В классическом определении вероятность случайного события называется. Вероятность, случайное событие, случайная величина. От размышлений о вечном до теории вероятностей

"Случайности не случайны"... Звучит так, словно сказал философ, но на деле изучать случайности удел великой науки математики. В математике случайностями занимается теория вероятности. Формулы и примеры заданий, а также основные определения этой науки будут представлены в статье.

Что такое теория вероятности?

Теория вероятности - это одна из математических дисциплин, которая изучает случайные события.

Чтобы было немного понятнее, приведем небольшой пример: если подкинуть вверх монету, она может упасть «орлом» или «решкой». Пока монета находится в воздухе, обе эти вероятности возможны. То есть вероятность возможных последствий соотносится 1:1. Если из колоды с 36-ю картами вытащить одну, тогда вероятность будет обозначаться как 1:36. Казалось бы, что здесь нечего исследовать и предугадывать, тем более при помощи математических формул. Тем не менее, если повторять определенное действие много раз, то можно выявить некую закономерность и на ее основе спрогнозировать исход событий в других условиях.

Если обобщить все вышесказанное, теория вероятности в классическом понимании изучает возможность возникновения одного из возможных событий в числовом значении.

Со страниц истории

Теория вероятности, формулы и примеры первых заданий появились еще в далеком Средневековье, когда впервые возникли попытки спрогнозировать исход карточных игр.

Изначально теория вероятности не имела ничего общего с математикой. Она обосновывалась эмпирическими фактами или свойствами события, которое можно было воспроизвести на практике. Первые работы в этой сфере как в математической дисциплине появились в XVII веке. Родоначальниками стали Блез Паскаль и Пьер Ферма. Длительное время они изучали азартные игры и увидели определенные закономерности, о которых и решили рассказать обществу.

Такую же методику изобрел Христиан Гюйгенс, хотя он не был знаком с результатами исследований Паскаля и Ферма. Понятие «теория вероятности», формулы и примеры, что считаются первыми в истории дисциплины, были введены именно им.

Немаловажное значение имеют и работы Якоба Бернулли, теоремы Лапласа и Пуассона. Они сделали теорию вероятности больше похожей на математическую дисциплину. Свой теперешний вид теория вероятностей, формулы и примеры основных заданий получили благодаря аксиомам Колмогорова. В результате всех изменений теория вероятности стала одним из математических разделов.

Базовые понятия теории вероятностей. События

Главным понятием этой дисциплины является "событие". События бывают трех видов:

  • Достоверные. Те, которые произойдут в любом случае (монета упадет).
  • Невозможные. События, что не произойдут ни при каком раскладе (монета останется висеть в воздухе).
  • Случайные. Те, что произойдут или не произойдут. На них могут повлиять разные факторы, которые предугадать очень трудно. Если говорить о монете, то случайные факторы, что могут повлиять на результат: физические характеристики монеты, ее форма, исходное положение, сила броска и т. д.

Все события в примерах обозначаются заглавными латинскими буквами, за исключением Р, которой отведена другая роль. Например:

  • А = «студенты пришли на лекцию».
  • Ā = «студенты не пришли на лекцию».

В практических заданиях события принято записывать словами.

Одна из важнейших характеристик событий - их равновозможность. То есть, если подбросить монету, все варианты исходного падения возможны, пока она не упала. Но также события бывают и не равновозможными. Это происходит, когда кто-то специально воздействует на исход. Например, «меченые» игральные карты или игральные кости, в которых смещен центр тяжести.

Еще события бывают совместимыми и несовместимыми. Совместимые события не исключают появления друг друга. Например:

  • А = «студентка пришла на лекцию».
  • В = «студент пришел на лекцию».

Эти события независимы друг от друга, и появление одного из них не влияет на появление другого. Несовместимые события определяются тем, что появление одного исключает появление другого. Если говорить о той же монете, то выпадение «решки» делает невозможным появление «орла» в этом же эксперименте.

Действия над событиями

События можно умножать и складывать, соответственно, в дисциплине вводятся логические связки «И» и «ИЛИ».

Сумма определяется тем, что может появиться или событие А, или В, или два одновременно. В случае когда они несовместимы, последний вариант невозможен, выпадет или А, или В.

Умножение событий заключается в появлении А и В одновременно.

Теперь можно привести несколько примеров, чтобы лучше запомнились основы, теория вероятности и формулы. Примеры решения задач далее.

Задание 1 : Фирма принимает участие в конкурсе на получение контрактов на три разновидности работы. Возможные события, которые могут произойти:

  • А = «фирма получит первый контракт».
  • А 1 = «фирма не получит первый контракт».
  • В = «фирма получит второй контракт».
  • В 1 = «фирма не получит второй контракт»
  • С = «фирма получит третий контракт».
  • С 1 = «фирма не получит третий контракт».

