбниц (1646-1716) и И. Ньютон (1643-1727) открыли независимо друг от
друга и практически одновременно формулу, названную в последствии формулой
Ньютона - Лейбница, которой мы пользуемся. То, что математическую формулу
вывели философ и физик никого не удивляет, ведь математика-язык, на котором
говорит сама природа.

Символ введен
Лейбницем (1675 г.). Этот знак является
изменением латинской буквы S
(первой буквы слова сумма). Само слово интеграл
придумал
Я. Бернулли (1690 г.). Вероятно, оно происходит от
латинского integero, которое переводится как
приводить в прежнее состояние, восстанавливать.
Пределы интегрирования указал уже Л.Эйлер
(1707-1783). В 1697 году появилось название
новой ветви математики - интегральное
исчисление. Его ввёл Бернулли.

В математическом анализе интегралом функции называют
расширение понятия суммы. Процесс нахождения интеграла
называется интегрированием. Этот процесс обычно используется при
нахождений таких величин как площадь, объём, масса, смещение и т.
д., когда задана скорость или распределение изменений этой величины
по отношению к некоторой другой величине (положение, время и т. д.).

Что такое интеграл?

Интеграл - одно из важнейших понятий математического анализа, которое
возникает при решении задач о нахождении площади под кривой, пройденного пути при
неравномерном движении, массы неоднородного тела, и т. п., а также в задаче о
восстановлении функции по её производной

Ученые стараются все физические
явления выразить в виде
математической формулы. Как
только у нас есть формула, дальше
уже можно при помощи нее
посчитать что угодно. А интеграл
- это один из основных
инструментов работы с
функциями.

Методы интегрирования:

1.Табличный.
2.Сведение к табличному преобразованием подынтегрального
выражения в сумму или разность.
3.Интегрирование с помощью замены переменной (подстановкой).
4.Интегрирование по частям.

Применение интеграла:

◦ Математика
◦ Вычисления S фигур.
◦ Длина дуги кривой.
◦ V тела на S параллельных
сечений.
◦ V тела вращения и т.д
Физика
Работа А переменной силы.
S – (путь) перемещения.
Вычисление массы.
Вычисление момента инерции линии,
круга, цилиндра.
◦ Вычисление координаты центра
тяжести.
◦ Количество теплоты и т.д.



Чайкин Семён, Майсак Кирилл, Залогина Анастасия, Шахзадова Анна

Данная разработка содержит презентацию по теме "Применение производной в химии и биологии". В ходе проектной деятельности была выдвинута гипотеза о том, что производная находит свое применение в этих областях науки. В ходе исследовательской работы было выяснено, какова роль производной в таких науках как химия и биология, где и при решении каких задач она находит свое применение. В результате проделанной работы пришли к выводу, что гипотеза действительно подтвердилась.

Скачать:

Предварительный просмотр:

https://accounts.google.com


Подписи к слайдам:

Гипотеза:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Применение производной в химии и биологии Работу выполнили ученики 11В класса МБОУ СОШ №6: Чайкин Семен, Майсак Кирилл, Залогина Анастасия, Шахзадова Анна г. Ставрополь, 2014 год

Гипотеза:

И в химии нашло широкое применение дифференциальное исчисление для построения математических моделей химических реакций и последующего описания их свойств. Химия – это наука о веществах, о химических превращениях веществ. Химия изучает закономерности протекания различных реакций Скоростью химической реакции называется изменение концентрации реагирующих веществ в единицу времени. Применение производной в химии и биологии Определение скорости химической реакции

Зачем нужна производная в реакциях? Так как скорость реакции v непрерывно изменяется в ходе процесса, ее обычно выражают производной концентрации реагирующих веществ по времени.

Формула производной в химии Если C (t) – закон изменения количества вещества, вступившего в химическую реакцию, то скорость v (t) химической реакции в момент времени t равна производной:

Определение скорости реакции Предел отношения приращённой функции к приращённому аргументу при стремлении Δt к нулю - есть скорость химической реакции в данный момент времени

Задача по химии: Пусть количество вещества, вступившего в химическую реакцию задается зависимостью: С (t) = t 2 /2 + 3 t –3 (моль) Найти скорость химической реакции через 3 секунды. Решение: v (t) = С ‘(t) ; v (t) = t + 3; v (3) = 3+3 = 6. Ответ: 6 моль\с.

Биологический смысл производной Пусть зависимость между числом особей популяции микроорганизмов у и временем t её размножения задана уравнением: у = x (t). Пусть ∆ t - промежуток времени от некоторого начального значения t до t +∆ t . Тогда у + ∆у = x (t +∆ t) - новое значение численности популяции, соответствующее моменту t +∆ t , а ∆ y + x (t + ∆ t)- x (t) - изменение числа особей организмов. Отношение является средней скоростью размножения или, как принято говорить, средней производительностью жизнедеятельности популяции. Вычисляя, получаем y ‘ = P (t) = x ‘ (t) , или производительность жизнедеятельности популяции в момент времени t .

Популяция – это совокупность особей данного вида, занимающих определённый участок территории внутри ареала вида, свободно скрещивающихся между собой и частично или полностью изолированных от других популяций, а также является элементарной единицей эволюции.

Пример Пусть популяция бактерий в момент t (с) насчитывает x(t) особей. . Найти скорость роста популяции: а) в произвольный момент t , б) в момент t = 1 c . Решение: P = x’(t) = 200t; P(1) = 200 (о/с). Ответ: 200 о/с.