С помощью действий над событиями попробуем выразить следующие ситуации:

  • К = «фирма получит все контракты».

В математическом виде уравнение будет иметь следующий вид: К = АВС.

  • М = «фирма не получит ни одного контракта».

М = А 1 В 1 С 1 .

Усложняем задание: H = «фирма получит один контракт». Поскольку не известно, какой именно контракт получит фирма (первый, второй или третий), необходимо записать весь ряд возможных событий:

Н = А 1 ВС 1 υ АВ 1 С 1 υ А 1 В 1 С.

А 1 ВС 1 - это ряд событий, где фирма не получает первый и третий контракт, но получает второй. Соответственным методом записаны и другие возможные события. Символ υ в дисциплине обозначает связку «ИЛИ». Если перевести приведенный пример на человеческий язык, то фирма получит или третий контракт, или второй, или первый. Подобным образом можно записывать и другие условия в дисциплине «Теория вероятности». Формулы и примеры решения задач, представленные выше, помогут сделать это самостоятельно.

Собственно, вероятность

Пожалуй, в этой математической дисциплине вероятность события - это центральное понятие. Существует 3 определения вероятности:

  • классическое;
  • статистическое;
  • геометрическое.

Каждое имеет свое место в изучении вероятностей. Теория вероятности, формулы и примеры (9 класс) в основном используют классическое определение, которое звучит так:

  • Вероятность ситуации А равняется отношению числа исходов, что благоприятствуют ее появлению, к числу всех возможных исходов.

Формула выглядит так: Р(А)=m/n.

А - собственно, событие. Если появляется случай, противоположный А, его можно записывать как Ā или А 1 .

m - количество возможных благоприятных случаев.

n - все события, которые могут произойти.

Например, А = «вытащить карту червовой масти». В стандартной колоде 36 карт, 9 из них червовой масти. Соответственно, формула решения задания будет иметь вид:

Р(А)=9/36=0,25.

В итоге вероятность того, что из колоды вытянут карту червовой масти, составит 0,25.

К высшей математике

Теперь стало немного известно, что такое теория вероятности, формулы и примеры решения заданий, которые попадаются в школьной программе. Однако теория вероятностей встречается и в высшей математике, которая преподается в вузах. Чаще всего там оперируют геометрическими и статистическими определениями теории и сложными формулами.

Очень интересна теория вероятности. Формулы и примеры (высшая математика) лучше начинать изучать с малого - со статистического (или частотного) определения вероятности.

Статистический подход не противоречит классическому, а немного расширяет его. Если в первом случае нужно было определить, с какой долей вероятности произойдет событие, то в этом методе необходимо указать, как часто оно будет происходить. Здесь вводится новое понятие «относительная частота», которую можно обозначить W n (A). Формула ничем не отличается от классической:

Если классическая формула вычисляется для прогнозирования, то статистическая - согласно результатам эксперимента. Возьмем, к примеру, небольшое задание.

Отдел технологического контроля проверяет изделия на качество. Среди 100 изделий нашли 3 некачественных. Как найти вероятность частоты качественного товара?

А = «появление качественного товара».

W n (A)=97/100=0,97

Таким образом, частота качественного товара составляет 0,97. Откуда взяли 97? Из 100 товаров, которые проверили, 3 оказались некачественными. От 100 отнимаем 3, получаем 97, это количество качественного товара.

Немного о комбинаторике

Еще один метод теории вероятности называют комбинаторикой. Его основной принцип состоит в том, что если определенный выбор А можно осуществить m разными способами, а выбор В - n разными способами, то выбор А и В можно осуществить путем умножения.

Например, из города А в город В ведет 5 дорог. Из города В в город С ведет 4 пути. Сколькими способами можно доехать из города А в город С?

Все просто: 5х4=20, то есть двадцатью разными способами можно добраться из точки А в точку С.

Усложним задание. Сколько существует способов раскладывания карт в пасьянсе? В колоде 36 карт - это исходная точка. Чтобы узнать количество способов, нужно от исходной точки «отнимать» по одной карте и умножать.

То есть 36х35х34х33х32…х2х1= результат не вмещается на экран калькулятора, поэтому его можно просто обозначить 36!. Знак «!» возле числа указывает на то, что весь ряд чисел перемножается между собой.

В комбинаторике присутствуют такие понятия, как перестановка, размещение и сочетание. Каждое из них имеет свою формулу.

Упорядоченный набор элементов множества называют размещением. Размещения могут быть с повторениями, то есть один элемент можно использовать несколько раз. И без повторений, когда элементы не повторяются. n - это все элементы, m - элементы, которые участвуют в размещении. Формула для размещения без повторений будет иметь вид:

A n m =n!/(n-m)!

Соединения из n элементов, которые отличаются только порядком размещения, называют перестановкой. В математике это имеет вид: Р n = n!

Сочетаниями из n элементов по m называют такие соединения, в которых важно, какие это были элементы и каково их общее количество. Формула будет иметь вид:

A n m =n!/m!(n-m)!

Формула Бернулли

В теории вероятности, так же как и в каждой дисциплине, имеются труды выдающихся в своей области исследователей, которые вывели ее на новый уровень. Один из таких трудов - формула Бернулли, что позволяет определять вероятность появления определенного события при независимых условиях. Это говорит о том, что появление А в эксперименте не зависит от появления или не появления того же события в ранее проведенных или последующих испытаниях.

Уравнение Бернулли:

P n (m) = C n m ×p m ×q n-m .

Вероятность (р) появления события (А) неизменна для каждого испытания. Вероятность того, что ситуация произойдет ровно m раз в n количестве экспериментов, будет вычисляться формулой, что представлена выше. Соответственно, возникает вопрос о том, как узнать число q.

Если событие А наступает р количество раз, соответственно, оно может и не наступить. Единица - это число, которым принято обозначать все исходы ситуации в дисциплине. Поэтому q - число, которое обозначает возможность ненаступления события.

Теперь вам известна формула Бернулли (теория вероятности). Примеры решения задач (первый уровень) рассмотрим далее.

Задание 2: Посетитель магазина сделает покупку с вероятностью 0,2. В магазин зашли независимым образом 6 посетителей. Какова вероятность того, что посетитель сделает покупку?

Решение: Поскольку неизвестно, сколько посетителей должны сделать покупку, один или все шесть, необходимо просчитать все возможные вероятности, пользуясь формулой Бернулли.

А = «посетитель совершит покупку».

В этом случае: р = 0,2 (как указано в задании). Соответственно, q=1-0,2 = 0,8.

n = 6 (поскольку в магазине 6 посетителей). Число m будет меняться от 0 (ни один покупатель не совершит покупку) до 6 (все посетители магазина что-то приобретут). В итоге получим решение:

P 6 (0) = C 0 6 ×p 0 ×q 6 =q 6 = (0,8) 6 = 0,2621.

Ни один из покупателей не совершит покупку с вероятностью 0,2621.

Как еще используется формула Бернулли (теория вероятности)? Примеры решения задач (второй уровень) далее.

После вышеприведенного примера возникают вопросы о том, куда делись С и р. Относительно р число в степени 0 будет равно единице. Что касается С, то его можно найти формулой:

C n m = n! / m!(n-m)!

Поскольку в первом примере m = 0, соответственно, С=1, что в принципе не влияет на результат. Используя новую формулу, попробуем узнать, какова вероятность покупки товаров двумя посетителями.

P 6 (2) = C 6 2 ×p 2 ×q 4 = (6×5×4×3×2×1) / (2×1×4×3×2×1) × (0,2) 2 × (0,8) 4 = 15 × 0,04 × 0,4096 = 0,246.

Не так уж и сложна теория вероятности. Формула Бернулли, примеры которой представлены выше, прямое тому доказательство.

Формула Пуассона

Уравнение Пуассона используется для вычисления маловероятных случайных ситуаций.

Основная формула:

P n (m)=λ m /m! × e (-λ) .

При этом λ = n х p. Вот такая несложная формула Пуассона (теория вероятности). Примеры решения задач рассмотрим далее.

Задание 3 : На заводе изготовили детали в количестве 100000 штук. Появление бракованной детали = 0,0001. Какова вероятность, что в партии будет 5 бракованных деталей?

Как видим, брак - это маловероятное событие, в связи с чем для вычисления используется формула Пуассона (теория вероятности). Примеры решения задач подобного рода ничем не отличаются от других заданий дисциплины, в приведенную формулу подставляем необходимые данные:

А = «случайно выбранная деталь будет бракованной».

р = 0,0001 (согласно условию задания).

n = 100000 (количество деталей).

m = 5 (бракованные детали). Подставляем данные в формулу и получаем:

Р 100000 (5) = 10 5 /5! Х е -10 = 0,0375.

Так же как и формула Бернулли (теория вероятности), примеры решений с помощью которой написаны выше, уравнение Пуассона имеет неизвестное е. По сути его можно найти формулой:

е -λ = lim n ->∞ (1-λ/n) n .

Однако есть специальные таблицы, в которых находятся практически все значения е.