Заключение Понятие производной очень важно в химии и в биологии, особенно при определении скорости течения реакции.

Вывод: Дифференциальное исчисление- это описание окружающего нас мира, выполненное на математическом языке. Производная - одно из самых важных понятий математического анализа. Знание производной помогает нам успешно решать не только математические задачи, но и задачи практического характера в разных областях науки, техники и жизни.

Презентация на тему: «Применение производной в науке и в жизни» Выполнила студентка группы ПхИ-17 Долженкова Анастасия Сведения из истории появления производной: Лозунгом многих математиков XVII в. был: «Двигайтесь вперёд, и вера в правильность результатов к вам придёт». Термин «производная» - (франц. deriveе - позади, за) ввёл в 1797 г. Ж. Лагранж. Он же ввёл современные обозначения y " , f ‘. обозначение lim –сокращение латинского слова limes (межа, граница). Термин «предел» ввёл И. Ньютон. И. Ньютон называл производную флюксией, а саму функцию - флюентой. Г. Лейбниц говорил о дифференциальном отношении и обозначал производную так: Лагранж Жозеф Луи (1736-1813) французский математик и механик Ньютон:

« Был этот мир глубокой тьмой окутан. Да будет свет! И вот явился Ньютон.» А.Поуг.

Исаак Ньютон (1643-1727) один из создателей дифференциального исчисления.

Главный его труд- «Математические начала натуральной философии»-оказал колоссальное влияние на развитие естествознания, стал поворотным пунктом в истории естествознания.

Ньютон ввёл понятие производной, изучая законы механики, тем самым раскрыл её механический смысл.

Что называется производной функции?

Производной функции в данной точке называется предел отношения приращения функции в этой точке к приращению аргумента, когда приращение аргумента стремится к нулю.

Физический смысл производной.

  • Скорость есть производная от пути по времени:
  • v(t) = S′(t)
  • Ускорение есть производная скорости по времени:

a(t) = v′(t) = S′′(t)

Геометрический смысл производной: Угловой коэффициент касательной к графику функции равен производной этой функции, вычисленной в точке касания. f′(x) = k = tga Производная в электротехнике:

В наших домах, на транспорте, на заводах: всюду работает электрический ток. Под электрическим током понимают направленное движение свободных электрически заряженных частиц.

Количественной характеристикой электрического тока является сила тока.

В цепи электрического тока электрический заряд меняется с течением времени по закону q=q (t). Сила тока I есть производная заряда q по времени.

В электротехнике в основном используется работа переменного тока.

Электрический ток, изменяющийся со временем, называют переменным. Цепь переменного тока может содержать различные элементы: нагревательные приборы, катушки, конденсаторы.

Получение переменного электрического тока основано на законе электромагнитной индукции, формулировка которого содержит производную магнитного потока.

Производная в химии:

  • И в химии нашло широкое применение дифференциальное исчисление для построения математических моделей химических реакций и последующего описания их свойств.
  • Химия – это наука о веществах, о химических превращениях веществ.
  • Химия изучает закономерности протекания различных реакций.
  • Скоростью химической реакции называется изменение концентрации реагирующих веществ в единицу времени.
  • Так как скорость реакции v непрерывно изменяется в ходе процесса, ее обычно выражают производной концентрации реагирующих веществ по времени.
Производная в географии:

Идея социологической модели Томаса Мальтуса состоит в том, что прирост населения пропорционально числу населения в данный момент времени t через N(t), . Модель Мальтуса неплохо действовала для описания численности населения США с 1790 по 1860 годы. Ныне эта модель в большинстве стран не действует.

Интеграл и его применение: Немного из истории: История понятия интеграла уходит корнями к математикам Древней Греции и Древнего Рима. Известны работы учёного Древней Греции - Евдокса Книдского (ок.408-ок.355 до н.э.) на нахождение объёмов тел и вычисления площадей плоских фигур. Большое распространение интегральное исчисление получило в XVII веке. Учёные: Г. Лейбниц (1646-1716) и И. Ньютон (1643-1727) открыли независимо друг от друга и практически одновременно формулу, названную в последствии формулой Ньютона - Лейбница, которой мы пользуемся. То, что математическую формулу вывели философ и физик никого не удивляет, ведь математика-язык, на котором говорит сама природа. Большое распространение интегральное исчисление получило в XVII веке. Учёные: Г. Лейбниц (1646-1716) и И. Ньютон (1643-1727) открыли независимо друг от друга и практически одновременно формулу, названную в последствии формулой Ньютона - Лейбница, которой мы пользуемся. То, что математическую формулу вывели философ и физик никого не удивляет, ведь математика-язык, на котором говорит сама природа. Символ введен Символ введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова сумма). Само слово интеграл придумал Я. Бернулли (1690 г.) . Вероятно, оно происходит от латинского integero, которое переводится как приводить в прежнее состояние, восстанавливать. Пределы интегрирования указал уже Л.Эйлер (1707-1783). В 1697 году появилось название новой ветви математики - интегральное исчисление. Его ввёл Бернулли. В математическом анализе интегралом функции называют расширение понятия суммы. Процесс нахождения интеграла называется интегрированием. Этот процесс обычно используется при нахождений таких величин как площадь, объём, масса, смещение и т. д., когда задана скорость или распределение изменений этой величины по отношению к некоторой другой величине (положение, время и т. д.). Что такое интеграл? Интеграл - одно из важнейших понятий математического анализа , которое возникает при решении задач о нахождении площади под кривой, пройденного пути при неравномерном движении, массы неоднородного тела, и т. п., а также в задаче о восстановлении функции по её производной Ученые стараются все физические явления выразить в виде математической формулы. Как только у нас есть формула, дальше уже можно при помощи нее посчитать что угодно. А интеграл - это один из основных инструментов работы с функциями. Ученые стараются все физические явления выразить в виде математической формулы. Как только у нас есть формула, дальше уже можно при помощи нее посчитать что угодно. А интеграл - это один из основных инструментов работы с функциями. Методы интегрирования:

  • Табличный.
  • Сведение к табличному преобразованием подынтегрального выражения в сумму или разность.
  • Интегрирование с помощью замены переменной (подстановкой).
  • Интегрирование по частям.
Применение интеграла:
  • Математика
  • Вычисления S фигур.
  • Длина дуги кривой.
  • V тела на S параллельных сечений.
  • V тела вращения и т.д
  • Физика
  • Работа А переменной силы.
  • S – (путь) перемещения.
  • Вычисление массы.
  • Вычисление момента инерции линии, круга, цилиндра.
  • Вычисление координаты центра тяжести.
  • Количество теплоты и т.д.

Южно-Сахалинский Государственный Университет

Кафедра математики

Курсовая работа

Тема: Практическое применение производной

Преподаватель: Лихачева О. Н.

Южно-Сахалинск

2002г
Введение

В данной работе я рассмотрю применения производной в различных науках и отраслях. Работа разбита на главы, в каждой из которых рассматривается одна из сторон дифференциального исчисления (геометрический, физический смысл и т. д.)

1. Понятие производной

1-1. Исторические сведения

Дифференциальное исчисление было создано Ньютоном и Лейбницем в конце 17 столетия на основе двух задач:

1) о разыскании касательной к произвольной линии

2) о разыскании скорости при произвольном законе движения

Еще раньше понятие производной встречалось в работах итальянского математика Тартальи (около 1500 - 1557 гг.) - здесь появилась касательная в ходе изучения вопроса об угле наклона орудия, при котором обеспечивается наибольшая дальность полета снаряда.

В 17 веке на основе учения Г.Галилея о движении активно развивалась кинематическая концепция производной. Различные изложения стали встречаться в работах у Декарта, французского математика Роберваля, английского ученого Л. Грегори. Большой вклад в изучение дифференциального исчисления внесли Лопиталь, Бернулли, Лагранж, Эйлер, Гаусс.

1-2. Понятие производной

Пусть y = f(x) есть непрерывная функция аргумента x, определенная в промежутке (a; b), и пусть х 0 - произвольная точка этого промежутка

Дадим аргументу x приращение ∆x, тогда функция y = f(x) получит приращение ∆y = f(x + ∆x) - f(x). Предел, к которому стремится отношение ∆y / ∆x при ∆x → 0, называется производной от функции f(x).

1-3. Правила дифференцирования и таблица производных

(sin x)" = cos x

(1 / x)" = -1 / x 2

(cos x)" = -sin x

(√x)" = 1 / 2√x

(tg x)" = 1 / cos 2 x

(uv)" = u"v + uv"

(a x)" = a x ln x

(ctg x)" = 1 / sin 2 x

(u / v)"=(u"v - uv") / v 2

(arcsin x)" = 1 / √ (1- x 2)

(log a x)" = (log a e) / x

(arccos x)" = -1 / √ (1- x 2)

(ln x)" = 1 / x

(arctg x)" = 1 / √ (1+ x 2)



(arcctg x)" = -1 / √ (1+ x 2)


2. Геометрический смысл производной

2-1. Касательная к кривой

Пусть имеем кривую и на ней фиксированную точку M и точку N. Касательной к точке M называется прямая, положение которой стремится занять хорда MN, если точку N неограниченно приближать по кривой к M.

Рассмотрим функцию f(x) и соответствующую этой функции кривую y = f(x). При некотором значении x функция имеет значение y = f(x). Этим значениям на кривой соответствует точка M(x 0 , y 0). Введем новый аргумент x 0 + ∆x, его значению соответствует значение функции y 0 + ∆y = f(x 0 + ∆x). Соответствующая точка - N(x 0 + ∆x, y 0 + ∆y). Проведем секущую MN и обозначим φ угол, образованный секущей с положительным направлением оси Ox. Из рисунка видно, что ∆y / ∆x = tg φ. Если теперь ∆x будет приближаться к 0, то точка N будет перемещаться вдоль кривой, секущая MN - поворачиваться вокруг точки M, а угол φ - меняться. Если при ∆x → 0 угол φ стремится к некоторому α, то прямая, проходящая через M и составляющая с положительным направлением оси абсцисс угол α, будет искомой касательной. При этом, ее угловой коэффициент:

То есть, значение производной f "(x) при данном значении аргумента x равно тангенсу угла, образованного с положительным направлением оси Ox касательной к графику функции f(x) в точке M(x, f(x)).

Касательная к пространственной линии имеет определение, аналогичное определению касательной к плоской кривой. В этом случае, если функция задана уравнением z = f(x, y), угловые коэффициенты при осях OX и OY будут равны частным производным f по x и y.

2-2. Касательная плоскость к поверхности

Касательной плоскостью к поверхности в точке M называется плоскость, содержащая касательные ко всем пространственным кривым поверхности, проходящим через M - точку касания.

Возьмем поверхность, заданную уравнением F(x, y, z) = 0 и какую-либо обыкновенную точку M(x 0 , y 0 , z 0) на ней. Рассмотрим на поверхности некоторую кривую L, проходящую через M. Пусть кривая задана уравнениями

x = φ(t); y = ψ(t); z = χ(t).

Подставим в уравнение поверхности эти выражения. Уравнение превратится в тождество, т. к. кривая целиком лежит на поверхности. Используя свойство инвариантности формы дифференциала, продифференцируем полученное уравнение по t:

Уравнения касательной к кривой L в точке M имеют вид:

Т. к. разности x - x 0 , y - y 0 , z - z 0 пропорциональны соответствующим дифференциалам, то окончательное уравнение плоскости выглядит так:

F" x (x - x 0) + F" y (y - y 0) + F" z (z - z 0)=0

и для частного случая z = f(x, y):

Z - z 0 = F" x (x - x 0) + F" y (y - y 0)

Пример: Найти уравнение касательной плоскости в точке (2a; a; 1,5a) гиперболического параболоида

Решение :

Z" x = x / a = 2; Z" y = -y / a = -1

Уравнение искомой плоскости:

Z - 1.5a = 2(x - 2a) - (Y - a) или Z = 2x - y - 1.5a

3-1. Скорость материальной точки

Пусть зависимость пути s от времени t в данном прямолинейном движении материальной точки выражается уравнением s = f(t) и t 0 -некоторый момент времени. Рассмотрим другой момент времени t, обозначим ∆t = t - t 0 и вычислим приращение пути: ∆s = f(t 0 + ∆t) - f(t 0). Отношение ∆s / ∆t называют средней скоростью движения за время ∆t, протекшее от исходного момента t 0 . Скоростью называют предел этого отношения при ∆t → 0.

Среднее ускорение неравномерного движения в интервале (t; t + ∆t) - это величина =∆v / ∆t. Мгновенным ускорением материальной точки в момент времени t будет предел среднего ускорения:

То есть первая производная по времени (v"(t)).

Пример: Зависимость пройденного телом пути от времени задается уравнением s = A + Bt + Ct 2 +Dt 3 (C = 0,1 м/с, D = 0,03 м/с 2). Определить время после начала движения, через которое ускорение тела будет равно 2 м/с 2 .

Решение :

v(t) = s"(t) = B + 2Ct + 3Dt 2 ; a(t) = v"(t) = 2C + 6Dt = 0,2 + 0,18t = 2;

1,8 = 0,18t; t = 10 c

3-2. Теплоемкость вещества при данной температуре

Для повышения различных температур T на одно и то же значение, равное T 1 - T, на 1 кг. данного вещества необходимо разное количество теплоты Q 1 - Q, причем отношение

для данного вещества не является постоянным. Таким образом, для данного вещества количество теплоты Q есть нелинейная функция температуры T: Q = f(T). Тогда ΔQ = f(t + ΔT) - f(T). Отношение

называется средней теплоемкостью на отрезке , а предел этого выражения при ∆T → 0 называется теплоемкостью данного вещества при температуре T.

3-3. Мощность

Изменение механического движения тела вызывается силами, действующими на него со стороны других тел. Чтобы количественно характеризовать процесс обмена энергией между взаимодействующими телами, в механике вводится понятие работы силы. Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности:.

4. Дифференциальное исчисление в экономике

4-1. Исследование функций

Дифференциальное исчисление - широко применяемый для экономического анализа математический аппарат. Базовой задачей экономического анализа является изучение связей экономических величин, записанных в виде функций. В каком направлении изменится доход государства при увеличении налогов или при введении импортных пошлин? Увеличится или уменьшится выручка фирмы при повышении цены на ее продукцию? В какой пропорции дополнительное оборудование может заменить выбывающих работников? Для решения подобных задач должны быть построены функции связи входящих в них переменных, которые затем изучаются с помощью методов дифференциального исчисления. В экономике очень часто требуется найти наилучшее или оптимальное значение показателя: наивысшую производительность труда, максимальную прибыль, максимальный выпуск, минимальные издержки и т. д. Каждый показатель представляет собой функцию от одного или нескольких аргументов. Таким образом, нахождение оптимального значения показателя сводится к нахождению экстремума функции.

По теореме Ферма, если точка является экстремумом функции, то производная в ней либо не существует, либо равна 0. Тип экстремума можно определить по одному из достаточных условий экстремума:

1) Пусть функция f(x) дифференцируема в некоторой окрестности точки x 0 . Если производная f "(x) при переходе через точку x 0 меняет знак с + на -, то x 0 - точка максимума, если с - на +, то x 0 - точка минимума, если не меняет знак, то в этой точке нет экстремума.

2) Пусть функция f(x) дважды дифференцируема в некоторой окрестности точки x 0 , причем f "(x 0) = 0, f ""(x 0) ≠ 0, то в точке x 0 функция f(x 0) имеет максимум, если f ""(x 0) < 0 и минимум, если f ""(x 0) > 0.

Кроме того, вторая производная характеризует выпуклость функции (график функции называется выпуклым вверх [вниз] на интервале (a, b), если он на этом интервале расположен не выше [не ниже] любой своей касательной).

Пример: выбрать оптимальный объем производства фирмой, функция прибыли которой может быть смоделирована зависимостью:

π(q) = R(q) - C(q) = q 2 - 8q + 10

Решение:

π"(q) = R"(q) - C"(q) = 2q - 8 = 0 → q extr = 4

При q < q extr = 4 → π"(q) < 0 и прибыль убывает

При q > q extr = 4 → π"(q) > 0 и прибыль возрастает

При q = 4 прибыль принимает минимальное значение.