Теорема Муавра-Лапласа

Если в схеме Бернулли количество испытаний достаточно велико, а вероятность появления события А во всех схемах одинакова, то вероятность появления события А определенное количество раз в серии испытаний можно найти формулой Лапласа:

Р n (m)= 1/√npq x ϕ(X m).

X m = m-np/√npq.

Чтобы лучше запомнилась формула Лапласа (теория вероятности), примеры задач в помощь ниже.

Сначала найдем X m , подставляем данные (они все указаны выше) в формулу и получим 0,025. При помощи таблиц находим число ϕ(0,025), значение которого 0,3988. Теперь можно подставлять все данные в формулу:

Р 800 (267) = 1/√(800 х 1/3 х 2/3) х 0,3988 = 3/40 х 0,3988 = 0,03.

Таким образом, вероятность того, что рекламная листовка сработает ровно 267 раз, составляет 0,03.

Формула Байеса

Формула Байеса (теория вероятности), примеры решения заданий с помощью которой будут приведены ниже, представляет собой уравнение, которое описывает вероятность события, опираясь на обстоятельства, которые могли быть связаны с ним. Основная формула имеет следующий вид:

Р (А|B) = Р (В|А) х Р (А) / Р (В).

А и В являются определенными событиями.

Р(А|B) - условная вероятность, то есть может произойти событие А при условии, что событие В истинно.

Р (В|А) - условная вероятность события В.

Итак, заключительная часть небольшого курса «Теория вероятности» - формула Байеса, примеры решений задач с которой ниже.

Задание 5 : На склад привезли телефоны от трех компаний. При этом часть телефонов, которые изготавливаются на первом заводе, составляет 25%, на втором - 60%, на третьем - 15%. Известно также, что средний процент бракованных изделий у первой фабрики составляет 2%, у второй - 4%, и у третьей - 1%. Необходимо найти вероятность того, что случайно выбранный телефон окажется бракованным.

А = «случайно взятый телефон».

В 1 - телефон, который изготовила первая фабрика. Соответственно, появятся вводные В 2 и В 3 (для второй и третьей фабрик).

В итоге получим:

Р (В 1) = 25%/100% = 0,25; Р(В 2) = 0,6; Р (В 3) = 0,15 - таким образом мы нашли вероятность каждого варианта.

Теперь нужно найти условные вероятности искомого события, то есть вероятность бракованной продукции в фирмах:

Р (А/В 1) = 2%/100% = 0,02;

Р(А/В 2) = 0,04;

Р (А/В 3) = 0,01.

Теперь подставим данные в формулу Байеса и получим:

Р (А) = 0,25 х 0,2 + 0,6 х 0,4 + 0,15 х 0,01= 0,0305.

В статье представлена теория вероятности, формулы и примеры решения задач, но это только вершина айсберга обширной дисциплины. И после всего написанного логично будет задаться вопросом о том, нужна ли теория вероятности в жизни. Простому человеку сложно ответить, лучше спросить об этом у того, кто с ее помощью не единожды срывал джек-пот.

МУНИЦИПАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ГИМНАЗИЯ № 6

на тему «Классическое определение вероятности».

Выполнила ученица 8 «Б» класса

Климантова Александра.

Учитель по математике: Виденькина В. А.

Воронеж, 2008


Во многих играх используют игральный кубик. У кубика 6 граней, на каждой грани отмечено различное количество точек-от 1 до 6. Играющий бросает кубик и смотрит, сколько точек имеется на выпавшей грани (на той грани, которая располагается сверху). Довольно часто точки на грани кубика заменяют соответствующим числом и тогда говорят о выпадении 1, 2 или 6. Бросание кубика можно считать опытом, экспериментом, испытанием, а полученный результат-исходом испытания или элементарным событием. Людям интересно угадывать наступление того или иного события, предсказывать его исход. Какие предсказания они могут сделать, когда бросают игральный кубик? Например, такие:

1) событие А-выпадает цифра 1, 2, 3, 4, 5 или 6;

2) событие В-выпадает цифра 7, 8 или 9;

3) событие С-выпадает цифра 1.

Событие А, предсказанное в первом случае, обязательно наступит. Вообще, событие, которое в данном опыте обязательно наступит, называют достоверным событием .

Событие В, предсказанное во втором случае, никогда не наступит, это просто невозможно. Вообще, событие, которое в данном опыте наступить не может, называют невозможным событием .

А событие С, предсказанное в третьем случае, наступит или не наступит? На этот вопрос мы с полной уверенностью ответить не в состоянии, поскольку 1 может выпасть, а может и не выпасть. Событие, которое в данном опыте может как наступить, так и не наступить, называют случайным событием .