Каким же будет оптимальный объем выпуска для фирмы? Если фирма не может производить за рассматриваемый период больше 8 единиц продукции (p(q = 8) = p(q = 0) = 10), то оптимальным решением будет вообще ничего не производить, а получать доход от сдачи в аренду помещений и / или оборудования. Если же фирма способна производить больше 8 единиц, то оптимальным для фирмы будет выпуск на пределе своих производственных мощностей.

4-2. Эластичность спроса

Эластичностью функции f(x) в точке x 0 называют предел

Спрос - это количество товара, востребованное покупателем. Ценовая эластичность спроса E D - это величина, характеризующая то, как спрос реагирует на изменение цены. Если │E D │>1, то спрос называется эластичным, если │E D │<1, то неэластичным. В случае E D =0 спрос называется совершенно неэластичным, т. е. изменение цены не приводит ни к какому изменению спроса. Напротив, если самое малое снижение цены побуждает покупателя увеличить покупки от 0 до предела своих возможностей, говорят, что спрос является совершенно эластичным. В зависимости от текущей эластичности спроса, предприниматель принимает решения о снижении или повышении цен на продукцию.

4-3. Предельный анализ

Важный раздел методов дифференциального исчисления, используемых в экономике - методы предельного анализа, т. е. совокупность приемов исследования изменяющихся величин затрат или результатов при изменениях объемов производства, потребления и т. п. на основе анализа их предельных значений. Предельный показатель (показатели) функции - это ее производная (в случае функции одной переменной) или частные производные (в случае функции нескольких переменных)

В экономике часто используются средние величины: средняя производительность труда, средние издержки, средний доход, средняя прибыль и т. д. Но часто требуется узнать, на какую величину вырастет результат, если будут увеличены затраты или наоборот, насколько уменьшится результат, если затраты сократятся. С помощью средних величин ответ на этот вопрос получить невозможно. В подобных задачах требуется определить предел отношения приростов результата и затрат, т. е. найти предельный эффект. Следовательно, для их решения необходимо применение методов дифференциального исчисление.

5. Производная в приближенных вычислениях

5-1. Интерполяция

Интерполяцией называется приближенное вычисление значений функции по нескольким данным ее значениям. Интерполяция широко используется в картографии, геологии, экономике и других науках. Самым простым вариантом интерполяции является форма Лагранжа, но когда узловых точек много и интервалы между ними велики, либо требуется получить функцию, кривизна которой минимальна то прибегают к сплайн-интерполяции, дающей бóльшую точность.

Пусть K n - система узловых точек a = x 0 < x 1 <…< x n = b. Функция S k (x) называется сплайн-функцией S k (x) степени k≥0 на K n , если

а) S k (x) є C k -1 ()

б) S k (x) - многочлен степени не большей k

Сплайн-функция Ŝ k (x) є S k (K n) называется интерполирующей сплайн-функцией, если Ŝ k (x j) = f(x j) для j = 0,1,…,n

В приложениях часто бывает достаточно выбрать k=3 и применить т. н. кубическую интерполяцию.

Т. к. s(x) на каждом частичном интервале есть многочлен третьей степени, то для x є

Здесь s 2 j , c j 1 , c j 0 неизвестны для j = 1, 2, …, n

Последние исключаются в силу требования s(x j) = y j:

Дифференцируя эту функцию и учитывая, что s"(x) на всем интервале и, следовательно, в частности, в узлах должна быть непрерывна, окончательно получаем систему уравнений:

относительно n+1 неизвестных s 2 0 , s 2 1 ,…, s 2 n. Для однозначного их определения в зависимости от задачи добавляются еще два уравнения:

Нормальный случай(N):

Периодический случай(P) (т. е. f(x+(x n - x 0))= f(x)):

Заданное сглаживание на границах:

Пример: сплайн-интерполяция функции f(x)=sin x, n=4.

Функция периодическая, поэтому используем случай P.





Сплайн-функция получается такая:

5-2. Формула Тейлора

Разложение функций в бесконечные ряды позволяет получить значение функции в данной точке с любой точностью. Этот прием широко используется в программировании и других дисциплинах

Говорят, что функция разлагается на данном промежутке в степенной ряд, если существует такой степенной ряд a 0 + a 1 (x - a) + a 2 (x - a) 2 + … + a n (x - a) n + …, который на этом промежутке сходится к данной функции. Можно доказать, что это разложение единственно:

Пусть функция f(x) бесконечно дифференцируема в точке a. Степенной ряд вида

называется рядом Тейлора для функции f(x), записанным по степеням разности (x - a). Вообще, чтобы ряд Тейлора сходился к f(x) необходимо и достаточно, чтобы остаточный член ряда стремился к 0. При a = 0 ряд Тейлора обычно называют рядом Маклорена.

И. М. Уваренков,

М. З. Маллер

Курс математического анализа,т.1

В. А. Дударенко,

А.А. Дадаян

Математический анализ

Дифференциальное и интегральное исчисления

Т. И. Трофимова

Курс физики

О. О. Замков

А. В. Толстопятенко

Ю. Н. Черемных

Математические методы в экономике

А. С. Солодовников

В. А. Бабайцев

А. В. Браилов

И.Г. Шандра

Математика в экономике



Введение

1. Понятие производной

1-1. Исторические сведения

1-2. Понятие производной

1-3. Правила дифференцирования и таблица производных

2. Геометрический смысл производной

2-1. Касательная к кривой

2-2. Касательная плоскость к поверхности

3. Использование производной в физике

3-1. Скорость материальной точки

3-2. Теплоемкость при данной температуре

3-3. Мощность

4. Дифференциальное исчисление в экономике

4-1. Исследование функций

4-2. Эластичность спроса

4-3. Предельный анализ

5. Производная в приближенных вычислениях

5-1. Интерполяция

5-2. Формула Тейлора

5-3. Приближенные вычисления

Заключение

Список использованной литературы



































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока: интегрированный.

Цель урока: изучить некоторые аспекты применения производной в различных областях физики, химии, биологии.

Задачи: расширение кругозора и познавательной деятельности учащихся, развитие логического мышления и умения применять свои знания.

Техническое обеспечение: интерактивная доска; компьютер и диск.

ХОД УРОКА

I. Организационный момент

II. Постановка цели урока

– Урок хотелось бы провести под девизом Крылова Алексея Николаевича советского математика и кораблестроителя: «Теория без практики мертва или бесполезна, практика без теории невозможна или пагубна».

– Повторим основные понятия и ответим на вопросы:

– Скажите основное определение производной?
– Что вы знаете о производной (свойства, теоремы)?
– Знаете ли вы какие-нибудь примеры задач с применением производной в физике, математике и биологии?

Рассмотрение основного определения производной и его обоснование (ответ на первый вопрос):

Производная – одно из фундаментальных понятий математики. Умение решать задачи с применением производной требует хорошего знания теоретического материала, умения проводить исследование различных ситуаций.

Поэтому сегодня на уроке мы закрепим и систематизируем полученные знания, рассмотрим и оценим работу каждой группы и на примере некоторых задач покажем, как при помощи производной решать другие задачи и нестандартные задачи с применением производной.

III. Объяснение нового материала

1. Мгновенная мощность есть производная работы по времени:

W = lim ΔA/Δt ΔA – изменение работы.

2. Если тело вращается вокруг оси, то угол поворота есть функция времени t
Тогда угловая скорость равна:

W = lim Δφ/Δt = φ׳(t) Δt → 0

3. Сила тока есть производная Ι = lim Δg/Δt = g′, где g – положительный электрический заряд переносимый через сечение проводника за время Δt.

4. Пусть ΔQ – количество теплоты, необходимое для изменения температуры за Δt времени, тогда lim ΔQ/Δt = Q′ = C – удельная теплоёмкость.

5. Задача о скорости течения химической реакции

m(t) – m(t0) – количество вещества, вступающее в реакцию от времени t0 до t

V= lim Δm/Δt = m Δt → 0

6. Пусть m – масса радиоактивного вещества. Скорость радиоактивного распада: V = lim Δm/Δt = m׳(t) Δt→0

В дифференцированной форме закон радиоактивного распада имеет вид: dN/dt = – λN, где N – число ядер не распавшихся время t.

Интегрируя это выражение, получаем: dN/N = – λdt ∫dN/N = – λ∫dt lnN = – λt + c, c = const при t = 0 числорадиоактивных ядер N = N0 , отсюда имеем: ln N0 = const, следовательно

n N = – λt + ln N0.

Потенциируя это выражение получаем:

–закон радиоактивного распада, где N0 – число ядер в момент времени t0 = 0, N – число ядер, не распавшихся за время t.

7. Согласно уравнению теплообмена Ньютона скорость потока теплоты dQ/dt прямо пропорциональна площади окна S и разности температур ΔT между внутренним и внешним стёклами и обратно пропорциональна его толщине d:

dQ/dt =A S/d ΔT

8. Явлением Диффузии называется процесс установления равновесного распределения

Внутри фаз концентрации. Диффузия идёт в сторону, выравнивая концентрации.

m = D Δc/Δx c – концентрация
m = D c׳x x – координата, D – коэффициент диффузии

Закон Фика:

9. Было известно, что электрическое поле возбуждает либо электрические заряды, либо магнитное поле, которое имеет единственный источник – электрический ток. Джеймс Кларк Максвелл ввёл одну поправку в открытые до него законы электромагнетизма: магнитное поле возникает также и при изменении электрического поля. Маленькая на первый взгляд поправка имела грандиозные последствия: появилась пусть пока и на кончике пера, совершенно новый физический объект – электромагнитная волна. Максвелл виртуозно владел, в отличии от Фарадея, которому казалось возможным её существование, вывел уравнение для электрического поля:

∂E/∂x = M∂B/Mo ∂t Mo = const t

Изменение электрического поля вызывает появление магнитного поля в любой точке пространства, другими словами, скорость изменения электрического поля определяет величину магнитного поля. Под большим электрическим током – большее магнитное поле.

IV. Закрепление изученного

– Мы с вами изучали производную и её свойства. Хотелось бы прочитать философское высказывание Гильберта: «У каждого человека есть определённый кругозор. Когда этот кругозор сужается до бесконечного малого, то он обращается в точку. Тогда человек и говорит что это и есть его точка зрения.»
Давайте попробуем измерить точку зрения на применении производной!

Сюжет «Листик» (применение производной в биологии, физике, жизни)

Рассмотрим падение как неравномерное движение зависящее от времени.

Итак: S = S(t) V = S′(t) = x′(t), a = V′(t) = S″(t)

(Теоретический опрос: механический смысл производной).

1. Решение задач

Решите самостоятельно задачи.