Думая про наступление достоверного события, мы слово «вероятно» использовать, скорее всего, не будем. Например, если сегодня среда, то завтра четверг, это-достоверное событие. Мы в среду не станем говорить: «Вероятно, завтра четверг», мы скажем коротко и ясно: «Завтра четверг». Правда, если мы склонны к красивым фразам, то можем сказать так: «Со стопроцентной вероятностью утверждаю, что завтра четверг». Напротив, если сегодня среда, то наступление назавтра пятницы-невозможное событие. Оценивая это событие в среду, мы можем сказать так: «Уверен, что завтра не пятница». Или так: «Невероятно, что завтра пятница». Ну а если мы склонны к красивым фразам, то можем сказать так: «Вероятность того, что завтра пятница, равна нулю». Итак, достоверное событие-это событие, наступающее при данных условиях со стопроцентной вероятностью (т. е. наступающее в 10 случаях из 10, в 100 случаях из 100 и т. д.). Невозможное событие-это событие, не наступающее при данных условиях никогда, событие с нулевой вероятностью .

Но, к сожалению (а может быть, и к счастью), не все в жизни так четко и ясно: это будет всегда (достоверное событие), этого не будет никогда (невозможное событие). Чаще всего мы сталкиваемся именно со случайными событиями, одни из которых более вероятны, другие менее вероятны. Обычно люди используют слова «более вероятно» или «менее вероятно», как говорится, по наитию, опираясь на то, что называют здравым смыслом. Но очень часто такие оценки оказываются недостаточными, поскольку бывает важно знать, на сколько процентов вероятно случайное событие или во сколько раз одно случайное событие вероятнее другого. Иными словами, нужны точные количественные характеристики, нужно уметь охарактеризовать вероятность числом.

Первые шаги в этом направлении мы уже сделали. Мы говорили, что вероятность наступления достоверного события характеризуется как стопроцентная , а вероятность наступления невозможного события-как нулевая . Учитывая, что 100 % равно 1, люди договорились о следующем:

1) вероятность достоверного события считается равной 1;

2) вероятность невозможного события считается равной 0.

А как подсчитать вероятность случайного события? Ведь оно произошло случайно , значит, не подчиняется закономерностям, алгоритмам, формулам. Оказывается, и в мире случайного действуют определенные законы, позволяющие вычислять вероятности. Этим занимается раздел математики, который так и называется–теория вероятностей .

Математика имеет дело с моделью некоторого явления окружающей нас действительности. Из всех моделей, используемых в теории вероятностей, мы ограничимся самой простой.

Классическая вероятностная схема

Для нахождения вероятности события А при проведении некоторого опыта следует:

1) найти число N всех возможных исходов данного опыта;

2) принять предположение о равновероятности (равновозможности) всех этих исходов;

3) найти количество N(А) тех исходов опыта, в которых наступает событие А;

4) найти частное; оно и будет равно вероятности события А.

Принято вероятность события А обозначать: Р(А). Объяснение такого обозначения очень простое: слово «вероятность» по-французски–probabilite , по-английски–probability .В обозначении используется первая буква слова.

Используя это обозначение, вероятность события А по классической схеме можно найти с помощью формулы

Р(А)=.

Часто все пункты приведенной классической вероятностной схемы выражают одной довольно длинной фразой.

Классическое определение вероятности

Вероятностью события А при проведении некоторого испытания называют отношение числа исходов, в результате которых наступает событие А, к общему числу всех равновозможных между собой исходов этого испытания.

Пример 1 . Найти вероятность того, что при одном бросании игрального кубика выпадет: а) 4; б) 5; в) четное число очков; г) число очков, большее 4; д) число очков, не кратное трем.

Решение . Всего имеется N=6 возможных исходов: выпадение грани куба с числом очков, равным 1, 2, 3, 4, 5 или 6. Мы считаем, что ни один из них не имеет никаких преимуществ перед другими, т. е. принимаем предположение о равновероятности этих исходов.

а) Ровно в одном из исходов произойдет интересующее нас событие А–выпадение числа 4. Значит, N(A)=1 и

P ( A )= =.

б) Решение и ответ такие же, как и в предыдущем пункте.

в) Интересующее нас событие В произойдёт ровно в трёх случаях, когда выпадает число очков 2, 4 или 6. Значит,

N ( B )=3 и P ( B )==.

г) Интересующее нас событие С произойдет ровно в двух случаях, когда выпадет число очков 5 или 6. Значит,

N ( C ) =2 и Р(С)=.