2. F = ma F = mV′ F = mS″

Запишем II закон Портона, и учитывая механический смысл производной перепишем его в виде: F = mV′ F = mS″

Сюжет «Волки, Суслики»

Вернёмся к уравнениям: Рассмотрим дифференциальные уравнения показательного роста и убывания: F = ma F = mV" F = mS""
Решение многих задач физики, технической биологии и социальных наук сводятся к задаче нахождения функций f"(x) = kf(x), удовлетворяющих дифференциальному уравнению, где k = const .

Формула Человека

Человек во столько раз больше атома, во сколько раз он меньше звезды:

Отсюда следует, что
Это и есть формула, определяющая место человека во вселенной. В соответствии с ней размеры человека представляют среднее пропорциональное звезды и атома.

Закончить урок хотелось бы словами Лобачевского: «Нет ни одной области математики, как бы абстрактна она ни была, которая когда-нибудь не окажется применимой к явлениям действительного мира».

V . Решение номеров из сборника:

Самостоятельное решение задач на доске, коллективный разбор решений задач:

№ 1 Найти скорость движения материальной точки в конце 3-й секунды, если движение точки задано уравнением s = t^2 –11t + 30.

№ 2 Точка движется прямолинейно по закону s = 6t – t^2. В какой момент ее скорость окажется равной нулю?

№ 3 Два тела движутся прямолинейно: одно по закону s = t^3 – t^2 – 27t, другое - по закону s = t^2 + 1. Определить момент, когда скорости этих тел окажутся равными.

№ 4 Для машины, движущейся со скоростью 30 м/с, тормозной путь определяется формулой s(t) =30t-16t^2, где s(t) – путь в метрах, t – время торможения в секундах. В течении какого времени осуществляется торможение до полной остановки машины? Какое расстояние пройдет машина с начала торможения до полной ее остановки?

№5 Тело массой 8 кг движется прямолинейно по закону s = 2t^2+ 3t – 1. Найти кинетическую энергию тела (mv^2/2) через 3 секунды после начала движения.

Решение : Найдем скорость движения тела в любой момент времени:
V = ds / dt = 4t + 3
Вычислим скорость тела в момент времени t = 3:
V t=3 = 4 * 3 + 3=15 (м/с).
Определим кинетическую энергию тела в момент времени t = 3:
mv2/2 = 8 – 15^2 /2 = 900 (Дж).

№6 Найти кинетическую энергию тела через 4 с после начала движения, если его масса равна 25 кг, а закон движения имеет вид s = Зt^2- 1.

№7 Тело, масса которого 30 кг, движется прямолинейно по закону s = 4t^2 + t. Доказать, что движение тела происходит под действием постоянной силы.
Решение : Имеем s" = 8t + 1, s" = 8. Следовательно, a(t) = 8 (м/с^2), т. е. при данном законе движения тело движется с постоянным ускорением 8 м/с^2. Далее, так как масса тела постоянна (30 кг), то по второму закону Ньютона действующая на него сила F = ma = 30 * 8 = 240 (H) – также постоянная величина.

№8 Тело массой 3 кг движется прямолинейно по закону s(t) = t^3 – 3t^2 + 2. Найти силу, действующую на тело в момент времени t = 4с.

№9 Материальная точка движется по закону s = 2t^3 – 6t^2 + 4t. Найти ее ускорение в конце 3-й секунды.

VI . Применение производной в математике:

Производная в математике показывает числовое выражение степени изменений величины, находящейся в одной и тоже точке, под влиянием различных условий.

Формула производной встречается нам ещё в 15 веке. Великий итальянский математик Тартальи, рассматривая и развивая вопрос – на сколько зависит дальность полёта снаряда от наклона орудия – применяет её в своих трудах.

Формула производной часто встречается в работах известных математиков 17 века. Её применяют Ньютон и Лейбниц.

Посвящает целый трактат о роли производной в математике известный учёный Галилео Галилей. Затем производная и различные изложения с её применением стали встречаться в работах Декарта, французского математика Роберваля и англичанина Грегори. Большой вклад по изучению производной внесли такие умы, как Лопиталь, Бернулли, Лангранж и др.

1. Построить график и исследовать функцию:

Решение данной задачи:

Минутка релаксации

VII . Применение производной в физике:

При изучении тех или иных процессов и явлений часто возникает задача определения скорости этих процессов. Её решение приводит к понятию производной, являющемуся основным понятием дифференциального исчисления.

Метод дифференциального исчисления был создан в XVII и XVIII вв. С возникновением этого метода связаны имена двух великих математиков – И. Ньютона и Г.В. Лейбница.

Ньютон пришёл к открытию дифференциального исчисления при решении задач о скорости движения материальной точки в данный момент времени (мгновенной скорости).

В физике производная применяется в основном для вычисления наибольших или наименьших значений каких-либо величин.

Решение задач:

№1 Потенциальная энергия U поля частицы, в котором находится другая, точно такая же частица имеет вид: U = a/r 2 – b/r , где a и b - положительные постоянные, r - расстояние между частицами. Найти: а) значение r0 соответствующее равновесному положению частицы; б) выяснить устойчиво ли это положение; в) Fmax значение силы притяжения; г) изобразить примерные графики зависимости U(r) и F(r) .

Решение данной задачи: Для определения r0 соответствующего равновесному положению частицы исследуем f = U(r) на экстремум.

Используя связь между потенциальной энергией поля

U и F , тогда F = – dU/dr , получим F = – dU/dr = – (2a/r3+ b/r2) = 0; при этом r = r0 ; 2a/r3 = b/r2 => r0 = 2a/b ; Устойчивое или неустойчивое равновесие определим по знаку второй производной:
d2U/dr02= dF/dr0 = – 6a/r02 + 2b/r03 = – 6a/(2a/b)4 + 2b/(2a/b)3 = (– b4/8a3) < 0 ;
равновесие устойчивое.

Для определения Fmax притяжения исследую на экстремумы функцию:F = 2a/r3 - b/r2 ;
dF/dr = –6a/r4 + 2b/ r3 = 0 ; при r = r1 = 3a/b ; подставляя, получу Fmax = 2a/r31 - b/r31 = – b3/27a2 ; U(r) = 0 ; при r = a/b ; U(r)min при r = 2, a/b = r0 ;F = 0; F(r)max при r = r1 = 3a/b ;
Ответ: F(r)max при r = r1 = 3a/b ;

№2 Цепь с внешним сопротивлением R = 0,9 Ом питается от батареи из k = 36 одинаковых источников, каждый из которых имеет ЭДС E=2 В и внутреннее сопротивление r0 = 0,4 Ом . Батарея включает n групп, соединенных параллельно, а в каждой из них содержится m последовательно соединенных аккумуляторов. При каких значениях m , n будет получена максимальная J во внешнем R.

Решение данной задачи:

При последовательном соединении аккумуляторов Eгр = m* E; rгр = r0*m ;
а при параллельном соединении одинаковых rбат = r0m/n; Eбат = m* E,
По закону Ома J = m E/(R+ r0m/n) = m En/(nR + r0m)
Т.к. k – общее число аккумуляторов, то k = mn ;
J = k E/(nR + r0m) = k E/(nR + kr0/n) ;
Для нахождения условия при котором J тока в цепи максимальная исследую функцию J = J(n) на экстремум взяв производную по n и приравняв ее к нулю.
J’n – (k E(R - kr0/n2))/ (nR + kr0/n)2 = 0;
n2 = kr/R
n = √kr/R = √3,6*0,4/0,9 = 4 ;
m = k/n = 36/4 = 9 ;
при этом Jmax = k E/(nR + mr0) = 36*2/(4*0,9 + 9*0,4) = 10 А ;

Ответ: n = 4, m = 9 .

№3 Платформа массой М начинает двигаться вправо под действием постоянной силы F . Из неподвижного бункера на нее высыпается песок. Скорость погрузки постоянна и равна µ кг/с. Пренебрегая трением, найти зависимость от времени ускорения а платформы в процессе погрузки. Определить ускорение а1 платформы в случае, если песок не насыпается на платформу, а из наполненной высыпается через отверстие в ее дне с постоянной скоростью µ кг/с.

Решение данной задачи: Рассмотрим сначала случай, когда песок насыпается на платформу
Движение системы платформа – песок можно описать с помощью второго закона Ньютона:
dP/dt = FΣ
P – импульс системы платформа – песок, – сила, действующая на систему платформа – песок.
Если через p обозначить импульс платформы, то можно написать:dp/dt = F
Найдем изменение импульса платформы за бесконечно малый промежуток времени Δt : Δp = (M + µ(t + Δt))(u + Δu) – (M + µt)u = F Δt;
где u – скорость платформы.
Раскрыв скобки и, проведя сокращения получаем:
Dp = µu Δt + M Δu+ Δµut + Δµu Δt = F Δt
Разделим на Δt и перейдем к пределу Δt 0
Mdu/dt + µtdu/dt + µu= F или d[(M + µt)u]/dt = F
Это уравнение можно проинтегрировать, считая начальную скорость платформы равной нулю: (M + µt)u = Ft.
Следовательно: u = Ft/(M + µt)
Тогда, ускорение платформы: a = du/dt = (F(M + µt) – Ftµ)/(M + µt) 2 = FM / (M + µt) 2

Рассмотрим случай, когда песок высыпается из наполненной платформы.
Изменение импульса за малый промежуток времени:
Δp = (M – µ(t + Δt))(u+ Δu) + Δµtu – (M – µt)u = F Δt
Слагаемое Δµtu есть импульс количества песка, которое высыпалось из платформы за время Δt. Тогда:
Δp = M Δu – µt Δu – Δµt Δu = F Δt
Разделим на Δt и перейдем к пределу Δt 0
(M – µt)du/dt = F
Или a1= du/dt= F/(M – µt)

Ответ: a = FM / (M + µt) 2 , a1= F/(M – µt)

VIII. Самостоятельная работа:

Найти производные функций:

Прямая у = 2х является касательной к функции: у = х 3 + 5х 2 + 9х + 3. Найдите абсциссу точки касания.

IX . Подведение итогов урока:

– Каким вопросам был посвящен урок?
– Чему научились на уроке?
– Какие теоретические факты обобщались на уроке?
– Какие рассмотренные задачи оказались наиболее сложными? Почему?

Список литературы:

  1. Амелькин В.В., Садовский А.П. Математические модели и дифференциальные уравнения. – Минск: Высшая школа, 1982. – 272с.
  2. Амелькин В.В. Дифференциальные уравнения в приложениях. М.: Наука. Главная редакция физико-математической литературы, 1987. – 160с.
  3. Еругин Н.П. Книга для чтения по общему курсу дифференциальных уравнений. – Минск: Наука и техника, 1979. – 744с
  4. .Журнал «Потенциал» Ноябрь 2007 №11
  5. «Алгебра и начала анализа» 11 класс С.М. Никольский, М.К. Потапов и др.
  6. «Алгебра и математический анализ» Н.Я. Виленкин и др.
  7. «Математика» В.Т. Лисичкин, И.Л. Соловейчик, 1991 год
mob_info