д) Из шести возможных выпавших чисел четыре (1, 2, 4 и 5) не кратны трем, а остальные два (3 и 6) делятся на три. Значит, интересующее нас событие наступает ровно в четырех из шести возможных и равновероятных между собой и равновероятных между собой исходах опыта. Поэтому в ответе получается

. ; б) ; в) ; г) ; д).

Реальный игральный кубик вполне может отличаться от идеального (модельного) кубика, поэтому для описания его поведения требуется более точная и детальная модель, учитывающая преимущества одной грани перед другой, возможное наличие магнитов и т. п. Но «дьявол кроется в деталях», а большая точность ведет, как правило, к большей сложности, и получение ответа становится проблемой. Мы же ограничиваемся рассмотрением простейшей вероятностной модели, где все возможные исходы равновероятны.

Замечание 1 . Рассмотрим еще пример. Был задан вопрос: «Какова вероятность выпадения тройки при одном бросании кубика?» Ученик ответил так: «Вероятность равна 0, 5». И объяснил свой ответ: «Тройка или выпадет, или нет. Значит, всего есть два исхода и ровно в одном наступает интересующее нас событие. По классической вероятностной схеме получаем ответ 0, 5». Есть в этом рассуждении ошибка? На первый взгляд–нет. Однако она все же есть, причем в принципиальном моменте. Да, действительно, тройка или выпадет, или нет, т. е. при таком определении исхода бросания N=2. Правда и то, что N(A)=1 и уж, разумеется, верно, что

=0, 5, т. е. три пункта вероятностной схемы учтены, а вот выполнение пункта 2) вызывает сомнения. Конечно, с чисто юридической точки зрения, мы имеем право считать, что выпадение тройки равновероятно ее невыпадению. Но вот можем ли мы так считать, не нарушая свои же естественные предположения об «одинаковости» граней? Конечно, нет! Здесь мы имеем дело с правильным рассуждением внутри некоторой модели. Только вот сама эта модель «неправильная», не соответствующая реальному явлению.

Замечание 2 . Рассуждая о вероятности, не упускайте из виду следующее важное обстоятельство. Если мы говорим, что при бросании кубика вероятность выпадения одного очка равна

, это совсем не значит, что, кинув кубик 6 раз, вы получите одно очко ровно один раз, бросив кубик 12 раз, вы получите одно очко ровно два раза, бросив кубик 18 раз, вы получите одно очко ровно три раза и т. д. Слово вероятно носит предположительный характер. Мы предполагаем, что скорее всего может произойти. Вероятно, если мы бросим кубик 600 раз, одно очко выпадет 100 раз или около 100.

Для практической деятельности важно уметь сравнивать события по степени возможности их наступления. Очевидно, события - «выпадение дождя» и «выпадение снега» в первый день лета в данной местности, «выигрыш по одному билету» и «выигрыш по каждому из 5 приобретенных билетов» денежно-вещевой лотереи обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная мера.

Для количественной оценки степени возможности появления случайного события пользуются термином вероятность.

Поставим задачу дать количественную оценку возможности того, что при бросании игральной кости выпадет 4 очка. Выпадение четырех очков будем рассматривать в качестве события А. Каждый из возможных результатов испытания (испытание – бросание игральной кости) назовем элементарным исходом (элементарным событием).В нашем примере возможны следующие 6 элементарных исходов: выпало 1 очко, 2 очка, 3 очка, 4 очка, 5 очков, 6 очков. Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими этому событию. В нашем примере из шести элементарных исходов событию А благоприятствует один. Следовательно, вероятность того, что выпавшее количество очков окажется равным 4, равна 1/ 6. Это число и дает ту количественную оценку степени возможности появления четырех очков, которую мы и хотели найти.

Согласно классическому определению, вероятность события А равна отношению числа благоприятствующих этому событию исходов к общему числу равновозможных элементарных исходов.

Из определения вероятности вытекают следующие ее свойства:

С в о й с т в о 1.Вероятность достоверного события равна единице.

Р(А) = т/п = п/п = 1.

С в о й с т в о 2. Вероятность невозможного события равна нулю.

Р(А) = т/п = 0/п = 0.

С в о й с т в о 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

0 Р(А) 1.

Пример 1. На территории предприятия произошла авария водопровода. Общая длина водопровода 150 м. В том числе 50 м. трубы приходится на труднодоступные места. Какова вероятность того, что ремонт придется производить именно на труднодоступном участке?

Р(А) = 50/150 = 1/3

Пример 2. В урне лежат т белых шаров и п черных. Чему равна вероятность вытащить белый шар (событие А) ?

3. Статистическое определение вероятности.

Пользуясь классическим определением вероятности, можно вычислить вероятность какого-либо случайного события, не прибегая к опыту. Однако это не всегда выполнимо, ибо на практике не всегда можно соблюдать условие равновозможности, лежащее в основе классического определения.

Например, если монета сплющена, то события «появление герба» и «появление цифры» нельзя считать равновозможными и формула (1) окажется неприменимой для подсчета вероятности любого из них. По этой причине наравне с классическим определением пользуются статистическим определением вероятности.

При изучении массовых явлений какое-либо случайное событие или случайная величина могут появляться несколько раз в процессе испытаний. Пусть, например, при п испытаниях событие А появилось т раз. Число т носит название частоты появления события А. Отношение частоты события А к общему числу испытаний п носит название частоты события или относительной частоты, которую обозначают

Если случайное событие имеет устойчивую частоту в серии испытаний, т.е. в каждой серии испытаний частота этого события изменяется незначительно и колеблется около некоторого положительного числа, то это число и принимается за вероятность данного события. Вычисленную таким образом вероятность называют статистической вероятностью.

(2)

Пример 1. Подбросим монету 10 раз и получим, например, такие результаты:

Г,

Г,

Ц,

Г,

Ц,

Г,

Ц,

Г,

Ц,

10) Ц,

С увеличением числа испытаний колебания частоты уменьшаются и частота становится практически устойчивой. Такую устойчивую частоту и принимают равной вероятности интересующего нас события.

В примере с подбрасыванием монеты число опытов взято произвольно. На самом деле для получения достоверного значения вероятности число опытов должно быть значительно больше.

Вероятностью события называется отношение числа элементарных исходов, благоприятствующих данному событию, к числу всех равно­возможных исходов опыта в котором может появиться это событие. Вероятность события А обозначают через Р(А) (здесь Р - первая буква французского слова probabilite - вероятность). В соответствии с определением
(1.2.1)
где - число элементарных исходов, благоприятствующих событию А; - число всех равновозможных элементарных исходов опыта, образующих полную группу событий.
Это определение вероятности называют классическим. Оно возникло на начальном этапе развития теории вероятностей.

Вероятность события имеет следующие свойства:
1. Вероятность достоверного события равна единице. Обозначим достоверное событие буквой . Для достоверного события , поэтому
(1.2.2)
2. Вероятность невозможного события равна нулю. Обозначим невозможное событие буквой . Для невозможного события , поэтому
(1.2.3)
3. Вероятность случайного события выражается положительным числом, меньшим единицы. Поскольку для случайного события выполняются неравенства , или , то
(1.2.4)
4. Вероятность любого события удовлетворяет неравенствам
(1.2.5)
Это следует из соотношений (1.2.2) -(1.2.4).

Пример 1. В урне 10 одинаковых по размерам и весу шаров, из ко­торых 4 красных и 6 голубых. из урны извлекается один шар. Какова вероятность того, что извлеченный шар окажется голубым?

Решение . Событие "извлеченный шар оказался голубым" обозначим буквой А. Данное испытание имеет 10 равновозможных элементарных исходов, из которых 6 благоприятствуют событию А. В соответствии с формулой (1.2.1) получаем

Пример 2. Все натуральные числа от 1 до 30 записаны на одинако­вых карточках и помещены в урну. После тщательного перемешивания карточек из урны извлекается одна карточка. Какова вероятность того,что число на взятой карточке окажется кратным 5?

Решение. Обозначим через А событие "число на взятой карточке кратно 5". В данном испытании имеется 30 равновозможных элементар­ных исходов, из которых событию А благоприятствуют 6 исходов (числа 5, 10, 15, 20, 25, 30). Следовательно,

Пример 3. Подбрасываются два игральных кубика, подсчитывается сумма очков на верхних гранях. Найти вероятность события В, состоя­щего в том, что на верхних гранях кубиков в сумме будет 9 очков.

Решение. В этом испытании всего 6 2 = 36 равновозможных элемен­тарных исходов. Событию В благоприятствуют 4 исхода: (3;6), (4;5), (5;4), (6;3), поэтому

Пример 4 . Наудачу выбрано натуральное число, не превосходящее 10. Какова вероятность того, что это число является простым?

Решение. Обозначим буквой С событие "выбранное число является простым". В данном случае n = 10, m = 4 (простые числа 2, 3, 5, 7). Следовательно, искомая вероятность

Пример 5. Подбрасываются две симметричные монеты. Чему равна вероятность того, что на верхних сторонах обеих монет оказались цифры?

Решение. Обозначим буквой D событие "на верхней стороне каж­дой монеты оказалась цифра". В этом испытании 4 равновозможных элементарных исходов: (Г, Г), (Г, Ц), (Ц, Г), (Ц, Ц). (Запись (Г, Ц) озна­чает, что на первой монете герб, на второй - цифра). Событию D благо­приятствует один элементарный исход (Ц, Ц). Поскольку m = 1, n = 4 , то

Пример 6. Какова вероятность того, что в наудачу выбранном дву­значном числе цифры одинаковы?

Решение. Двузначными числами являются числа от 10 до 99; всего таких чисел 90. Одинаковые цифры имеют 9 чисел (это числа 11, 22, 33, 44, 55, 66, 77, 88, 99). Так как в данном случае m = 9, n = 90, то
,
где А -событие "число с одинаковыми цифрами".

Пример 7. Из букв слова дифференциал наугад выбирается одна буква. Какова вероятность того, что эта буква будет: а) гласной, б) согласной, в) буквой ч ?

Решение . В слове дuфференцuал 12 букв, из них 5 гласных и 7 со­гласных. Буквы ч в этом слове нет. Обозначим события: А - "гласная буква", В - "согласная буква", С - "буква ч ". Число благоприятствующих элементарных исходов: -для события А, - для события В, - для события С. Поскольку n = 12 , то
, и .

Пример 8. Подбрасывается два игральных кубика, отмечается чис­ло очков на верхней грани каждого кубика. Найти вероятность того, на обоих кубиках выпало одинаковое число очков.

Решение. Обозначим это событие буквой А. Событюо А благопри­ятствуют 6 элементарных исходов: (1;]), (2;2), (3;3), (4;4), (5;5), (6;6). Всего равновозможных элементарных исходов, образующих полную группу событий, в данном случае n=6 2 =36. Значит, искомая вероятность

Пример 9. В книге 300 страниц. Чему равна вероятность того, что наугад открытая страница будет иметь порядковый номер, кратный 5?

Решение. Из условия задачи следует, что всех равновозможных элементарных исходов, образующих полную группу событий, будет n = 300. Из них m = 60 благоприятствуют наступлению указанного со­бытия. Действительно, номер, кратный 5, имеет вид 5k, где k -натураль­ное число, причем , откуда . Следовательно,
, где А - событие "страница" имеет порядковый номер, кратный 5".

Пример 10 . Подбрасываются два игральных кубика, подсчитыва­ется сумма очков на верхних гранях. Что вероятнее -получить в сумме 7 или 8?

Решение . Обозначим события: А - "выпало 7 очков", В - "выпало 8 очков". Событию А благоприятствуют 6 элементарных исходов: (1; 6), (2; 5),(3; 4), (4; 3), (5; 2), (6; 1), а событию В - 5 исходов: (2; 6), (3; 5), (4; 4), (5; 3), (6; 2). Всех равновозможных элементарных исходов n = 6 2 = 36. Значит, и .

Итак, Р(А)>Р(В), то есть получить в сумме 7 очков - более вероятное собы­тие, чем получить в сумме 8 очков.

Задачи

1. Наудачу выбрано натуральное число, не превосходящее 30. Како­ва вероятность того, что это число кратно 3?
2. В урне a красных и b голубых шаров, одинаковых по размерам и весу. Чему равна вероятность того, что наудачу извлеченный шар из этой урны окажется голубым?
3. Наудачу· выбрано число, не превосходящее 30. Какова вероятность того, что это число является делителем зо?
4. В урне а голубых и b красных шаров, одинаковых по размерам и весу. Из этой урны извлекают один шар и откладывают в сторону. Этот шар оказался красным. После этого из урны вынимают еще один шар. Найти вероятность того, что второй шар также красный.
5. Наудачу выбрано наryральное число, не превосходящее 50. Какова вероятность того, что это число является простым?
6. Подбрасывается три игральных кубика, подсчитывается сумма очков на верхних гранях. Что вероятнее - получить в сумме 9 или 10 оч­ков?
7. Подбрасывается три игральных кубика, подсчитывается сумма выпавших очков. Что вероятнее - получить в сумме 11 (событие А) или 12 очков (событие В)?

Ответы

1. 1/3. 2 . b /(a +b ). 3 . 0,2. 4 . (b -1)/(a +b -1). 5 .0,3.6 . p 1 = 25/216 - вероятность получить в сумме 9 очков; p 2 = 27/216 - вероятность получить в сумме 10 очков; p 2 > p 1 7 . Р(А) = 27/216, Р(В) = 25/216, Р(А) > Р(В).

Вопросы

1. Что называют вероятностью события?
2. Чему равна вероятность достоверного события?
3. Чему равна вероятность невозможного события?
4. В каких пределах заключена вероятность случайного события?
5. В каких пределах заключена вероятность любого события?
6. Какое определение вероятности называют классическим?

mob_info